1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/lib/main/google/olc/olc.c
Kevin Plaizier 0d94108068
Update the google olc code to not have compiler warnings (#14484)
* Update the google olc code to not have compiler warnings

* With newer BF updates (double) is no longer needed in olc.c
2025-06-30 19:18:29 +02:00

605 lines
18 KiB
C

#include "olc.h"
#include <ctype.h>
#include <float.h>
#include <math.h>
#include <memory.h>
#include <stdio.h>
#include "olc_private.h"
#define CORRECT_IF_SEPARATOR(var, info) \
do { \
(var) += (info)->sep_first >= 0 ? 1 : 0; \
} while (0)
// Information about a code, produced by analyse();
typedef struct CodeInfo {
// Original code.
const char* code;
// Total count of characters in the code including padding and separators.
int size;
// Count of valid digits (not including padding or separators).
int len;
// Index of the first separator in the code.
int sep_first;
// Index of the last separator in the code. (If there is only one, same as
// sep_first.)
int sep_last;
// Index of the first padding character in the code.
int pad_first;
// Index of the last padding character in the code. (If there is only one,
// same as pad_first.)
int pad_last;
} CodeInfo;
// Helper functions
static int analyse(const char* code, size_t size, CodeInfo* info);
static int is_short(CodeInfo* info);
static int is_full(CodeInfo* info);
static int decode(CodeInfo* info, OLC_CodeArea* decoded);
static size_t code_length(CodeInfo* info);
static double pow_neg(double base, double exponent);
static double compute_latitude_precision(size_t length);
static double normalize_longitude(double lon_degrees);
static double adjust_latitude(double lat_degrees, size_t length);
void OLC_GetCenter(const OLC_CodeArea* area, OLC_LatLon* center) {
center->lat = area->lo.lat + (area->hi.lat - area->lo.lat) / 2.0;
if (center->lat > kLatMaxDegrees) {
center->lat = kLatMaxDegrees;
}
center->lon = area->lo.lon + (area->hi.lon - area->lo.lon) / 2.0;
if (center->lon > kLonMaxDegrees) {
center->lon = kLonMaxDegrees;
}
}
size_t OLC_CodeLength(const char* code, size_t size) {
CodeInfo info;
analyse(code, size, &info);
return code_length(&info);
}
int OLC_IsValid(const char* code, size_t size) {
CodeInfo info;
return analyse(code, size, &info) > 0;
}
int OLC_IsShort(const char* code, size_t size) {
CodeInfo info;
if (analyse(code, size, &info) <= 0) {
return 0;
}
return is_short(&info);
}
int OLC_IsFull(const char* code, size_t size) {
CodeInfo info;
if (analyse(code, size, &info) <= 0) {
return 0;
}
return is_full(&info);
}
int OLC_Encode(const OLC_LatLon* location, size_t length, char* code) {
// Limit the maximum number of digits in the code.
if (length > kMaximumDigitCount) {
length = kMaximumDigitCount;
}
// Adjust latitude and longitude so they fall into positive ranges.
double latitude = adjust_latitude(location->lat, length);
double longitude = normalize_longitude(location->lon);
// Build up the code here, then copy it to the passed pointer.
char fullcode[] = "12345678901234567";
// Compute the code.
// This approach converts each value to an integer after multiplying it by
// the final precision. This allows us to use only integer operations, so
// avoiding any accumulation of floating point representation errors.
// Multiply values by their precision and convert to positive without any
// floating point operations.
long long int lat_val = kLatMaxDegrees * 2.5e7;
long long int lng_val = kLonMaxDegrees * 8.192e6;
lat_val += latitude * 2.5e7;
lng_val += longitude * 8.192e6;
size_t pos = kMaximumDigitCount;
// Compute the grid part of the code if necessary.
if (length > kPairCodeLength) {
for (size_t i = 0; i < kGridCodeLength; i++) {
int lat_digit = lat_val % kGridRows;
int lng_digit = lng_val % kGridCols;
int ndx = lat_digit * kGridCols + lng_digit;
fullcode[pos--] = kAlphabet[ndx];
// Note! Integer division.
lat_val /= kGridRows;
lng_val /= kGridCols;
}
} else {
lat_val /= pow(kGridRows, kGridCodeLength);
lng_val /= pow(kGridCols, kGridCodeLength);
}
pos = kPairCodeLength;
// Compute the pair section of the code.
for (size_t i = 0; i < kPairCodeLength / 2; i++) {
int lat_ndx = lat_val % kEncodingBase;
int lng_ndx = lng_val % kEncodingBase;
fullcode[pos--] = kAlphabet[lng_ndx];
fullcode[pos--] = kAlphabet[lat_ndx];
// Note! Integer division.
