/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see .
*/
#include
#include
#include
#include
#include
#include "platform.h"
#include "scheduler.h"
#include "common/axis.h"
#include "common/color.h"
#include "common/atomic.h"
#include "common/maths.h"
#include "drivers/nvic.h"
#include "drivers/sensor.h"
#include "drivers/system.h"
#include "drivers/dma.h"
#include "drivers/gpio.h"
#include "drivers/light_led.h"
#include "drivers/sound_beeper.h"
#include "drivers/timer.h"
#include "drivers/serial.h"
#include "drivers/serial_softserial.h"
#include "drivers/serial_uart.h"
#include "drivers/accgyro.h"
#include "drivers/compass.h"
#include "drivers/pwm_mapping.h"
#include "drivers/pwm_rx.h"
#include "drivers/adc.h"
#include "drivers/bus_i2c.h"
#include "drivers/bus_bst.h"
#include "drivers/bus_spi.h"
#include "drivers/inverter.h"
#include "drivers/flash_m25p16.h"
#include "drivers/sonar_hcsr04.h"
#include "drivers/gyro_sync.h"
#include "drivers/sdcard.h"
#include "drivers/usb_io.h"
#include "drivers/transponder_ir.h"
#include "rx/rx.h"
#include "io/beeper.h"
#include "io/serial.h"
#include "io/flashfs.h"
#include "io/gps.h"
#include "io/escservo.h"
#include "io/rc_controls.h"
#include "io/gimbal.h"
#include "io/ledstrip.h"
#include "io/display.h"
#include "io/asyncfatfs/asyncfatfs.h"
#include "io/transponder_ir.h"
#include "sensors/sensors.h"
#include "sensors/sonar.h"
#include "sensors/barometer.h"
#include "sensors/compass.h"
#include "sensors/acceleration.h"
#include "sensors/gyro.h"
#include "sensors/battery.h"
#include "sensors/boardalignment.h"
#include "sensors/initialisation.h"
#include "telemetry/telemetry.h"
#include "blackbox/blackbox.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/failsafe.h"
#include "flight/navigation.h"
#include "config/runtime_config.h"
#include "config/config.h"
#include "config/config_profile.h"
#include "config/config_master.h"
#ifdef USE_HARDWARE_REVISION_DETECTION
#include "hardware_revision.h"
#endif
#include "build_config.h"
#include "debug.h"
extern uint8_t motorControlEnable;
#ifdef SOFTSERIAL_LOOPBACK
serialPort_t *loopbackPort;
#endif
void printfSupportInit(void);
void timerInit(void);
void telemetryInit(void);
void serialInit(serialConfig_t *initialSerialConfig, bool softserialEnabled);
void mspInit(serialConfig_t *serialConfig);
void cliInit(serialConfig_t *serialConfig);
void failsafeInit(rxConfig_t *intialRxConfig, uint16_t deadband3d_throttle);
pwmOutputConfiguration_t *pwmInit(drv_pwm_config_t *init);
#ifdef USE_SERVOS
void mixerInit(mixerMode_e mixerMode, motorMixer_t *customMotorMixers, servoMixer_t *customServoMixers);
#else
void mixerInit(mixerMode_e mixerMode, motorMixer_t *customMotorMixers);
#endif
void mixerUsePWMOutputConfiguration(pwmOutputConfiguration_t *pwmOutputConfiguration);
void rxInit(rxConfig_t *rxConfig, modeActivationCondition_t *modeActivationConditions);
void gpsInit(serialConfig_t *serialConfig, gpsConfig_t *initialGpsConfig);
void navigationInit(gpsProfile_t *initialGpsProfile, pidProfile_t *pidProfile);
void imuInit(void);
void displayInit(rxConfig_t *intialRxConfig);
void ledStripInit(ledConfig_t *ledConfigsToUse, hsvColor_t *colorsToUse);
void spektrumBind(rxConfig_t *rxConfig);
const sonarHardware_t *sonarGetHardwareConfiguration(batteryConfig_t *batteryConfig);
void sonarInit(const sonarHardware_t *sonarHardware);
#ifdef STM32F303xC
// from system_stm32f30x.c
void SetSysClock(void);
#endif
#ifdef STM32F10X
// from system_stm32f10x.c
void SetSysClock(bool overclock);
#endif
typedef enum {
SYSTEM_STATE_INITIALISING = 0,
SYSTEM_STATE_CONFIG_LOADED = (1 << 0),
SYSTEM_STATE_SENSORS_READY = (1 << 1),
SYSTEM_STATE_MOTORS_READY = (1 << 2),
SYSTEM_STATE_TRANSPONDER_ENABLED = (1 << 3),
SYSTEM_STATE_READY = (1 << 7)
} systemState_e;
static uint8_t systemState = SYSTEM_STATE_INITIALISING;
void init(void)
{
uint8_t i;
drv_pwm_config_t pwm_params;
printfSupportInit();
initEEPROM();
ensureEEPROMContainsValidData();
readEEPROM();
systemState |= SYSTEM_STATE_CONFIG_LOADED;
#ifdef STM32F303
// start fpu
SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif
#ifdef STM32F303xC
SetSysClock();
#endif
#ifdef STM32F10X
// Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
// Configure the Flash Latency cycles and enable prefetch buffer
SetSysClock(masterConfig.emf_avoidance);
#endif
//i2cSetOverclock(masterConfig.i2c_overclock);
systemInit();
debugMode = masterConfig.debug_mode;
#ifdef USE_HARDWARE_REVISION_DETECTION
detectHardwareRevision();
#endif
// Latch active features to be used for feature() in the remainder of init().
