/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ #include #include #include #include #include "platform.h" #include "build/build_config.h" #include "build/debug.h" #include "common/axis.h" #include "common/filter.h" #include "drivers/dshot_command.h" #include "fc/rc_controls.h" #include "fc/runtime_config.h" #include "fc/rc.h" #include "flight/pid.h" #include "flight/rpm_filter.h" #include "rx/rx.h" #include "sensors/gyro.h" #include "sensors/sensors.h" #include "pid_init.h" #if defined(USE_D_MIN) #define D_MIN_RANGE_HZ 85 // PT2 lowpass input cutoff to peak D around propwash frequencies #define D_MIN_LOWPASS_HZ 35 // PT2 lowpass cutoff to smooth the boost effect #define D_MIN_GAIN_FACTOR 0.00008f #define D_MIN_SETPOINT_GAIN_FACTOR 0.00008f #endif #define ATTITUDE_CUTOFF_HZ 50 static void pidSetTargetLooptime(uint32_t pidLooptime) { targetPidLooptime = pidLooptime; pidRuntime.dT = targetPidLooptime * 1e-6f; pidRuntime.pidFrequency = 1.0f / pidRuntime.dT; #ifdef USE_DSHOT dshotSetPidLoopTime(targetPidLooptime); #endif } void pidInitFilters(const pidProfile_t *pidProfile) { STATIC_ASSERT(FD_YAW == 2, FD_YAW_incorrect); // ensure yaw axis is 2 if (targetPidLooptime == 0) { // no looptime set, so set all the filters to null pidRuntime.dtermNotchApplyFn = nullFilterApply; pidRuntime.dtermLowpassApplyFn = nullFilterApply; pidRuntime.dtermLowpass2ApplyFn = nullFilterApply; pidRuntime.ptermYawLowpassApplyFn = nullFilterApply; return; } const uint32_t pidFrequencyNyquist = pidRuntime.pidFrequency / 2; // No rounding needed uint16_t dTermNotchHz; if (pidProfile->dterm_notch_hz <= pidFrequencyNyquist) { dTermNotchHz = pidProfile->dterm_notch_hz; } else { if (pidProfile->dterm_notch_cutoff < pidFrequencyNyquist) { dTermNotchHz = pidFrequencyNyquist; } else { dTermNotchHz = 0; } } if (dTermNotchHz != 0 && pidProfile->dterm_notch_cutoff != 0) { pidRuntime.dtermNotchApplyFn = (filterApplyFnPtr)biquadFilterApply; const float notchQ = filterGetNotchQ(dTermNotchHz, pidProfile->dterm_notch_cutoff); for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { biquadFilterInit(&pidRuntime.dtermNotch[axis], dTermNotchHz, targetPidLooptime, notchQ, FILTER_NOTCH, 1.0f); } } else { pidRuntime.dtermNotchApplyFn = nullFilterApply; } //1st Dterm Lowpass Filter uint16_t dterm_lpf1_init_hz = pidProfile->dterm_lpf1_static_hz; #ifdef USE_DYN_LPF if (pidProfile->dterm_lpf1_dyn_min_hz) { dterm_lpf1_init_hz = pidProfile->dterm_lpf1_dyn_min_hz; } #endif if (dterm_lpf1_init_hz > 0) { switch (pidProfile->dterm_lpf1_type) { case FILTER_PT1: pidRuntime.dtermLowpassApplyFn = (filterApplyFnPtr)pt1FilterApply; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pt1FilterInit(&pidRuntime.dtermLowpass[axis].pt1Filter, pt1FilterGain(dterm_lpf1_init_hz, pidRuntime.dT)); } break; case FILTER_BIQUAD: if (pidProfile->dterm_lpf1_static_hz < pidFrequencyNyquist) { #ifdef USE_DYN_LPF pidRuntime.dtermLowpassApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; #else pidRuntime.dtermLowpassApplyFn = (filterApplyFnPtr)biquadFilterApply; #endif for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { biquadFilterInitLPF(&pidRuntime.dtermLowpass[axis].biquadFilter, dterm_lpf1_init_hz, targetPidLooptime); } } else { pidRuntime.dtermLowpassApplyFn = nullFilterApply; } break; case FILTER_PT2: pidRuntime.dtermLowpassApplyFn = (filterApplyFnPtr)pt2FilterApply; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pt2FilterInit(&pidRuntime.dtermLowpass[axis].pt2Filter, pt2FilterGain(dterm_lpf1_init_hz, pidRuntime.dT)); } break; case FILTER_PT3: pidRuntime.dtermLowpassApplyFn = (filterApplyFnPtr)pt3FilterApply; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pt3FilterInit(&pidRuntime.dtermLowpass[axis].pt3Filter, pt3FilterGain(dterm_lpf1_init_hz, pidRuntime.dT)); } break; default: pidRuntime.dtermLowpassApplyFn = nullFilterApply; break; } } else { pidRuntime.dtermLowpassApplyFn = nullFilterApply; } //2nd Dterm Lowpass Filter if (pidProfile->dterm_lpf2_static_hz > 0) { switch (pidProfile->dterm_lpf2_type) { case FILTER_PT1: pidRuntime.dtermLowpass2ApplyFn = (filterApplyFnPtr)pt1FilterApply; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pt1FilterInit(&pidRuntime.dtermLowpass2[axis].pt1Filter, pt1FilterGain(pidProfile->dterm_lpf2_static_hz, pidRuntime.dT)); } break; case FILTER_BIQUAD: if (pidProfile->dterm_lpf2_static_hz < pidFrequencyNyquist) { pidRuntime.dtermLowpass2ApplyFn = (filterApplyFnPtr)biquadFilterApply; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { biquadFilterInitLPF(&pidRuntime.dtermLowpass2[axis].biquadFilter, pidProfile->dterm_lpf2_static_hz, targetPidLooptime); } } else { pidRuntime.dtermLowpassApplyFn = nullFilterApply; } break; case FILTER_PT2: pidRuntime.dtermLowpass2ApplyFn = (filterApplyFnPtr)pt2FilterApply; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pt2FilterInit(&pidRuntime.dtermLowpass2[axis].pt2Filter, pt2FilterGain(pidProfile->dterm_lpf2_static_hz, pidRuntime.dT)); } break; case FILTER_PT3: pidRuntime.dtermLowpass2ApplyFn = (filterApplyFnPtr)pt3FilterApply; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pt3FilterInit(&pidRuntime.dtermLowpass2[axis].pt3Filter, pt3FilterGain(pidProfile->dterm_lpf2_static_hz, pidRuntime.dT)); } break; default: pidRuntime.dtermLowpass2ApplyFn = nullFilterApply; break; } } else { pidRuntime.dtermLowpass2ApplyFn = nullFilterApply; } if (pidProfile->yaw_lowpass_hz == 0) { pidRuntime.ptermYawLowpassApplyFn = nullFilterApply; } else { pidRuntime.ptermYawLowpassApplyFn = (filterApplyFnPtr)pt1FilterApply; pt1FilterInit(&pidRuntime.ptermYawLowpass, pt1FilterGain(pidProfile->yaw_lowpass_hz, pidRuntime.dT)); } #if defined(USE_THROTTLE_BOOST) pt1FilterInit(&throttleLpf, pt1FilterGain(pidProfile->throttle_boost_cutoff, pidRuntime.dT)); #endif #if defined(USE_ITERM_RELAX) if (pidRuntime.itermRelax) { for (int i = 0; i < XYZ_AXIS_COUNT; i++) { pt1FilterInit(&pidRuntime.windupLpf[i], pt1FilterGain(pidRuntime.itermRelaxCutoff, pidRuntime.dT)); } } #endif #if defined(USE_ABSOLUTE_CONTROL) if (pidRuntime.itermRelax) { for (int i = 0; i < XYZ_AXIS_COUNT; i++) { pt1FilterInit(&pidRuntime.acLpf[i], pt1FilterGain(pidRuntime.acCutoff, pidRuntime.dT)); } } #endif #if defined(USE_D_MIN) // Initialize the filters for all axis even if