/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ #include #include #include #include #include #include "platform.h" #include "build/debug.h" #include "common/axis.h" #include "common/maths.h" #include "common/filter.h" #include "config/feature.h" #include "pg/pg.h" #include "pg/pg_ids.h" #include "pg/gyrodev.h" #include "drivers/accgyro/accgyro.h" #include "drivers/accgyro/accgyro_fake.h" #include "drivers/accgyro/accgyro_mpu.h" #include "drivers/accgyro/accgyro_mpu3050.h" #include "drivers/accgyro/accgyro_mpu6050.h" #include "drivers/accgyro/accgyro_mpu6500.h" #include "drivers/accgyro/accgyro_spi_bmi160.h" #include "drivers/accgyro/accgyro_spi_icm20649.h" #include "drivers/accgyro/accgyro_spi_icm20689.h" #include "drivers/accgyro/accgyro_spi_mpu6000.h" #include "drivers/accgyro/accgyro_spi_mpu6500.h" #include "drivers/accgyro/accgyro_spi_mpu9250.h" #ifdef USE_GYRO_L3GD20 #include "drivers/accgyro/accgyro_spi_l3gd20.h" #endif #ifdef USE_GYRO_L3G4200D #include "drivers/accgyro_legacy/accgyro_l3g4200d.h" #endif #include "drivers/accgyro/gyro_sync.h" #include "drivers/bus_spi.h" #include "drivers/io.h" #include "fc/config.h" #include "fc/runtime_config.h" #include "io/beeper.h" #include "io/statusindicator.h" #include "scheduler/scheduler.h" #include "sensors/boardalignment.h" #include "sensors/gyro.h" #ifdef USE_GYRO_DATA_ANALYSE #include "sensors/gyroanalyse.h" #endif #include "sensors/rpm_filter.h" #include "sensors/sensors.h" #if ((FLASH_SIZE > 128) && (defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_SPI_MPU6500))) #define USE_GYRO_SLEW_LIMITER #endif FAST_RAM_ZERO_INIT gyro_t gyro; static FAST_RAM_ZERO_INIT uint8_t gyroDebugMode; static uint8_t gyroToUse = 0; static FAST_RAM_ZERO_INIT bool overflowDetected; #ifdef USE_GYRO_OVERFLOW_CHECK static FAST_RAM_ZERO_INIT uint8_t overflowAxisMask; #endif #ifdef USE_YAW_SPIN_RECOVERY static FAST_RAM_ZERO_INIT bool yawSpinDetected; #endif static FAST_RAM_ZERO_INIT float accumulatedMeasurements[XYZ_AXIS_COUNT]; static FAST_RAM_ZERO_INIT float gyroPrevious[XYZ_AXIS_COUNT]; static FAST_RAM_ZERO_INIT timeUs_t accumulatedMeasurementTimeUs; static FAST_RAM_ZERO_INIT timeUs_t accumulationLastTimeSampledUs; static FAST_RAM_ZERO_INIT int16_t gyroSensorTemperature; static bool gyroHasOverflowProtection = true; static FAST_RAM_ZERO_INIT bool useDualGyroDebugging; typedef struct gyroCalibration_s { float sum[XYZ_AXIS_COUNT]; stdev_t var[XYZ_AXIS_COUNT]; int32_t cyclesRemaining; } gyroCalibration_t; bool firstArmingCalibrationWasStarted = false; typedef union gyroLowpassFilter_u { pt1Filter_t pt1FilterState; biquadFilter_t biquadFilterState; } gyroLowpassFilter_t; typedef struct gyroSensor_s { gyroDev_t gyroDev; gyroCalibration_t calibration; // lowpass gyro soft filter filterApplyFnPtr lowpassFilterApplyFn; gyroLowpassFilter_t lowpassFilter[XYZ_AXIS_COUNT]; // lowpass2 gyro soft filter filterApplyFnPtr lowpass2FilterApplyFn; gyroLowpassFilter_t lowpass2Filter[XYZ_AXIS_COUNT]; // notch filters filterApplyFnPtr notchFilter1ApplyFn; biquadFilter_t notchFilter1[XYZ_AXIS_COUNT]; filterApplyFnPtr notchFilter2ApplyFn; biquadFilter_t notchFilter2[XYZ_AXIS_COUNT]; filterApplyFnPtr notchFilterDynApplyFn; filterApplyFnPtr notchFilterDynApplyFn2; biquadFilter_t notchFilterDyn[XYZ_AXIS_COUNT]; biquadFilter_t notchFilterDyn2[XYZ_AXIS_COUNT]; // overflow and recovery timeUs_t overflowTimeUs; bool overflowDetected; #ifdef USE_YAW_SPIN_RECOVERY timeUs_t yawSpinTimeUs; bool yawSpinDetected; #endif // USE_YAW_SPIN_RECOVERY #ifdef USE_GYRO_DATA_ANALYSE #define DYNAMIC_NOTCH_DEFAULT_CENTER_HZ 350 #define DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ 300 gyroAnalyseState_t gyroAnalyseState; #endif flight_dynamics_index_t gyroDebugAxis; } gyroSensor_t; STATIC_UNIT_TESTED FAST_RAM_ZERO_INIT gyroSensor_t gyroSensor1; #ifdef USE_MULTI_GYRO STATIC_UNIT_TESTED FAST_RAM_ZERO_INIT gyroSensor_t gyroSensor2; #endif #ifdef UNIT_TEST STATIC_UNIT_TESTED gyroSensor_t * const gyroSensorPtr = &gyroSensor1; STATIC_UNIT_TESTED gyroDev_t * const gyroDevPtr = &gyroSensor1.gyroDev; #endif static void gyroInitSensorFilters(gyroSensor_t *gyroSensor); static void gyroInitLowpassFilterLpf(gyroSensor_t *gyroSensor, int slot, int type, uint16_t lpfHz); #define DEBUG_GYRO_CALIBRATION 3 #ifdef STM32F10X #define GYRO_SYNC_DENOM_DEFAULT 8 #elif defined(USE_GYRO_SPI_MPU6000) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \ || defined(USE_GYRO_SPI_ICM20689) #define GYRO_SYNC_DENOM_DEFAULT 1 #else #define GYRO_SYNC_DENOM_DEFAULT 3 #endif #define GYRO_OVERFLOW_TRIGGER_THRESHOLD 31980 // 97.5% full scale (1950dps for 2000dps gyro) #define GYRO_OVERFLOW_RESET_THRESHOLD 30340 // 92.5% full scale (1850dps for 2000dps