latchActiveFeatures();
#ifdef ALIENFLIGHTF3
if (hardwareRevision == AFF3_REV_1) {
ledInit(false);
} else {
ledInit(true);
}
#else
ledInit(false);
#endif
#ifdef SPRACINGF3MINI
gpio_config_t buttonAGpioConfig = {
BUTTON_A_PIN,
Mode_IPU,
Speed_2MHz
};
gpioInit(BUTTON_A_PORT, &buttonAGpioConfig);
gpio_config_t buttonBGpioConfig = {
BUTTON_B_PIN,
Mode_IPU,
Speed_2MHz
};
gpioInit(BUTTON_B_PORT, &buttonBGpioConfig);
// Check status of bind plug and exit if not active
delayMicroseconds(10); // allow GPIO configuration to settle
if (!isMPUSoftReset()) {
uint8_t secondsRemaining = 5;
bool bothButtonsHeld;
do {
bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN);
if (bothButtonsHeld) {
if (--secondsRemaining == 0) {
resetEEPROM();
systemReset();
}
delay(1000);
LED0_TOGGLE;
}
} while (bothButtonsHeld);
}
#endif
#ifdef SPEKTRUM_BIND
if (feature(FEATURE_RX_SERIAL)) {
switch (masterConfig.rxConfig.serialrx_provider) {
case SERIALRX_SPEKTRUM1024:
case SERIALRX_SPEKTRUM2048:
// Spektrum satellite binding if enabled on startup.
// Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
// The rest of Spektrum initialization will happen later - via spektrumInit()
spektrumBind(&masterConfig.rxConfig);
break;
}
}
#endif
delay(100);
timerInit(); // timer must be initialized before any channel is allocated
dmaInit();
serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));
#ifdef USE_SERVOS
mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);
#else
mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif
memset(&pwm_params, 0, sizeof(pwm_params));
#ifdef SONAR
const sonarHardware_t *sonarHardware = NULL;
if (feature(FEATURE_SONAR)) {
sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig);
sonarGPIOConfig_t sonarGPIOConfig = {
.gpio = SONAR_GPIO,
.triggerPin = sonarHardware->echo_pin,
.echoPin = sonarHardware->trigger_pin,
};
pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
}
#endif
// when using airplane/wing mixer, servo/motor outputs are remapped
if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
pwm_params.airplane = true;
else
pwm_params.airplane = false;
#if defined(USE_USART2) && defined(STM32F10X)
pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
pwm_params.useVbat = feature(FEATURE_VBAT);
pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
&& masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
pwm_params.usePPM = feature(FEATURE_RX_PPM);
pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
pwm_params.useSonar = feature(FEATURE_SONAR);
#endif
#ifdef USE_SERVOS
pwm_params.useServos = isMixerUsingServos();
pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif
pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
if (masterConfig.use_oneshot42) {
pwm_params.useOneshot42 = masterConfig.use_oneshot42 ? true : false;
masterConfig.use_multiShot = false;
} else {
pwm_params.useMultiShot = masterConfig.use_multiShot ? true : false;
}
pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
if (feature(FEATURE_3D))
pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
if (pwm_params.motorPwmRate > 500)
pwm_params.idlePulse = 0; // brushed motors
#ifdef CC3D
pwm_params.useBuzzerP6 = masterConfig.use_buzzer_p6 ? true : false;
#endif
pwmRxInit(masterConfig.inputFilteringMode);
pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);
mixerUsePWMOutputConfiguration(pwmOutputConfiguration);
if (!feature(FEATURE_ONESHOT125))
motorControlEnable = true;
systemState |= SYSTEM_STATE_MOTORS_READY;
#ifdef BEEPER
beeperConfig_t beeperConfig = {
.gpioPeripheral = BEEP_PERIPHERAL,
.gpioPin = BEEP_PIN,
.gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
.gpioMode = Mode_Out_PP,
.isInverted = true
#else
.gpioMode = Mode_Out_OD,
.isInverted = false
#endif
};
#ifdef AFROMINI