the d_min[axis] value is 0 // Otherwise if the pidProfile->d_min_xxx parameters are ever added to // in-flight adjustments and transition from 0 to > 0 in flight the feature // won't work because the filter wasn't initialized. for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pt2FilterInit(&pidRuntime.dMinRange[axis], pt2FilterGain(D_MIN_RANGE_HZ, pidRuntime.dT)); pt2FilterInit(&pidRuntime.dMinLowpass[axis], pt2FilterGain(D_MIN_LOWPASS_HZ, pidRuntime.dT)); } #endif #if defined(USE_AIRMODE_LPF) if (pidProfile->transient_throttle_limit) { pt1FilterInit(&pidRuntime.airmodeThrottleLpf1, pt1FilterGain(7.0f, pidRuntime.dT)); pt1FilterInit(&pidRuntime.airmodeThrottleLpf2, pt1FilterGain(20.0f, pidRuntime.dT)); } #endif #ifdef USE_ACC const float k = pt3FilterGain(ATTITUDE_CUTOFF_HZ, pidRuntime.dT); const float angleCutoffHz = 1000.0f / (2.0f * M_PIf * pidProfile->angle_feedforward_smoothing_ms); // default of 80ms -> 2.0Hz, 160ms -> 1.0Hz, approximately const float k2 = pt3FilterGain(angleCutoffHz, pidRuntime.dT); pidRuntime.horizonDelayMs = pidProfile->horizon_delay_ms; if (pidRuntime.horizonDelayMs) { const float horizonSmoothingHz = 1e3f / (2.0f * M_PIf * pidProfile->horizon_delay_ms); // default of 500ms means 0.318Hz const float kHorizon = pt1FilterGain(horizonSmoothingHz, pidRuntime.dT); pt1FilterInit(&pidRuntime.horizonSmoothingPt1, kHorizon); } for (int axis = 0; axis < 2; axis++) { // ROLL and PITCH only pt3FilterInit(&pidRuntime.attitudeFilter[axis], k); pt3FilterInit(&pidRuntime.angleFeedforwardPt3[axis], k2); } pidRuntime.angleYawSetpoint = 0.0f; #endif pt2FilterInit(&pidRuntime.antiGravityLpf, pt2FilterGain(pidProfile->anti_gravity_cutoff_hz, pidRuntime.dT)); #ifdef USE_WING pt2FilterInit(&pidRuntime.tpaLpf, pt2FilterGainFromDelay(pidProfile->tpa_delay_ms / 1000.0f, pidRuntime.dT)); pidRuntime.tpaGravityThr0 = pidProfile->tpa_gravity_thr0 / 100.0f; pidRuntime.tpaGravityThr100 = pidProfile->tpa_gravity_thr100 / 100.0f; for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { pidRuntime.spa[axis] = 1.0f; // 1.0 = no PID attenuation in runtime. 0 - full attenuation (no PIDs) } #endif } #ifdef USE_ADVANCED_TPA float tpaCurveHyperbolicFunction(float x, void *args) { const pidProfile_t *pidProfile = (const pidProfile_t*)args; const float thrStall = pidProfile->tpa_curve_stall_throttle / 100.0f; const float pidThr0 = pidProfile->tpa_curve_pid_thr0 / 100.0f; if (x <= thrStall) { return pidThr0; } const float expoDivider = pidProfile->tpa_curve_expo / 10.0f - 1.0f; const float expo = (fabsf(expoDivider) > 1e-3f) ? 1.0f / expoDivider : 1e3f; // avoiding division by zero for const float base = ... const float pidThr100 = pidProfile->tpa_curve_pid_thr100 / 100.0f; const float xShifted = scaleRangef(x, thrStall, 1.0f, 0.0f, 1.0f); const float base = (1 + (powf(pidThr0 / pidThr100, 1.0f / expo) - 1) * xShifted); const float divisor = powf(base, expo); return pidThr0 / divisor; } void tpaCurveHyperbolicInit(const pidProfile_t *pidProfile) { pwlInitialize(&pidRuntime.tpaCurvePwl, pidRuntime.tpaCurvePwl_yValues, TPA_CURVE_PWL_SIZE, 0.0f, 