gyro) PG_REGISTER_WITH_RESET_FN(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 7); #ifndef GYRO_CONFIG_USE_GYRO_DEFAULT #define GYRO_CONFIG_USE_GYRO_DEFAULT GYRO_CONFIG_USE_GYRO_1 #endif void pgResetFn_gyroConfig(gyroConfig_t *gyroConfig) { gyroConfig->gyroCalibrationDuration = 125; // 1.25 seconds gyroConfig->gyroMovementCalibrationThreshold = 48; gyroConfig->gyro_sync_denom = GYRO_SYNC_DENOM_DEFAULT; gyroConfig->gyro_hardware_lpf = GYRO_HARDWARE_LPF_NORMAL; gyroConfig->gyro_lowpass_type = FILTER_PT1; gyroConfig->gyro_lowpass_hz = 100; gyroConfig->gyro_lowpass2_type = FILTER_PT1; gyroConfig->gyro_lowpass2_hz = 300; gyroConfig->gyro_high_fsr = false; gyroConfig->gyro_to_use = GYRO_CONFIG_USE_GYRO_DEFAULT; gyroConfig->gyro_soft_notch_hz_1 = 0; gyroConfig->gyro_soft_notch_cutoff_1 = 0; gyroConfig->gyro_soft_notch_hz_2 = 0; gyroConfig->gyro_soft_notch_cutoff_2 = 0; gyroConfig->checkOverflow = GYRO_OVERFLOW_CHECK_ALL_AXES; gyroConfig->gyro_offset_yaw = 0; gyroConfig->yaw_spin_recovery = true; gyroConfig->yaw_spin_threshold = 1950; gyroConfig->dyn_lpf_gyro_min_hz = 150; gyroConfig->dyn_lpf_gyro_max_hz = 450; gyroConfig->dyn_notch_range = DYN_NOTCH_RANGE_AUTO; gyroConfig->dyn_notch_width_percent = 8; gyroConfig->dyn_notch_q = 120; gyroConfig->dyn_notch_min_hz = 150; #ifdef USE_DYN_LPF gyroConfig->gyro_lowpass_hz = 150; gyroConfig->gyro_lowpass_type = FILTER_BIQUAD; gyroConfig->gyro_lowpass2_hz = 0; #endif gyroConfig->gyro_filter_debug_axis = FD_ROLL; } #ifdef USE_MULTI_GYRO #define ACTIVE_GYRO ((gyroToUse == GYRO_CONFIG_USE_GYRO_2) ? &gyroSensor2 : &gyroSensor1) #else #define ACTIVE_GYRO (&gyroSensor1) #endif const busDevice_t *gyroSensorBus(void) { return &ACTIVE_GYRO->gyroDev.bus; } #ifdef USE_GYRO_REGISTER_DUMP const busDevice_t *gyroSensorBusByDevice(uint8_t whichSensor) { #ifdef USE_MULTI_GYRO if (whichSensor == GYRO_CONFIG_USE_GYRO_2) { return &gyroSensor2.gyroDev.bus; } #else UNUSED(whichSensor); #endif return &gyroSensor1.gyroDev.bus; } #endif // USE_GYRO_REGISTER_DUMP const mpuDetectionResult_t *gyroMpuDetectionResult(void) { return &ACTIVE_GYRO->gyroDev.mpuDetectionResult; } STATIC_UNIT_TESTED gyroHardware_e gyroDetect(gyroDev_t *dev) { gyroHardware_e gyroHardware = GYRO_DEFAULT; switch (gyroHardware) { case GYRO_DEFAULT: FALLTHROUGH; #ifdef USE_GYRO_MPU6050 case GYRO_MPU6050: if (mpu6050GyroDetect(dev)) { gyroHardware = GYRO_MPU6050; break; } FALLTHROUGH; #endif #ifdef USE_GYRO_L3G4200D case GYRO_L3G4200D: if (l3g4200dDetect(dev)) { gyroHardware = GYRO_L3G4200D; break; } FALLTHROUGH; #endif #ifdef USE_GYRO_MPU3050 case GYRO_MPU3050: if (mpu3050Detect(dev)) { gyroHardware = GYRO_MPU3050; break; } FALLTHROUGH; #endif #ifdef USE_GYRO_L3GD20 case GYRO_L3GD20: if (l3gd20GyroDetect(dev)) { gyroHardware = GYRO_L3GD20; break; } FALLTHROUGH; #endif #ifdef USE_GYRO_SPI_MPU6000 case GYRO_MPU6000: if (mpu6000SpiGyroDetect(dev)) { gyroHardware = GYRO_MPU6000; break; } FALLTHROUGH; #endif #if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) case GYRO_MPU6500: case GYRO_ICM20601: case GYRO_ICM20602: case GYRO_ICM20608G: #ifdef USE_GYRO_SPI_MPU6500 if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev)) { #else if (mpu6500GyroDetect(dev)) { #endif switch (dev->mpuDetectionResult.sensor) { case MPU_9250_SPI: gyroHardware = GYRO_MPU9250; break; case ICM_20601_SPI: gyroHardware = GYRO_ICM20601; break; case ICM_20602_SPI: gyroHardware = GYRO_ICM20602; break; case ICM_20608_SPI: gyroHardware = GYRO_ICM20608G; break; default: gyroHardware = GYRO_MPU6500; } break; } FALLTHROUGH; #endif #ifdef USE_GYRO_SPI_MPU9250 case GYRO_MPU9250: if (mpu9250SpiGyroDetect(dev)) { gyroHardware = GYRO_MPU9250; break; } FALLTHROUGH; #endif #ifdef USE_GYRO_SPI_ICM20649 case GYRO_ICM20649: if (icm20649SpiGyroDetect(dev)) { gyroHardware = GYRO_ICM20649; break; } FALLTHROUGH; #endif #ifdef USE_GYRO_SPI_ICM20689 case GYRO_ICM20689: if (icm20689SpiGyroDetect(dev)) { gyroHardware = GYRO_ICM20689; break; } FALLTHROUGH; #endif #ifdef USE_ACCGYRO_BMI160 case GYRO_BMI160: if (bmi160SpiGyroDetect(dev)) { gyroHardware = GYRO_BMI160; break; } FALLTHROUGH; #endif #ifdef USE_FAKE_GYRO case GYRO_FAKE: if (fakeGyroDetect(dev)) { gyroHardware = GYRO_FAKE; break; } FALLTHROUGH; #endif default: gyroHardware = GYRO_NONE; } if (gyroHardware != GYRO_NONE) { detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware; sensorsSet(SENSOR_GYRO); } return gyroHardware; } static void gyroPreInitSensor(const gyroDeviceConfig_t *config) { #if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \ || defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) || defined(USE_GYRO_SPI_ICM20689) mpuPreInit(config); #else UNUSED(config); #endif } static bool gyroInitSensor(gyroSensor_t *gyroSensor, const