beeperConfig.gpioMode = Mode_Out_PP; // AFROMINI override
beeperConfig.isInverted = true;
#endif
#ifdef NAZE
if (hardwareRevision >= NAZE32_REV5) {
// naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
beeperConfig.gpioMode = Mode_Out_PP;
beeperConfig.isInverted = true;
}
#endif
#ifdef CC3D
if (masterConfig.use_buzzer_p6 == 1)
beeperConfig.gpioPin = Pin_2;
#endif
beeperInit(&beeperConfig);
#endif
#ifdef INVERTER
initInverter();
#endif
#ifdef USE_BST
bstInit(BST_DEVICE);
#endif
#ifdef USE_SPI
spiInit(SPI1);
spiInit(SPI2);
#ifdef STM32F303xC
#ifdef ALIENFLIGHTF3
if (hardwareRevision == AFF3_REV_2) {
spiInit(SPI3);
}
#else
spiInit(SPI3);
#endif
#endif
#endif
#ifdef USE_HARDWARE_REVISION_DETECTION
updateHardwareRevision();
#endif
#if defined(NAZE)
if (hardwareRevision == NAZE32_SP) {
serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
} else {
serialRemovePort(SERIAL_PORT_USART3);
}
#endif
#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
}
#endif
#if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1)
if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
}
#endif
#ifdef USE_I2C
#if defined(NAZE)
if (hardwareRevision != NAZE32_SP) {
i2cInit(I2C_DEVICE);
} else {
if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
i2cInit(I2C_DEVICE);
}
}
#elif defined(CC3D)
if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
i2cInit(I2C_DEVICE);
}
#else
i2cInit(I2C_DEVICE);
#endif
#endif
#ifdef USE_ADC
drv_adc_config_t adc_params;
adc_params.enableVBat = feature(FEATURE_VBAT);
adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
// optional ADC5 input on rev.5 hardware
adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif
adcInit(&adc_params);
#endif
initBoardAlignment(&masterConfig.boardAlignment);
#ifdef DISPLAY
if (feature(FEATURE_DISPLAY)) {
displayInit(&masterConfig.rxConfig);
}
#endif
if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig,masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, masterConfig.mag_declination, masterConfig.gyro_lpf, masterConfig.gyro_sync_denom)) {
// if gyro was not detected due to whatever reason, we give up now.
failureMode(FAILURE_MISSING_ACC);
}
systemState |= SYSTEM_STATE_SENSORS_READY;
LED1_ON;
LED0_OFF;
for (i = 0; i < 10; i++) {
LED1_TOGGLE;
LED0_TOGGLE;
delay(25);
if (!(getPreferedBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON;
delay(25);
BEEP_OFF;
}
LED0_OFF;
LED1_OFF;
#ifdef MAG
if (sensors(SENSOR_MAG))
compassInit();
#endif
imuInit();
mspInit(&masterConfig.serialConfig);
#ifdef USE_CLI
cliInit(&masterConfig.serialConfig);
#endif
failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);
rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions);
#ifdef GPS
if (feature(FEATURE_GPS)) {
gpsInit(
&masterConfig.serialConfig,
&masterConfig.gpsConfig
);
navigationInit(
&masterConfig.gpsProfile,
¤tProfile->pidProfile
);
}
#endif
#ifdef SONAR
if (feature(FEATURE_SONAR)) {
sonarInit(sonarHardware);
}
#endif
#ifdef LED_STRIP
ledStripInit(masterConfig.ledConfigs, masterConfig.colors);
if (feature(FEATURE_LED_STRIP)) {
ledStripEnable();
}
#endif
#ifdef TELEMETRY
if (feature(FEATURE_TELEMETRY)) {
telemetryInit();
}
#endif
#ifdef USB_CABLE_DETECTION
usbCableDetectInit();
#endif
#ifdef TRANSPONDER
if (feature(FEATURE_TRANSPONDER)) {
transponderInit(masterConfig.transponderData);
transponderEnable();
transponderStartRepeating();
systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
}
#endif
#ifdef USE_FLASHFS
#ifdef NAZE
if (hardwareRevision == NAZE32_REV5) {
m25p16_init();
}
#elif defined(USE_FLASH_M25P16)
m25p16_init();
#endif
flashfsInit();
#endif
#ifdef USE_SDCARD
bool sdcardUseDMA = false;
sdcardInsertionDetectInit();
#ifdef SDCARD_DMA_CHANNEL_TX
#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