1.0f); pwlFill(&pidRuntime.tpaCurvePwl, tpaCurveHyperbolicFunction, (void*)pidProfile); } void tpaCurveInit(const pidProfile_t *pidProfile) { switch (pidProfile->tpa_curve_type) { case TPA_CURVE_HYPERBOLIC: tpaCurveHyperbolicInit(pidProfile); return; case TPA_CURVE_CLASSIC: default: return; } } #endif // USE_ADVANCED_TPA void pidInit(const pidProfile_t *pidProfile) { pidSetTargetLooptime(gyro.targetLooptime); // Initialize pid looptime pidInitFilters(pidProfile); pidInitConfig(pidProfile); #ifdef USE_RPM_FILTER rpmFilterInit(rpmFilterConfig(), gyro.targetLooptime); #endif #ifdef USE_ADVANCED_TPA tpaCurveInit(pidProfile); #endif } void pidInitConfig(const pidProfile_t *pidProfile) { for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { pidRuntime.pidCoefficient[axis].Kp = PTERM_SCALE * pidProfile->pid[axis].P; pidRuntime.pidCoefficient[axis].Ki = ITERM_SCALE * pidProfile->pid[axis].I; pidRuntime.pidCoefficient[axis].Kd = DTERM_SCALE * pidProfile->pid[axis].D; pidRuntime.pidCoefficient[axis].Kf = FEEDFORWARD_SCALE * (pidProfile->pid[axis].F * 0.01f); } #ifdef USE_INTEGRATED_YAW_CONTROL if (!pidProfile->use_integrated_yaw) #endif { pidRuntime.pidCoefficient[FD_YAW].Ki *= 2.5f; } pidRuntime.angleGain = pidProfile->pid[PID_LEVEL].P / 10.0f; pidRuntime.angleFeedforwardGain = pidProfile->pid[PID_LEVEL].F / 100.0f; pidRuntime.angleEarthRef = pidProfile->angle_earth_ref / 100.0f; pidRuntime.horizonGain = MIN(pidProfile->pid[PID_LEVEL].I / 100.0f, 1.0f); pidRuntime.horizonIgnoreSticks = (pidProfile->horizon_ignore_sticks) ? 1.0f : 0.0f; pidRuntime.horizonLimitSticks = pidProfile->pid[PID_LEVEL].D / 100.0f; pidRuntime.horizonLimitSticksInv = (pidProfile->pid[PID_LEVEL].D) ? 1.0f / pidRuntime.horizonLimitSticks : 1.0f; pidRuntime.horizonLimitDegrees = (float)pidProfile->horizon_limit_degrees; pidRuntime.horizonLimitDegreesInv = (pidProfile->horizon_limit_degrees) ? 1.0f / pidRuntime.horizonLimitDegrees : 1.0f; pidRuntime.horizonDelayMs = pidProfile->horizon_delay_ms; pidRuntime.maxVelocity[FD_ROLL] = pidRuntime.maxVelocity[FD_PITCH] = pidProfile->rateAccelLimit * 100 * pidRuntime.dT; pidRuntime.maxVelocity[FD_YAW] = pidProfile->yawRateAccelLimit * 100 * pidRuntime.dT; pidRuntime.itermWindupPointInv = 1.0f; if (pidProfile->itermWindupPointPercent < 100) { const float itermWindupPoint = pidProfile->itermWindupPointPercent / 100.0f; pidRuntime.itermWindupPointInv = 1.0f / (1.0f - itermWindupPoint); } pidRuntime.antiGravityGain = pidProfile->anti_gravity_gain; pidRuntime.crashTimeLimitUs = pidProfile->crash_time * 1000; pidRuntime.crashTimeDelayUs = pidProfile->crash_delay * 1000; pidRuntime.crashRecoveryAngleDeciDegrees = pidProfile->crash_recovery_angle * 10; pidRuntime.crashRecoveryRate = pidProfile->crash_recovery_rate; pidRuntime.crashGyroThreshold = pidProfile->crash_gthreshold; // error in deg/s pidRuntime.crashDtermThreshold = pidProfile->crash_dthreshold * 1000.0f; // gyro delta in deg/s/s * 1000 to match original 2017 intent pidRuntime.crashSetpointThreshold = pidProfile->crash_setpoint_threshold; pidRuntime.crashLimitYaw = pidProfile->crash_limit_yaw; pidRuntime.itermLimit = pidProfile->itermLimit; #if