gyroDeviceConfig_t *config) { gyroSensor->gyroDebugAxis = gyroConfig()->gyro_filter_debug_axis; gyroSensor->gyroDev.gyro_high_fsr = gyroConfig()->gyro_high_fsr; gyroSensor->gyroDev.gyroAlign = config->align; gyroSensor->gyroDev.mpuIntExtiTag = config->extiTag; #if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \ || defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) || defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_L3GD20) mpuDetect(&gyroSensor->gyroDev, config); #endif const gyroHardware_e gyroHardware = gyroDetect(&gyroSensor->gyroDev); gyroSensor->gyroDev.gyroHardware = gyroHardware; if (gyroHardware == GYRO_NONE) { return false; } // Must set gyro targetLooptime before gyroDev.init and initialisation of filters gyro.targetLooptime = gyroSetSampleRate(&gyroSensor->gyroDev, gyroConfig()->gyro_hardware_lpf, gyroConfig()->gyro_sync_denom); gyroSensor->gyroDev.hardware_lpf = gyroConfig()->gyro_hardware_lpf; gyroSensor->gyroDev.initFn(&gyroSensor->gyroDev); // As new gyros are supported, be sure to add them below based on whether they are subject to the overflow/inversion bug // Any gyro not explicitly defined will default to not having built-in overflow protection as a safe alternative. switch (gyroHardware) { case GYRO_NONE: // Won't ever actually get here, but included to account for all gyro types case GYRO_DEFAULT: case GYRO_FAKE: case GYRO_MPU6050: case GYRO_L3G4200D: case GYRO_MPU3050: case GYRO_L3GD20: case GYRO_BMI160: case GYRO_MPU6000: case GYRO_MPU6500: case GYRO_MPU9250: gyroSensor->gyroDev.gyroHasOverflowProtection = true; break; case GYRO_ICM20601: case GYRO_ICM20602: case GYRO_ICM20608G: case GYRO_ICM20649: // we don't actually know if this is affected, but as there are currently no flight controllers using it we err on the side of caution case GYRO_ICM20689: gyroSensor->gyroDev.gyroHasOverflowProtection = false; break; default: gyroSensor->gyroDev.gyroHasOverflowProtection = false; // default catch for newly added gyros until proven to be unaffected break; } gyroInitSensorFilters(gyroSensor); #ifdef USE_GYRO_DATA_ANALYSE gyroDataAnalyseStateInit(&gyroSensor->gyroAnalyseState, gyro.targetLooptime); #endif return true; } void gyroPreInit(void) { gyroPreInitSensor(gyroDeviceConfig(0)); #ifdef USE_MULTI_GYRO gyroPreInitSensor(gyroDeviceConfig(1)); #endif } bool gyroInit(void) { #ifdef USE_GYRO_OVERFLOW_CHECK if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_YAW) { overflowAxisMask = GYRO_OVERFLOW_Z; } else if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_ALL_AXES) { overflowAxisMask = GYRO_OVERFLOW_X | GYRO_OVERFLOW_Y | GYRO_OVERFLOW_Z; } else { overflowAxisMask = 0; } #endif gyroDebugMode = DEBUG_NONE; useDualGyroDebugging = false; switch (debugMode) { case DEBUG_FFT: case DEBUG_FFT_FREQ: case DEBUG_GYRO_RAW: case DEBUG_GYRO_SCALED: case DEBUG_GYRO_FILTERED: case DEBUG_DYN_LPF: gyroDebugMode = debugMode; break; case DEBUG_DUAL_GYRO: case DEBUG_DUAL_GYRO_COMBINE: case DEBUG_DUAL_GYRO_DIFF: case DEBUG_DUAL_GYRO_RAW: useDualGyroDebugging = true; break; } firstArmingCalibrationWasStarted = false; bool ret = false; gyroToUse = gyroConfig()->gyro_to_use; if (gyroToUse == GYRO_CONFIG_USE_GYRO_1 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) { ret = gyroInitSensor(&gyroSensor1, gyroDeviceConfig(0)); if (!ret) { return false; // TODO handle failure of first gyro detection better. - Perhaps update the config to use second gyro then indicate a new failure mode and reboot. } gyroHasOverflowProtection = gyroHasOverflowProtection && gyroSensor1.gyroDev.gyroHasOverflowProtection; } #ifdef USE_MULTI_GYRO if (gyroToUse == GYRO_CONFIG_USE_GYRO_2 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) { ret = gyroInitSensor(&gyroSensor2, gyroDeviceConfig(1)); if (!ret) { return false; // TODO handle failure of second gyro detection better. - Perhaps update the config to use first gyro then indicate a new failure mode and reboot. } gyroHasOverflowProtection = gyroHasOverflowProtection && gyroSensor2.gyroDev.gyroHasOverflowProtection; } // Only allow using both gyros simultaneously if they are the same hardware type. // If the user selected "BOTH" and they are not the same type, then reset to using only the first gyro. if (gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) { if (gyroSensor1.gyroDev.gyroHardware != gyroSensor2.gyroDev.gyroHardware) { gyroToUse = GYRO_CONFIG_USE_GYRO_1; gyroConfigMutable()->gyro_to_use = GYRO_CONFIG_USE_GYRO_1; detectedSensors[SENSOR_INDEX_GYRO] = gyroSensor1.gyroDev.gyroHardware; sensorsSet(SENSOR_GYRO); } } #endif return ret; } #ifdef USE_DYN_LPF static FAST_RAM uint8_t dynLpfFilter = DYN_LPF_NONE; static FAST_RAM_ZERO_INIT uint16_t dynLpfMin; static FAST_RAM_ZERO_INIT