// Ensure the SPI Tx DMA doesn't overlap with the led strip
sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#else
sdcardUseDMA = true;
#endif
#endif
sdcard_init(sdcardUseDMA);
afatfs_init();
#endif
if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) {
masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed
masterConfig.gyro_sync_denom = 1;
}
setTargetPidLooptime(masterConfig.pid_process_denom); // Initialize pid looptime
#ifdef BLACKBOX
initBlackbox();
#endif
if (masterConfig.mixerMode == MIXER_GIMBAL) {
accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
}
gyroSetCalibrationCycles(calculateCalibratingCycles());
#ifdef BARO
baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif
// start all timers
// TODO - not implemented yet
timerStart();
ENABLE_STATE(SMALL_ANGLE);
DISABLE_ARMING_FLAG(PREVENT_ARMING);
#ifdef SOFTSERIAL_LOOPBACK
// FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
if (!loopbackPort->vTable) {
loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
}
serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif
// Now that everything has powered up the voltage and cell count be determined.
if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
batteryInit(&masterConfig.batteryConfig);
#ifdef DISPLAY
if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
displayShowFixedPage(PAGE_GPS);
#else
displayResetPageCycling();
displayEnablePageCycling();
#endif
}
#endif
#ifdef CJMCU
LED2_ON;
#endif
// Latch active features AGAIN since some may be modified by init().
latchActiveFeatures();
motorControlEnable = true;
systemState |= SYSTEM_STATE_READY;
}
#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
if (loopbackPort) {
uint8_t bytesWaiting;
while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
uint8_t b = serialRead(loopbackPort);
serialWrite(loopbackPort, b);
};
}
}
#else
#define processLoopback()
#endif
int main(void) {
init();
/* Setup scheduler */
schedulerInit();
rescheduleTask(TASK_GYROPID, targetLooptime);
setTaskEnabled(TASK_GYROPID, true);
if(sensors(SENSOR_ACC)) {
setTaskEnabled(TASK_ACCEL, true);
switch(targetLooptime) { // Switch statement kept in place to change acc rates in the future
case(500):
case(375):
case(250):
case(125):
accTargetLooptime = 1000;
break;
default:
case(1000):
#ifdef STM32F10X
accTargetLooptime = 3000;
#else
accTargetLooptime = 1000;
#endif
}
rescheduleTask(TASK_ACCEL, accTargetLooptime);
}
setTaskEnabled(TASK_ACCEL, sensors(SENSOR_ACC));
setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC));
setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
setTaskEnabled(TASK_BEEPER, true);
#endif
setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER));
setTaskEnabled(TASK_RX, true);
#ifdef GPS
setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#endif
#ifdef BARO
setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
// Reschedule telemetry to 500hz for Jeti Exbus
if (feature(FEATURE_TELEMETRY) || masterConfig.rxConfig.serialrx_provider == SERIALRX_JETIEXBUS) rescheduleTask(TASK_TELEMETRY, 2000);
#endif
#ifdef LED_STRIP
setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif
#ifdef USE_BST
setTaskEnabled(TASK_BST_MASTER_PROCESS, true);
#endif
while (1) {
scheduler();
processLoopback();
}
}
void HardFault_Handler(void)
{
// fall out of the sky
uint8_t requiredStateForMotors = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY;
if ((systemState & requiredStateForMotors) == requiredStateForMotors) {
stopMotors();
}
#ifdef TRANSPONDER
// prevent IR LEDs from burning out.
uint8_t requiredStateForTransponder = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_TRANSPONDER_ENABLED;
if ((systemState & requiredStateForTransponder) == requiredStateForTransponder) {
transponderIrDisable();
}
#endif
while (1);
}