defined(USE_THROTTLE_BOOST) throttleBoost = pidProfile->throttle_boost * 0.1f; #endif pidRuntime.itermRotation = pidProfile->iterm_rotation; // Calculate the anti-gravity value that will trigger the OSD display when its strength exceeds 25% of max. // This gives a useful indication of AG activity without excessive display. pidRuntime.antiGravityOsdCutoff = (pidRuntime.antiGravityGain / 10.0f) * 0.25f; pidRuntime.antiGravityPGain = ((float)(pidProfile->anti_gravity_p_gain) / 100.0f) * ANTIGRAVITY_KP; #if defined(USE_ITERM_RELAX) pidRuntime.itermRelax = pidProfile->iterm_relax; pidRuntime.itermRelaxType = pidProfile->iterm_relax_type; pidRuntime.itermRelaxCutoff = pidProfile->iterm_relax_cutoff; #endif #ifdef USE_ACRO_TRAINER pidRuntime.acroTrainerAngleLimit = pidProfile->acro_trainer_angle_limit; pidRuntime.acroTrainerLookaheadTime = (float)pidProfile->acro_trainer_lookahead_ms / 1000.0f; pidRuntime.acroTrainerDebugAxis = pidProfile->acro_trainer_debug_axis; pidRuntime.acroTrainerGain = (float)pidProfile->acro_trainer_gain / 10.0f; #endif // USE_ACRO_TRAINER #if defined(USE_ABSOLUTE_CONTROL) pidRuntime.acGain = (float)pidProfile->abs_control_gain; pidRuntime.acLimit = (float)pidProfile->abs_control_limit; pidRuntime.acErrorLimit = (float)pidProfile->abs_control_error_limit; pidRuntime.acCutoff = (float)pidProfile->abs_control_cutoff; for (int axis = FD_ROLL; axis <= FD_YAW; axis++) { float iCorrection = -pidRuntime.acGain * PTERM_SCALE / ITERM_SCALE * pidRuntime.pidCoefficient[axis].Kp; pidRuntime.pidCoefficient[axis].Ki = MAX(0.0f, pidRuntime.pidCoefficient[axis].Ki + iCorrection); } #endif #ifdef USE_DYN_LPF if (pidProfile->dterm_lpf1_dyn_min_hz > 0) { switch (pidProfile->dterm_lpf1_type) { case FILTER_PT1: pidRuntime.dynLpfFilter = DYN_LPF_PT1; break; case FILTER_BIQUAD: pidRuntime.dynLpfFilter = DYN_LPF_BIQUAD; break; case FILTER_PT2: pidRuntime.dynLpfFilter = DYN_LPF_PT2; break; case FILTER_PT3: pidRuntime.dynLpfFilter = DYN_LPF_PT3; break; default: pidRuntime.dynLpfFilter = DYN_LPF_NONE; break; } } else { pidRuntime.dynLpfFilter = DYN_LPF_NONE; } pidRuntime.dynLpfMin = pidProfile->dterm_lpf1_dyn_min_hz; pidRuntime.dynLpfMax = pidProfile->dterm_lpf1_dyn_max_hz; pidRuntime.dynLpfCurveExpo = pidProfile->dterm_lpf1_dyn_expo; #endif #ifdef USE_LAUNCH_CONTROL pidRuntime.launchControlMode = pidProfile->launchControlMode; if (sensors(SENSOR_ACC)) { pidRuntime.launchControlAngleLimit = pidProfile->launchControlAngleLimit; } else { pidRuntime.launchControlAngleLimit = 0; } pidRuntime.launchControlKi = ITERM_SCALE * pidProfile->launchControlGain; #endif #ifdef USE_INTEGRATED_YAW_CONTROL pidRuntime.useIntegratedYaw = pidProfile->use_integrated_yaw; pidRuntime.integratedYawRelax = pidProfile->integrated_yaw_relax; #endif #ifdef USE_THRUST_LINEARIZATION pidRuntime.thrustLinearization = pidProfile->thrustLinearization / 100.0f; pidRuntime.throttleCompensateAmount = pidRuntime.thrustLinearization - 0.5f * sq(pidRuntime.thrustLinearization); #endif #if defined(USE_D_MIN) for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) { const uint8_t dMin = pidProfile->d_min[axis]; if ((dMin > 