uint16_t dynLpfMax; static void dynLpfFilterInit() { if (gyroConfig()->dyn_lpf_gyro_min_hz > 0) { switch (gyroConfig()->gyro_lowpass_type) { case FILTER_PT1: dynLpfFilter = DYN_LPF_PT1; break; case FILTER_BIQUAD: dynLpfFilter = DYN_LPF_BIQUAD; break; default: dynLpfFilter = DYN_LPF_NONE; break; } } else { dynLpfFilter = DYN_LPF_NONE; } dynLpfMin = gyroConfig()->dyn_lpf_gyro_min_hz; dynLpfMax = gyroConfig()->dyn_lpf_gyro_max_hz; } #endif void gyroInitLowpassFilterLpf(gyroSensor_t *gyroSensor, int slot, int type, uint16_t lpfHz) { filterApplyFnPtr *lowpassFilterApplyFn; gyroLowpassFilter_t *lowpassFilter = NULL; switch (slot) { case FILTER_LOWPASS: lowpassFilterApplyFn = &gyroSensor->lowpassFilterApplyFn; lowpassFilter = gyroSensor->lowpassFilter; break; case FILTER_LOWPASS2: lowpassFilterApplyFn = &gyroSensor->lowpass2FilterApplyFn; lowpassFilter = gyroSensor->lowpass2Filter; break; default: return; } // Establish some common constants const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime; const float gyroDt = gyro.targetLooptime * 1e-6f; // Gain could be calculated a little later as it is specific to the pt1/bqrcf2/fkf branches const float gain = pt1FilterGain(lpfHz, gyroDt); // Dereference the pointer to null before checking valid cutoff and filter // type. It will be overridden for positive cases. *lowpassFilterApplyFn = nullFilterApply; // If lowpass cutoff has been specified and is less than the Nyquist frequency if (lpfHz && lpfHz <= gyroFrequencyNyquist) { switch (type) { case FILTER_PT1: *lowpassFilterApplyFn = (filterApplyFnPtr) pt1FilterApply; for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { pt1FilterInit(&lowpassFilter[axis].pt1FilterState, gain); } break; case FILTER_BIQUAD: #ifdef USE_DYN_LPF *lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApplyDF1; #else *lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApply; #endif for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { biquadFilterInitLPF(&lowpassFilter[axis].biquadFilterState, lpfHz, gyro.targetLooptime); } break; } } } static uint16_t calculateNyquistAdjustedNotchHz(uint16_t notchHz, uint16_t notchCutoffHz) { const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime; if (notchHz > gyroFrequencyNyquist) { if (notchCutoffHz < gyroFrequencyNyquist) { notchHz = gyroFrequencyNyquist; } else { notchHz = 0; } } return notchHz; } #if defined(USE_GYRO_SLEW_LIMITER) void gyroInitSlewLimiter(gyroSensor_t *gyroSensor) { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { gyroSensor->gyroDev.gyroADCRawPrevious[axis] = 0; } } #endif static void gyroInitFilterNotch1(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz) { gyroSensor->notchFilter1ApplyFn = nullFilterApply; notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz); if (notchHz != 0 && notchCutoffHz != 0) { gyroSensor->notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply; const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz); for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { biquadFilterInit(&gyroSensor->notchFilter1[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH); } } } static void gyroInitFilterNotch2(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz) { gyroSensor->notchFilter2ApplyFn = nullFilterApply; notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz); if (notchHz != 0 && notchCutoffHz != 0) { gyroSensor->notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply; const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz); for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { biquadFilterInit(&gyroSensor->notchFilter2[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH); } } } #ifdef USE_GYRO_DATA_ANALYSE static bool isDynamicFilterActive(void) { return featureIsEnabled(FEATURE_DYNAMIC_FILTER); } static void gyroInitFilterDynamicNotch(gyroSensor_t *gyroSensor) { gyroSensor->notchFilterDynApplyFn = nullFilterApply; gyroSensor->notchFilterDynApplyFn2 = nullFilterApply; if (isDynamicFilterActive()) { gyroSensor->notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2 if(gyroConfig()->dyn_notch_width_percent != 0) { gyroSensor->notchFilterDynApplyFn2 = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2 } const float notchQ = filterGetNotchQ(DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ); // any defaults OK here for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { biquadFilterInit(&gyroSensor->notchFilterDyn[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, gyro.targetLooptime, notchQ, FILTER_NOTCH); biquadFilterInit(&gyroSensor->notchFilterDyn2[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, gyro.targetLooptime, notchQ, FILTER_NOTCH); } } } #endif static void gyroInitSensorFilters(gyroSensor_t *gyroSensor) { #if defined(USE_GYRO_SLEW_LIMITER) gyroInitSlewLimiter(gyroSensor); #endif uint16_t gyro_lowpass_hz = gyroConfig()->gyro_lowpass_hz; #ifdef USE_DYN_LPF gyro_lowpass_hz = MAX(gyroConfig()->gyro_lowpass_hz, gyroConfig()->dyn_lpf_gyro_min_hz); #endif gyroInitLowpassFilterLpf( gyroSensor, FILTER_LOWPASS, gyroConfig()->gyro_lowpass_type, gyro_lowpass_hz ); gyroInitLowpassFilterLpf( gyroSensor, FILTER_LOWPASS2, gyroConfig()->gyro_lowpass2_type, gyroConfig()->gyro_lowpass2_hz ); gyroInitFilterNotch1(gyroSensor, gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1); gyroInitFilterNotch2(gyroSensor, gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2); #ifdef USE_GYRO_DATA_ANALYSE gyroInitFilterDynamicNotch(gyroSensor); #endif #ifdef USE_DYN_LPF dynLpfFilterInit(); #endif } void gyroInitFilters(void) { gyroInitSensorFilters(&gyroSensor1); #ifdef USE_MULTI_GYRO gyroInitSensorFilters(&gyroSensor2); #endif } FAST_CODE bool isGyroSensorCalibrationComplete(const gyroSensor_t *gyroSensor) { return gyroSensor->calibration.cyclesRemaining == 0; } FAST_CODE bool isGyroCalibrationComplete(void) { switch (gyroToUse) { default: case GYRO_CONFIG_USE_GYRO_1: { return isGyroSensorCalibrationComplete(&gyroSensor1); } #ifdef USE_MULTI_GYRO case GYRO_CONFIG_USE_GYRO_2: { return isGyroSensorCalibrationComplete(&gyroSensor2); } case GYRO_CONFIG_USE_GYRO_BOTH: { return isGyroSensorCalibrationComplete(&gyroSensor1) && isGyroSensorCalibrationComplete(&gyroSensor2); } #endif } } static bool isOnFinalGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration) { return gyroCalibration->cyclesRemaining == 1; } static int32_t gyroCalculateCalibratingCycles(void) { return (gyroConfig()->gyroCalibrationDuration * 10000) / gyro.targetLooptime; } static bool isOnFirstGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration) { return gyroCalibration->cyclesRemaining == gyroCalculateCalibratingCycles(); } static void gyroSetCalibrationCycles(gyroSensor_t *gyroSensor) { gyroSensor->calibration.cyclesRemaining = gyroCalculateCalibratingCycles(); } void gyroStartCalibration(bool isFirstArmingCalibration) { if (!(isFirstArmingCalibration && firstArmingCalibrationWasStarted)) { gyroSetCalibrationCycles(&gyroSensor1); #ifdef USE_MULTI_GYRO gyroSetCalibrationCycles(&gyroSensor2); #endif if (isFirstArmingCalibration) { firstArmingCalibrationWasStarted = true; } } } bool isFirstArmingGyroCalibrationRunning(void) { return firstArmingCalibrationWasStarted && !isGyroCalibrationComplete(); } STATIC_UNIT_TESTED void performGyroCalibration(gyroSensor_t *gyroSensor, uint8_t gyroMovementCalibrationThreshold) { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { // Reset g[axis] at start of calibration if (isOnFirstGyroCalibrationCycle(&gyroSensor->calibration)) { gyroSensor->calibration.sum[axis] = 0.0f; devClear(&gyroSensor->calibration.var[axis]); // gyroZero is set to zero until calibration complete gyroSensor->gyroDev.gyroZero[axis] = 0.0f; } // Sum up CALIBRATING_GYRO_TIME_US readings gyroSensor->calibration.sum[axis] += gyroSensor->gyroDev.gyroADCRaw[axis]; devPush(&gyroSensor->calibration.var[axis], gyroSensor->gyroDev.gyroADCRaw[axis]); if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) { const float stddev = devStandardDeviation(&gyroSensor->calibration.var[axis]); // DEBUG_GYRO_CALIBRATION records the standard deviation of roll // into the spare field - debug[3], in DEBUG_GYRO_RAW if (axis == X) { DEBUG_SET(DEBUG_GYRO_RAW, DEBUG_GYRO_CALIBRATION, lrintf(stddev)); } // check deviation and startover in case the model was moved if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) { gyroSetCalibrationCycles(gyroSensor); return; } // please take care with exotic boardalignment !! gyroSensor->gyroDev.gyroZero[axis] = gyroSensor->calibration.sum[axis] / gyroCalculateCalibratingCycles(); if (axis == Z) { gyroSensor->gyroDev.gyroZero[axis] -= ((float)gyroConfig()->gyro_offset_yaw / 100); } } } if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) { schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics if (!firstArmingCalibrationWasStarted || (getArmingDisableFlags() & ~ARMING_DISABLED_CALIBRATING) == 0) { beeper(BEEPER_GYRO_CALIBRATED); } } --gyroSensor->calibration.cyclesRemaining; } #if defined(USE_GYRO_SLEW_LIMITER) FAST_CODE int32_t gyroSlewLimiter(gyroSensor_t *gyroSensor, int axis) { int32_t ret = (int32_t)gyroSensor->gyroDev.gyroADCRaw[axis]; if (gyroConfig()->checkOverflow || gyroHasOverflowProtection) { // don't use the slew limiter if overflow checking is on or gyro is not subject to overflow bug return ret; } if (abs(ret - gyroSensor->gyroDev.gyroADCRawPrevious[axis]) > (1<<14)) { // there has been a large change in