lat_val /= kEncodingBase;
lng_val /= kEncodingBase;
if (i == 0) {
fullcode[pos--] = kSeparator;
}
}
// Replace digits with padding if necessary.
if (length < kSeparatorPosition) {
for (size_t i = length; i < kSeparatorPosition; i++) {
fullcode[i] = kPaddingCharacter;
}
fullcode[kSeparatorPosition] = kSeparator;
}
// Now copy the full code digits into the buffer.
size_t char_count = length + 1;
if (kSeparatorPosition + 1 > char_count) {
char_count = kSeparatorPosition + 1;
}
for (size_t i = 0; i < char_count; i++) {
code[i] = fullcode[i];
}
// Terminate the buffer.
code[char_count] = '\0';
return char_count;
}
int OLC_EncodeDefault(const OLC_LatLon* location, char* code) {
return OLC_Encode(location, kPairCodeLength, code);
}
int OLC_Decode(const char* code, size_t size, OLC_CodeArea* decoded) {
CodeInfo info;
if (analyse(code, size, &info) <= 0) {
return 0;
}
return decode(&info, decoded);
}
int OLC_Shorten(const char* code, size_t size, const OLC_LatLon* reference,
char* shortened) {
CodeInfo info;
if (analyse(code, size, &info) <= 0) {
return 0;
}
if (info.pad_first > 0) {
return 0;
}
if (!is_full(&info)) {
return 0;
}
OLC_CodeArea code_area;
decode(&info, &code_area);
OLC_LatLon center;
OLC_GetCenter(&code_area, &center);
// Ensure that latitude and longitude are valid.
double lat = adjust_latitude(reference->lat, info.len);
double lon = normalize_longitude(reference->lon);
// How close are the latitude and longitude to the code center.
double alat = fabs(center.lat - lat);
double alon = fabs(center.lon - lon);
double range = alat > alon ? alat : alon;
// Yes, magic numbers... sob.
int start = 0;
const double safety_factor = 0.3;
const int removal_lengths[3] = {8, 6, 4};
for (size_t j = 0; j < sizeof(removal_lengths) / sizeof(removal_lengths[0]);
++j) {
// Check if we're close enough to shorten. The range must be less than
// 1/2 the resolution to shorten at all, and we want to allow some
// safety, so use 0.3 instead of 0.5 as a multiplier.
int removal_length = removal_lengths[j];
double area_edge =
compute_latitude_precision(removal_length) * safety_factor;
if (range < area_edge) {
start = removal_length;
break;
}
}
int pos = 0;
for (int j = start; j < info.size && code[j] != '\0'; ++j) {
shortened[pos++] = code[j];
}
shortened[pos] = '\0';
return pos;
}
int OLC_RecoverNearest(const char* short_code, size_t size,
const OLC_LatLon* reference, char* code) {
CodeInfo info;
if (analyse(short_code, size, &info) <= 0) {
return 0;
}
// Check if it is a full code - then we just convert to upper case.
if (is_full(&info)) {
OLC_CodeArea code_area;
decode(&info, &code_area);
OLC_LatLon center;
OLC_GetCenter(&code_area, &center);
return OLC_Encode(&center, code_area.len, code);
}
if (!is_short(&info)) {
return 0;
}
int len = code_length(&info);
// Ensure that latitude and longitude are valid.
double lat = adjust_latitude(reference->lat, len);
double lon = normalize_longitude(reference->lon);
// Compute the number of digits we need to recover.
size_t padding_length = kSeparatorPosition;
if (info.sep_first >= 0) {
padding_length -= info.sep_first;
}
// The resolution (height and width) of the padded area in degrees.
double resolution = pow_neg(kEncodingBase, 2.0 - (padding_length / 2.0));
// Distance from the center to an edge (in degrees).
double half_res = resolution / 2.0;
// Use the reference location to pad the supplied short code and decode it.
