#include "board.h" #include "mw.h" #define M_PI 3.14159265358979323846 int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3]; int16_t acc_25deg = 0; int32_t pressure = 0; int16_t BaroAlt = 0; int16_t EstAlt = 0; // in cm int16_t zVelocity = 0; // ************** // gyro+acc IMU // ************** int16_t gyroData[3] = { 0, 0, 0 }; int16_t gyroZero[3] = { 0, 0, 0 }; int16_t accZero[3] = { 0, 0, 0 }; int16_t magZero[3] = { 0, 0, 0 }; int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800 int8_t smallAngle25 = 1; static void getEstimatedAttitude(void); static void getEstimatedAltitude(void); void imuInit(void) { acc_25deg = acc_1G * 0.423; // if mag sensor is enabled, use it if (sensors(SENSOR_MAG)) Mag_init(); } void computeIMU(void) { uint8_t axis; static int16_t gyroADCprevious[3] = { 0, 0, 0 }; int16_t gyroADCp[3]; int16_t gyroADCinter[3]; static uint32_t timeInterleave = 0; #if defined(TRI) static int16_t gyroYawSmooth = 0; #endif if (sensors(SENSOR_MAG)) Mag_getADC(); if (sensors(SENSOR_BARO)) Baro_update(); if (sensors(SENSOR_ACC)) { ACC_getADC(); getEstimatedAttitude(); if (sensors(SENSOR_BARO)) getEstimatedAltitude(); } Gyro_getADC(); for (axis = 0; axis < 3; axis++) gyroADCp[axis] = gyroADC[axis]; timeInterleave = micros(); annexCode(); if ((micros() - timeInterleave) > 650) { annex650_overrun_count++; } else { while ((micros() - timeInterleave) < 650); //empirical, interleaving delay between 2 consecutive reads } Gyro_getADC(); for (axis = 0; axis < 3; axis++) { gyroADCinter[axis] = gyroADC[axis] + gyroADCp[axis]; // empirical, we take a weighted value of the current and the previous values gyroData[axis] = (gyroADCinter[axis] + gyroADCprevious[axis] + 1) / 3; gyroADCprevious[axis] = gyroADCinter[axis] / 2; if (!sensors(SENSOR_ACC)) accADC[axis] = 0; } #if defined(TRI) gyroData[YAW] = (gyroYawSmooth * 2 + gyroData[YAW] + 1) / 3; gyroYawSmooth = gyroData[YAW]; #endif } // ************************************************** // Simplified IMU based on "Complementary Filter" // Inspired by http://starlino.com/imu_guide.html // // adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198 // // The following ideas was used in this project: // 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix // 2) Small-angle approximation: http://en.wikipedia.org/wiki/Small-angle_approximation // 3) C. Hastings approximation for atan2() // 4) Optimization tricks: http://www.hackersdelight.org/ // // Currently Magnetometer uses separate CF which is used only // for heading approximation. // // Modified: 19/04/2011 by ziss_dm // Version: V1.1 // // code size deduction and tmp vector intermediate step for vector rotation computation: October 2011 by Alex // ************************************************** //****** advanced users settings ******************* /* Set the Low Pass Filter factor for ACC */ /* Increasing this value would reduce ACC noise (visible in GUI), but would increase ACC lag time*/ /* Comment this if you do not want filter at all.*/ /* Default WMC value: 8*/ #define ACC_LPF_FACTOR 4 /* Set the Low Pass Filter factor for Magnetometer */ /* Increasing this value would reduce Magnetometer noise (not visible in GUI), but would increase Magnetometer lag time*/ /* Comment this if you do not want filter at all.