value, so assume overflow has occurred and return the previous value ret = gyroSensor->gyroDev.gyroADCRawPrevious[axis]; } else { gyroSensor->gyroDev.gyroADCRawPrevious[axis] = ret; } return ret; } #endif #ifdef USE_GYRO_OVERFLOW_CHECK static FAST_CODE_NOINLINE void handleOverflow(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs) { const float gyroOverflowResetRate = GYRO_OVERFLOW_RESET_THRESHOLD * gyroSensor->gyroDev.scale; if ((abs(gyroSensor->gyroDev.gyroADCf[X]) < gyroOverflowResetRate) && (abs(gyroSensor->gyroDev.gyroADCf[Y]) < gyroOverflowResetRate) && (abs(gyroSensor->gyroDev.gyroADCf[Z]) < gyroOverflowResetRate)) { // if we have 50ms of consecutive OK gyro vales, then assume yaw readings are OK again and reset overflowDetected // reset requires good OK values on all axes if (cmpTimeUs(currentTimeUs, gyroSensor->overflowTimeUs) > 50000) { gyroSensor->overflowDetected = false; } } else { // not a consecutive OK value, so reset the overflow time gyroSensor->overflowTimeUs = currentTimeUs; } } static FAST_CODE void checkForOverflow(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs) { // check for overflow to handle Yaw Spin To The Moon (YSTTM) // ICM gyros are specified to +/- 2000 deg/sec, in a crash they can go out of spec. // This can cause an overflow and sign reversal in the output. // Overflow and sign reversal seems to result in a gyro value of +1996 or -1996. if (gyroSensor->overflowDetected) { handleOverflow(gyroSensor, currentTimeUs); } else { #ifndef SIMULATOR_BUILD // check for overflow in the axes set in overflowAxisMask gyroOverflow_e overflowCheck = GYRO_OVERFLOW_NONE; const float gyroOverflowTriggerRate = GYRO_OVERFLOW_TRIGGER_THRESHOLD * gyroSensor->gyroDev.scale; if (abs(gyroSensor->gyroDev.gyroADCf[X]) > gyroOverflowTriggerRate) { overflowCheck |= GYRO_OVERFLOW_X; } if (abs(gyroSensor->gyroDev.gyroADCf[Y]) > gyroOverflowTriggerRate) { overflowCheck |= GYRO_OVERFLOW_Y; } if (abs(gyroSensor->gyroDev.gyroADCf[Z]) > gyroOverflowTriggerRate) { overflowCheck |= GYRO_OVERFLOW_Z; } if (overflowCheck & overflowAxisMask) { gyroSensor->overflowDetected = true; gyroSensor->overflowTimeUs = currentTimeUs; #ifdef USE_YAW_SPIN_RECOVERY gyroSensor->yawSpinDetected = false; #endif // USE_YAW_SPIN_RECOVERY } #endif // SIMULATOR_BUILD } } #endif // USE_GYRO_OVERFLOW_CHECK #ifdef USE_YAW_SPIN_RECOVERY static FAST_CODE_NOINLINE void handleYawSpin(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs) { const float yawSpinResetRate = gyroConfig()->yaw_spin_threshold - 100.0f; if (abs(gyroSensor->gyroDev.gyroADCf[Z]) < yawSpinResetRate) { // testing whether 20ms of consecutive OK gyro yaw values is enough if (cmpTimeUs(currentTimeUs, gyroSensor->yawSpinTimeUs) > 20000) { gyroSensor->yawSpinDetected = false; } } else { // reset the yaw spin time gyroSensor->yawSpinTimeUs = currentTimeUs; } } static FAST_CODE void checkForYawSpin(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs) { // if not in overflow mode, handle yaw spins above threshold #ifdef USE_GYRO_OVERFLOW_CHECK if (gyroSensor->overflowDetected) { gyroSensor->yawSpinDetected = false; return; } #endif // USE_GYRO_OVERFLOW_CHECK if (gyroSensor->yawSpinDetected) { handleYawSpin(gyroSensor, currentTimeUs); } else { #ifndef SIMULATOR_BUILD // check for spin on yaw axis only if (abs(gyroSensor->gyroDev.gyroADCf[Z]) > gyroConfig()->yaw_spin_threshold) { gyroSensor->yawSpinDetected = true; gyroSensor->yawSpinTimeUs = currentTimeUs; } #endif // SIMULATOR_BUILD } } #endif // USE_YAW_SPIN_RECOVERY #define GYRO_FILTER_FUNCTION_NAME filterGyro #define GYRO_FILTER_DEBUG_SET(mode, index, value) { UNUSED(mode); UNUSED(index); UNUSED(value); } #include "gyro_filter_impl.h" #undef GYRO_FILTER_FUNCTION_NAME #undef GYRO_FILTER_DEBUG_SET #define GYRO_FILTER_FUNCTION_NAME filterGyroDebug #define GYRO_FILTER_DEBUG_SET DEBUG_SET #include "gyro_filter_impl.h" #undef GYRO_FILTER_FUNCTION_NAME #undef GYRO_FILTER_DEBUG_SET static FAST_CODE FAST_CODE_NOINLINE void gyroUpdateSensor(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs) { if (!gyroSensor->gyroDev.readFn(&gyroSensor->gyroDev)) { return; } gyroSensor->gyroDev.dataReady = false; if (isGyroSensorCalibrationComplete(gyroSensor)) { // move 16-bit gyro data into 32-bit variables to avoid overflows in calculations #if defined(USE_GYRO_SLEW_LIMITER) gyroSensor->gyroDev.gyroADC[X] = gyroSlewLimiter(gyroSensor, X) - gyroSensor->gyroDev.gyroZero[X]; gyroSensor->gyroDev.gyroADC[Y] = gyroSlewLimiter(gyroSensor, Y) - gyroSensor->gyroDev.gyroZero[Y]; gyroSensor->gyroDev.gyroADC[Z] = gyroSlewLimiter(gyroSensor, Z) - gyroSensor->gyroDev.gyroZero[Z]; #else