OLC_LatLon latlon = {lat, lon};
char encoded[256];
OLC_EncodeDefault(&latlon, encoded);
char new_code[256];
int pos = 0;
for (size_t j = 0; encoded[j] != '\0'; ++j) {
if (j >= padding_length) {
break;
}
new_code[pos++] = encoded[j];
}
for (int j = 0; j < info.size && short_code[j] != '\0'; ++j) {
new_code[pos++] = short_code[j];
}
new_code[pos] = '\0';
if (analyse(new_code, pos, &info) <= 0) {
return 0;
}
OLC_CodeArea code_area;
decode(&info, &code_area);
OLC_LatLon center;
OLC_GetCenter(&code_area, &center);
// How many degrees latitude is the code from the reference?
if (lat + half_res < center.lat &&
center.lat - resolution > -kLatMaxDegrees) {
// If the proposed code is more than half a cell north of the reference
// location, it's too far, and the best match will be one cell south.
center.lat -= resolution;
} else if (lat - half_res > center.lat &&
center.lat + resolution < kLatMaxDegrees) {
// If the proposed code is more than half a cell south of the reference
// location, it's too far, and the best match will be one cell north.
center.lat += resolution;
}
// How many degrees longitude is the code from the reference?
if (lon + half_res < center.lon) {
center.lon -= resolution;
} else if (lon - half_res > center.lon) {
center.lon += resolution;
}
return OLC_Encode(&center, len + padding_length, code);
}
// private functions
static int analyse(const char* code, size_t size, CodeInfo* info) {
memset(info, 0, sizeof(CodeInfo));
// null code is not valid
if (!code) {
return 0;
}
if (!size) {
size = strlen(code);
}
info->code = code;
info->size = size < kMaximumDigitCount ? size : kMaximumDigitCount;
info->sep_first = -1;
info->sep_last = -1;
info->pad_first = -1;
info->pad_last = -1;
size_t j = 0;
for (j = 0; j <= size && code[j] != '\0'; ++j) {
int ok = 0;
// if this is a padding character, remember it
if (!ok && code[j] == kPaddingCharacter) {
if (info->pad_first < 0) {
info->pad_first = j;
}
info->pad_last = j;
ok = 1;
}
// if this is a separator character, remember it
if (!ok && code[j] == kSeparator) {
if (info->sep_first < 0) {
info->sep_first = j;
}
info->sep_last = j;
ok = 1;
}
// only accept characters in the valid character set
if (!ok && get_alphabet_position(code[j]) >= 0) {
ok = 1;
}
// didn't find anything expected => bail out
if (!ok) {
return 0;
}
}
// so far, code only has valid characters -- good
info->len = j < kMaximumDigitCount ? j : kMaximumDigitCount;
// Cannot be empty
if (info->len <= 0) {
return 0;
}
// The separator is required.
if (info->sep_first < 0) {
return 0;
}
// There can be only one... separator.
if (info->sep_last > info->sep_first) {
return 0;
}
// separator cannot be the only character
if (info->len == 1) {
return 0;
}
// Is the separator in an illegal position?
if ((size_t)info->sep_first > kSeparatorPosition || (info->sep_first % 2)) {
return 0;
}
// padding cannot be at the initial position
if (info->pad_first == 0) {
return 0;
}
// We can have an even number of padding characters before the separator,
// but then it must be the final character.
if (info->pad_first > 0) {
// Short codes cannot have padding
if ((size_t)info->sep_first < kSeparatorPosition) {
return 0;
}
// The first padding character needs to be in an odd position.
if (info->pad_first % 2) {
return 0;
}
// With padding, the separator must be the final character
if (info->sep_last < info->len - 1) {
return 0;
}
// After removing padding characters, we mustn't have anything left.
if (info->pad_last < info->sep_first - 1) {
return 0;
}
}
// If there are characters after the separator, make sure there isn't just
// one of them (not legal).
if (info->len - info->sep_first - 1 == 1) {
return 0;
}
return info->len;
}
static int is_short(CodeInfo* info) {
if (info->len <= 0) {
return 0;
}
// if there is a separator, it cannot be beyond the valid position
if ((size_t)info->sep_first >= kSeparatorPosition) {
return 0;
}
return 1;
}
// checks that the first character of latitude or longitude is valid
static int valid_first_character(CodeInfo* info, int pos, double kMax) {
if (info->len <= pos) {
return 1;
}
// Work out what the first character indicates
size_t firstValue = get_alphabet_position(info->code[pos]);
firstValue *= kEncodingBase;
return firstValue < kMax;
}
static int is_full(CodeInfo* info) {
if (info->len <= 0) {
return 0;
}
// If there are less characters than expected before the separator.
if ((size_t)info->sep_first < kSeparatorPosition) {
return 0;
}
// check first latitude character, if any
if (!valid_first_character(info, 0, kLatMaxDegreesT2)) {
return 0;
}
// check first longitude character, if any
if (!valid_first_character(info, 1, kLonMaxDegreesT2)) {
return 0;
}
return 1;
}
static int decode(CodeInfo* info, OLC_CodeArea* decoded) {
// Create a copy of the code, skipping padding and separators.