*/ /* Default WMC value: n/a*/ //#define MG_LPF_FACTOR 4 /* Set the Gyro Weight for Gyro/Acc complementary filter */ /* Increasing this value would reduce and delay Acc influence on the output of the filter*/ /* Default WMC value: 300*/ #define GYR_CMPF_FACTOR 310.0f /* Set the Gyro Weight for Gyro/Magnetometer complementary filter */ /* Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/ /* Default WMC value: n/a*/ #define GYR_CMPFM_FACTOR 200.0f //****** end of advanced users settings ************* #define INV_GYR_CMPF_FACTOR (1.0f / (GYR_CMPF_FACTOR + 1.0f)) #define INV_GYR_CMPFM_FACTOR (1.0f / (GYR_CMPFM_FACTOR + 1.0f)) #define GYRO_SCALE ((2380 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) //should be 2279.44 but 2380 gives better result // +-2000/sec deg scale //#define GYRO_SCALE ((200.0f * PI)/((32768.0f / 5.0f / 4.0f ) * 180.0f * 1000000.0f) * 1.5f) // +- 200/sec deg scale // 1.5 is emperical, not sure what it means // should be in rad/sec typedef struct fp_vector { float X; float Y; float Z; } t_fp_vector_def; typedef union { float A[3]; t_fp_vector_def V; } t_fp_vector; // Rotate Estimated vector(s) with small angle approximation, according to the gyro data void rotateV(struct fp_vector *v, float *delta) { struct fp_vector v_tmp = *v; v->Z -= delta[ROLL] * v_tmp.X + delta[PITCH] * v_tmp.Y; v->X += delta[ROLL] * v_tmp.Z - delta[YAW] * v_tmp.Y; v->Y += delta[PITCH] * v_tmp.Z + delta[YAW] * v_tmp.X; } #if 1 static int16_t _atan2f(float y, float x) { #define fp_is_neg(val) (val < 0 ? 1 : 0) float z = y / x; int16_t zi = abs((int16_t)(z * 100)); int8_t y_neg = fp_is_neg(y); if (zi < 100) { if (zi > 10) z = z / (1.0f + 0.28f * z * z); if (fp_is_neg(x)) { if (y_neg) z -= M_PI; else z += M_PI; } } else { z = (M_PI / 2.0f) - z / (z * z + 0.28f); if (y_neg) z -= M_PI; } z *= (180.0f / M_PI * 10); return z; } #else static int16_t _atan2f(float y, float x) { return (int16_t)atan2f(y, x) * (180.0f / M_PI * 10.0f); } #endif static void getEstimatedAttitude(void) { uint8_t axis; int32_t accMag = 0; static t_fp_vector EstG; static t_fp_vector EstM; #if defined(MG_LPF_FACTOR) static int16_t mgSmooth[3]; #endif #if defined(ACC_LPF_FACTOR) static int16_t accTemp[3]; //projection of smoothed and normalized magnetic vector on x/y/z axis, as measured by magnetometer #endif static uint32_t previousT; uint32_t currentT = micros(); float scale, deltaGyroAngle[3]; scale = (currentT - previousT) * GYRO_SCALE; previousT = currentT; // Initialization for (axis = 0; axis < 3; axis++) { deltaGyroAngle[axis] = gyroADC[axis] * scale; #if defined(ACC_LPF_FACTOR) accTemp[axis] = (accTemp[axis] - (accTemp[axis] >> ACC_LPF_FACTOR)) + accADC[axis]; accSmooth[axis] = accTemp[axis] >> ACC_LPF_FACTOR; #define ACC_VALUE accSmooth[axis] #else accSmooth[axis] = accADC[axis]; #define ACC_VALUE accADC[axis] #endif accMag += (int32_t) ACC_VALUE * ACC_VALUE; if (sensors(SENSOR_MAG)) { #if defined(MG_LPF_FACTOR) mgSmooth[axis] = (mgSmooth[axis] * (MG_LPF_FACTOR - 1) + magADC[axis]) / MG_LPF_FACTOR; // LPF for Magnetometer values #define MAG_VALUE mgSmooth[axis] #else #define MAG_VALUE magADC[axis] #endif } } accMag = accMag * 100 / ((int32_t) acc_1G * acc_1G); rotateV(&EstG.V, deltaGyroAngle); if (sensors(SENSOR_MAG)) { rotateV(&EstM.V, deltaGyroAngle); } if (abs(accSmooth[ROLL]) < acc_25deg && abs(accSmooth[PITCH]) < acc_25deg && accSmooth[YAW] > 0) smallAngle25 = 1; else smallAngle25 = 0; // Apply complimentary filter (Gyro drift correction) // If accel magnitude >1.4G or <0.6G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. // To do that, we just skip filter, as EstV already rotated by Gyro if ((36 < accMag && accMag < 196) || smallAngle25) for (axis = 0; axis < 3; axis++) { int16_t acc = ACC_VALUE; #if !defined(TRUSTED_ACCZ) if (smallAngle25 && axis == YAW) //We consider ACCZ = acc_1G when the acc on other axis is small. //It's a tweak to deal with some configs where ACC_Z tends to a value < acc_1G when high throttle is applied. //This tweak applies only when the multi is not in inverted position acc = acc_1G; #endif EstG.A[axis] = (EstG.A[axis] * GYR_CMPF_FACTOR + acc) * INV_GYR_CMPF_FACTOR; } if (sensors(SENSOR_MAG)) { for (axis = 0; axis < 3; axis++) EstM.A[axis] = (EstM.A[axis] * GYR_CMPFM_FACTOR + MAG_VALUE) * INV_GYR_CMPFM_FACTOR; } // Attitude of the estimated vector angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z); angle[PITCH] = _atan2f(EstG.V.Y, EstG.V.Z); if (sensors(SENSOR_MAG)) { // Attitude of the cross product vector GxM heading = _atan2f(EstG.V.X * EstM.V.Z - EstG.V.Z * EstM.V.X, EstG.V.Z * EstM.V.Y - EstG.V.Y * EstM.V.Z) / 10; } } float InvSqrt(float x) { union { int32_t i; float f; } conv; conv.f = x; conv.i = 0x5f3759df - (conv.i >> 1); return 0.5f * conv.f * (3.0f - x * conv.f * conv.f); } int32_t isq(int32_t x) { return x * x; } #define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc) #define INIT_DELAY 4000000 // 4 sec initialization delay #define Kp1 5.5f // PI observer velocity gain #define Kp2 10.0f // PI observer position gain #define Ki 0.01f // PI observer integral gain (bias cancellation) #define dt (UPDATE_INTERVAL / 1000000.0f) static void getEstimatedAltitude(void) { static uint8_t inited = 0; static int16_t AltErrorI = 0; static float AccScale; static uint32_t deadLine = INIT_DELAY; int16_t AltError; int16_t InstAcc; static int32_t tmpAlt; static int16_t EstVelocity = 0; static uint32_t velTimer; static int16_t lastAlt; if (currentTime < deadLine) return; deadLine = currentTime + UPDATE_INTERVAL; // Soft start if (!inited) { inited = 1; tmpAlt = BaroAlt * 10; AccScale = 100 * 9.80665f / acc_1G; } // Estimation Error AltError = BaroAlt - EstAlt; AltErrorI += AltError; AltErrorI = constrain(AltErrorI, -2500, +2500); // Gravity vector correction and projection to the local Z //InstAcc = (accADC[YAW] * (1 - acc_1G * InvSqrt(isq(accADC[ROLL]) + isq(accADC[PITCH]) + isq(accADC[YAW])))) * AccScale + (Ki) * AltErrorI; #if defined(TRUSTED_ACCZ) InstAcc = (accADC[YAW] * (1 - acc_1G * InvSqrt(isq(accADC[ROLL]) + isq(accADC[PITCH]) + isq(accADC[YAW])))) * AccScale + AltErrorI / 100; #else InstAcc = AltErrorI / 100; #endif // Integrators tmpAlt += EstVelocity * (dt * dt) + (Kp2 * dt) * AltError; EstVelocity += InstAcc + Kp1 * AltError; EstVelocity = constrain(EstVelocity, -10000, +10000); EstAlt = tmpAlt / 10; if (currentTime < velTimer) return; velTimer = currentTime + 500000; zVelocity = tmpAlt - lastAlt; lastAlt = tmpAlt; debug4 = zVelocity; }