gyroSensor->gyroDev.gyroADC[X] = gyroSensor->gyroDev.gyroADCRaw[X] - gyroSensor->gyroDev.gyroZero[X]; gyroSensor->gyroDev.gyroADC[Y] = gyroSensor->gyroDev.gyroADCRaw[Y] - gyroSensor->gyroDev.gyroZero[Y]; gyroSensor->gyroDev.gyroADC[Z] = gyroSensor->gyroDev.gyroADCRaw[Z] - gyroSensor->gyroDev.gyroZero[Z]; #endif alignSensors(gyroSensor->gyroDev.gyroADC, gyroSensor->gyroDev.gyroAlign); } else { performGyroCalibration(gyroSensor, gyroConfig()->gyroMovementCalibrationThreshold); // still calibrating, so no need to further process gyro data return; } if (gyroDebugMode == DEBUG_NONE) { filterGyro(gyroSensor); } else { filterGyroDebug(gyroSensor); } #ifdef USE_GYRO_OVERFLOW_CHECK if (gyroConfig()->checkOverflow && !gyroHasOverflowProtection) { checkForOverflow(gyroSensor, currentTimeUs); } #endif #ifdef USE_YAW_SPIN_RECOVERY if (gyroConfig()->yaw_spin_recovery) { checkForYawSpin(gyroSensor, currentTimeUs); } #endif #ifdef USE_GYRO_DATA_ANALYSE if (isDynamicFilterActive()) { gyroDataAnalyse(&gyroSensor->gyroAnalyseState, gyroSensor->notchFilterDyn, gyroSensor->notchFilterDyn2); } #endif #if (!defined(USE_GYRO_OVERFLOW_CHECK) && !defined(USE_YAW_SPIN_RECOVERY)) UNUSED(currentTimeUs); #endif } FAST_CODE void gyroUpdate(timeUs_t currentTimeUs) { const timeDelta_t sampleDeltaUs = currentTimeUs - accumulationLastTimeSampledUs; accumulationLastTimeSampledUs = currentTimeUs; accumulatedMeasurementTimeUs += sampleDeltaUs; switch (gyroToUse) { case GYRO_CONFIG_USE_GYRO_1: gyroUpdateSensor(&gyroSensor1, currentTimeUs); if (isGyroSensorCalibrationComplete(&gyroSensor1)) { gyro.gyroADCf[X] = gyroSensor1.gyroDev.gyroADCf[X]; gyro.gyroADCf[Y] = gyroSensor1.gyroDev.gyroADCf[Y]; gyro.gyroADCf[Z] = gyroSensor1.gyroDev.gyroADCf[Z]; #ifdef USE_GYRO_OVERFLOW_CHECK overflowDetected = gyroSensor1.overflowDetected; #endif #ifdef USE_YAW_SPIN_RECOVERY yawSpinDetected = gyroSensor1.yawSpinDetected; #endif } if (useDualGyroDebugging) { DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyroSensor1.gyroDev.gyroADCRaw[X]); DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyroSensor1.gyroDev.gyroADCRaw[Y]); DEBUG_SET(DEBUG_DUAL_GYRO, 0, lrintf(gyroSensor1.gyroDev.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO, 1, lrintf(gyroSensor1.gyroDev.gyroADCf[Y])); DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 0, lrintf(gyro.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 1, lrintf(gyro.gyroADCf[Y])); } break; #ifdef USE_MULTI_GYRO case GYRO_CONFIG_USE_GYRO_2: gyroUpdateSensor(&gyroSensor2, currentTimeUs); if (isGyroSensorCalibrationComplete(&gyroSensor2)) { gyro.gyroADCf[X] = gyroSensor2.gyroDev.gyroADCf[X]; gyro.gyroADCf[Y] = gyroSensor2.gyroDev.gyroADCf[Y]; gyro.gyroADCf[Z] = gyroSensor2.gyroDev.gyroADCf[Z]; #ifdef USE_GYRO_OVERFLOW_CHECK overflowDetected = gyroSensor2.overflowDetected; #endif #ifdef USE_YAW_SPIN_RECOVERY yawSpinDetected = gyroSensor2.yawSpinDetected; #endif } if (useDualGyroDebugging) { DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyroSensor2.gyroDev.gyroADCRaw[X]); DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyroSensor2.gyroDev.gyroADCRaw[Y]); DEBUG_SET(DEBUG_DUAL_GYRO, 2, lrintf(gyroSensor2.gyroDev.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO, 3, lrintf(gyroSensor2.gyroDev.gyroADCf[Y])); DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 2, lrintf(gyro.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 3, lrintf(gyro.gyroADCf[Y])); } break; case GYRO_CONFIG_USE_GYRO_BOTH: gyroUpdateSensor(&gyroSensor1, currentTimeUs); gyroUpdateSensor(&gyroSensor2, currentTimeUs); if (isGyroSensorCalibrationComplete(&gyroSensor1) && isGyroSensorCalibrationComplete(&gyroSensor2)) { gyro.gyroADCf[X] = (gyroSensor1.gyroDev.gyroADCf[X] + gyroSensor2.gyroDev.gyroADCf[X]) / 2.0f; gyro.gyroADCf[Y] = (gyroSensor1.gyroDev.gyroADCf[Y] + gyroSensor2.gyroDev.gyroADCf[Y]) / 2.0f; gyro.gyroADCf[Z] = (gyroSensor1.gyroDev.gyroADCf[Z] + gyroSensor2.gyroDev.gyroADCf[Z]) / 2.0f; #ifdef USE_GYRO_OVERFLOW_CHECK overflowDetected = gyroSensor1.overflowDetected || gyroSensor2.overflowDetected; #endif #ifdef USE_YAW_SPIN_RECOVERY yawSpinDetected = gyroSensor1.yawSpinDetected || gyroSensor2.yawSpinDetected; #endif } if (useDualGyroDebugging) { DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyroSensor1.gyroDev.gyroADCRaw[X]); DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyroSensor1.gyroDev.gyroADCRaw[Y]); DEBUG_SET(DEBUG_DUAL_GYRO, 0, lrintf(gyroSensor1.gyroDev.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO, 1, lrintf(gyroSensor1.gyroDev.gyroADCf[Y])); DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyroSensor2.gyroDev.gyroADCRaw[X]); DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyroSensor2.gyroDev.gyroADCRaw[Y]); DEBUG_SET(DEBUG_DUAL_GYRO, 2, lrintf(gyroSensor2.gyroDev.