char clean_code[256];
int ci = 0;
for (int i = 0; i < info->len + 1; i++) {
if (info->code[i] != kPaddingCharacter && info->code[i] != kSeparator) {
clean_code[ci] = info->code[i];
ci++;
}
}
clean_code[ci] = '\0';
// Initialise the values for each section. We work them out as integers and
// convert them to floats at the end. Using doubles all the way results in
// multiplying small rounding errors until they become significant.
int normal_lat = -kLatMaxDegrees * kPairPrecisionInverse;
int normal_lng = -kLonMaxDegrees * kPairPrecisionInverse;
int extra_lat = 0;
int extra_lng = 0;
// How many digits do we have to process?
size_t digits = strlen(clean_code) < kPairCodeLength ? strlen(clean_code)
: kPairCodeLength;
// Define the place value for the most significant pair.
int pv = pow(kEncodingBase, kPairCodeLength / 2);
for (size_t i = 0; i < digits - 1; i += 2) {
pv /= kEncodingBase;
normal_lat += get_alphabet_position(clean_code[i]) * pv;
normal_lng += get_alphabet_position(clean_code[i + 1]) * pv;
}
// Convert the place value to a float in degrees.
double lat_precision = pv / kPairPrecisionInverse;
double lng_precision = pv / kPairPrecisionInverse;
// Process any extra precision digits.
if (strlen(clean_code) > kPairCodeLength) {
// How many digits do we have to process?
digits = strlen(clean_code) < kMaximumDigitCount ? strlen(clean_code)
: kMaximumDigitCount;
// Initialise the place values for the grid.
int row_pv = pow(kGridRows, kGridCodeLength);
int col_pv = pow(kGridCols, kGridCodeLength);
for (size_t i = kPairCodeLength; i < digits; i++) {
row_pv /= kGridRows;
col_pv /= kGridCols;
int dval = get_alphabet_position(clean_code[i]);
int row = dval / kGridCols;
int col = dval % kGridCols;
extra_lat += row * row_pv;
extra_lng += col * col_pv;
}
// Adjust the precisions from the integer values to degrees.
lat_precision = row_pv / kGridLatPrecisionInverse;
lng_precision = col_pv / kGridLonPrecisionInverse;
}
// Merge the values from the normal and extra precision parts of the code.
// Everything is ints so they all need to be cast to floats.
double lat = normal_lat / kPairPrecisionInverse +
extra_lat / kGridLatPrecisionInverse;
double lng = normal_lng / kPairPrecisionInverse +
extra_lng / kGridLonPrecisionInverse;
decoded->lo.lat = lat;
decoded->lo.lon = lng;
decoded->hi.lat = lat + lat_precision;
decoded->hi.lon = lng + lng_precision;
decoded->len = strlen(clean_code);
return decoded->len;
}
static size_t code_length(CodeInfo* info) {
int len = info->len;
if (info->sep_first >= 0) {
--len;
}
if (info->pad_first >= 0) {
len = info->pad_first;
}
return len;
}
// Raises a number to an exponent, handling negative exponents.
static double pow_neg(double base, double exponent) {
if (exponent == 0) {
return 1;
}
if (exponent > 0) {
return pow(base, exponent);
}
return 1 / pow(base, -exponent);
}
// Compute the latitude precision value for a given code length. Lengths <= 10
// have the same precision for latitude and longitude, but lengths > 10 have
// different precisions due to the grid method having fewer columns than rows.
static double compute_latitude_precision(size_t length) {
// Magic numbers!
if (length <= kPairCodeLength) {
return pow_neg(kEncodingBase, floor((length / -2) + 2));
}
return pow_neg(kEncodingBase, -3) / pow(kGridRows, length - kPairCodeLength);
}
// Normalize a longitude into the range -180 to 180, not including 180.
static double normalize_longitude(double lon_degrees) {
while (lon_degrees < -kLonMaxDegrees) {
lon_degrees += kLonMaxDegreesT2;
}
while (lon_degrees >= kLonMaxDegrees) {
lon_degrees -= kLonMaxDegreesT2;
}
return lon_degrees;
}
// Adjusts 90 degree latitude to be lower so that a legal OLC code can be
// generated.
static double adjust_latitude(double lat_degrees, size_t length) {
if (lat_degrees < -kLatMaxDegrees) {
lat_degrees = -kLatMaxDegrees;
}
if (lat_degrees > kLatMaxDegrees) {
lat_degrees = kLatMaxDegrees;
}
if (lat_degrees < kLatMaxDegrees) {
return lat_degrees;
}
// Subtract half the code precision to get the latitude into the code area.
double precision = compute_latitude_precision(length);
return lat_degrees - precision / 2;
}