0) && (dMin < pidProfile->pid[axis].D)) { pidRuntime.dMinPercent[axis] = dMin / (float)(pidProfile->pid[axis].D); } else { pidRuntime.dMinPercent[axis] = 0; } } pidRuntime.dMinGyroGain = D_MIN_GAIN_FACTOR * pidProfile->d_min_gain / D_MIN_LOWPASS_HZ; pidRuntime.dMinSetpointGain = D_MIN_SETPOINT_GAIN_FACTOR * pidProfile->d_min_gain * pidProfile->d_min_advance / 100.0f / D_MIN_LOWPASS_HZ; // lowpass included inversely in gain since stronger lowpass decreases peak effect #endif #if defined(USE_AIRMODE_LPF) pidRuntime.airmodeThrottleOffsetLimit = pidProfile->transient_throttle_limit / 100.0f; #endif #ifdef USE_FEEDFORWARD pidRuntime.feedforwardTransition = pidProfile->feedforward_transition / 100.0f; pidRuntime.feedforwardTransitionInv = (pidProfile->feedforward_transition == 0) ? 0.0f : 100.0f / pidProfile->feedforward_transition; pidRuntime.feedforwardAveraging = pidProfile->feedforward_averaging; pidRuntime.feedforwardSmoothFactor = 1.0f - (0.01f * pidProfile->feedforward_smooth_factor); pidRuntime.feedforwardJitterFactor = pidProfile->feedforward_jitter_factor; pidRuntime.feedforwardJitterFactorInv = 1.0f / (1.0f + pidProfile->feedforward_jitter_factor); pidRuntime.feedforwardBoostFactor = 0.001f * pidProfile->feedforward_boost; pidRuntime.feedforwardMaxRateLimit = pidProfile->feedforward_max_rate_limit; pidRuntime.feedforwardInterpolate = !(rxRuntimeState.serialrxProvider == SERIALRX_CRSF); pidRuntime.feedforwardYawHoldTime = 0.001f * pidProfile->feedforward_yaw_hold_time; // input time constant in milliseconds, converted to seconds pidRuntime.feedforwardYawHoldGain = pidProfile->feedforward_yaw_hold_gain; // normalise/maintain boost when time constant is small, 1.5x at 50ms, 2x at 25ms, almost 3x at 10ms if (pidProfile->feedforward_yaw_hold_time < 100) { pidRuntime.feedforwardYawHoldGain *= 150.0f / (float)(pidProfile->feedforward_yaw_hold_time + 50); } #endif pidRuntime.levelRaceMode = pidProfile->level_race_mode; pidRuntime.tpaBreakpoint = constrainf((pidProfile->tpa_breakpoint - PWM_RANGE_MIN) / 1000.0f, 0.0f, 0.99f); // default of 1350 returns 0.35. range limited to 0 to 0.99 pidRuntime.tpaMultiplier = (pidProfile->tpa_rate / 100.0f) / (1.0f - pidRuntime.tpaBreakpoint); // it is assumed that tpaLowBreakpoint is always less than or equal to tpaBreakpoint pidRuntime.tpaLowBreakpoint = constrainf((pidProfile->tpa_low_breakpoint - PWM_RANGE_MIN) / 1000.0f, 0.01f, 1.0f); pidRuntime.tpaLowBreakpoint = MIN(pidRuntime.tpaLowBreakpoint, pidRuntime.tpaBreakpoint); pidRuntime.tpaLowMultiplier = pidProfile->tpa_low_rate / (100.0f * pidRuntime.tpaLowBreakpoint); pidRuntime.tpaLowAlways = pidProfile->tpa_low_always; pidRuntime.useEzDisarm = pidProfile->landing_disarm_threshold > 0; pidRuntime.landingDisarmThreshold = pidProfile->landing_disarm_threshold * 10.0f; } void pidCopyProfile(uint8_t dstPidProfileIndex, uint8_t srcPidProfileIndex) { if (dstPidProfileIndex < PID_PROFILE_COUNT && srcPidProfileIndex < PID_PROFILE_COUNT && dstPidProfileIndex != srcPidProfileIndex) { memcpy(pidProfilesMutable(dstPidProfileIndex), pidProfilesMutable(srcPidProfileIndex), sizeof(pidProfile_t)); } }