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO, 3, lrintf(gyroSensor2.gyroDev.gyroADCf[Y])); DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 1, lrintf(gyro.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 2, lrintf(gyro.gyroADCf[Y])); DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 0, lrintf(gyroSensor1.gyroDev.gyroADCf[X] - gyroSensor2.gyroDev.gyroADCf[X])); DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 1, lrintf(gyroSensor1.gyroDev.gyroADCf[Y] - gyroSensor2.gyroDev.gyroADCf[Y])); DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 2, lrintf(gyroSensor1.gyroDev.gyroADCf[Z] - gyroSensor2.gyroDev.gyroADCf[Z])); } break; #endif } if (!overflowDetected) { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { // integrate using trapezium rule to avoid bias accumulatedMeasurements[axis] += 0.5f * (gyroPrevious[axis] + gyro.gyroADCf[axis]) * sampleDeltaUs; gyroPrevious[axis] = gyro.gyroADCf[axis]; } } } bool gyroGetAccumulationAverage(float *accumulationAverage) { if (accumulatedMeasurementTimeUs > 0) { // If we have gyro data accumulated, calculate average rate that will yield the same rotation for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { accumulationAverage[axis] = accumulatedMeasurements[axis] / accumulatedMeasurementTimeUs; accumulatedMeasurements[axis] = 0.0f; } accumulatedMeasurementTimeUs = 0; return true; } else { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { accumulationAverage[axis] = 0.0f; } return false; } } int16_t gyroReadSensorTemperature(gyroSensor_t gyroSensor) { if (gyroSensor.gyroDev.temperatureFn) { gyroSensor.gyroDev.temperatureFn(&gyroSensor.gyroDev, &gyroSensor.gyroDev.temperature); } return gyroSensor.gyroDev.temperature; } void gyroReadTemperature(void) { switch (gyroToUse) { case GYRO_CONFIG_USE_GYRO_1: gyroSensorTemperature = gyroReadSensorTemperature(gyroSensor1); break; #ifdef USE_MULTI_GYRO case GYRO_CONFIG_USE_GYRO_2: gyroSensorTemperature = gyroReadSensorTemperature(gyroSensor2); break; case GYRO_CONFIG_USE_GYRO_BOTH: gyroSensorTemperature = MAX(gyroReadSensorTemperature(gyroSensor1), gyroReadSensorTemperature(gyroSensor2)); break; #endif // USE_MULTI_GYRO } } int16_t gyroGetTemperature(void) { return gyroSensorTemperature; } int16_t gyroRateDps(int axis) { return lrintf(gyro.gyroADCf[axis] / ACTIVE_GYRO->gyroDev.scale); } bool gyroOverflowDetected(void) { #ifdef USE_GYRO_OVERFLOW_CHECK return overflowDetected; #else return false; #endif // USE_GYRO_OVERFLOW_CHECK } #ifdef USE_YAW_SPIN_RECOVERY bool gyroYawSpinDetected(void) { return yawSpinDetected; } #endif // USE_YAW_SPIN_RECOVERY uint16_t gyroAbsRateDps(int axis) { return fabsf(gyro.gyroADCf[axis]); } #ifdef USE_GYRO_REGISTER_DUMP uint8_t gyroReadRegister(uint8_t whichSensor, uint8_t reg) { return mpuGyroReadRegister(gyroSensorBusByDevice(whichSensor), reg); } #endif // USE_GYRO_REGISTER_DUMP #ifdef USE_DYN_LPF float dynThrottle(float throttle) { return throttle * (1 - (throttle * throttle) / 3.0f) * 1.5f; } void dynLpfGyroUpdate(float throttle) { if (dynLpfFilter != DYN_LPF_NONE) { const unsigned int cutoffFreq = fmax(dynThrottle(throttle) * dynLpfMax, dynLpfMin); if (dynLpfFilter == DYN_LPF_PT1) { DEBUG_SET(DEBUG_DYN_LPF, 2, cutoffFreq); const float gyroDt = gyro.targetLooptime * 1e-6f; for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { #ifdef USE_MULTI_GYRO if (gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_1 || gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_BOTH) { pt1FilterUpdateCutoff(&gyroSensor1.lowpassFilter[axis].pt1FilterState, pt1FilterGain(cutoffFreq, gyroDt)); } if (gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_2 || gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_BOTH) { pt1FilterUpdateCutoff(&gyroSensor2.lowpassFilter[axis].pt1FilterState, pt1FilterGain(cutoffFreq, gyroDt)); } #else pt1FilterUpdateCutoff(&gyroSensor1.lowpassFilter[axis].pt1FilterState, pt1FilterGain(cutoffFreq, gyroDt)); #endif } } else if (dynLpfFilter == DYN_LPF_BIQUAD) { DEBUG_SET(DEBUG_DYN_LPF, 2, cutoffFreq); for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { #ifdef USE_MULTI_GYRO if (gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_1 || gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_BOTH) { biquadFilterUpdateLPF(&gyroSensor1.lowpassFilter[axis].biquadFilterState, cutoffFreq, gyro.targetLooptime); } if (gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_2 || gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_BOTH) { biquadFilterUpdateLPF(&gyroSensor2.lowpassFilter[axis].biquadFilterState, cutoffFreq, gyro.targetLooptime); } #else biquadFilterUpdateLPF(&gyroSensor1.lowpassFilter[axis].biquadFilterState, cutoffFreq, gyro.targetLooptime); #endif } } } } #endif