1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00
betaflight/src/main/drivers/serial_uart_hal.c

449 lines
15 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Authors:
* jflyper - Refactoring, cleanup and made pin-configurable
* Dominic Clifton - Serial port abstraction, Separation of common STM32 code for cleanflight, various cleanups.
* Hamasaki/Timecop - Initial baseflight code
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "platform.h"
#ifdef USE_UART
#include "build/build_config.h"
#include "common/utils.h"
#include "drivers/io.h"
#include "drivers/nvic.h"
#include "drivers/inverter.h"
#include "drivers/dma.h"
#include "drivers/rcc.h"
#include "drivers/serial.h"
#include "drivers/serial_uart.h"
#include "drivers/serial_uart_impl.h"
static void usartConfigurePinInversion(uartPort_t *uartPort) {
bool inverted = uartPort->port.options & SERIAL_INVERTED;
if (inverted)
{
if (uartPort->port.mode & MODE_RX)
{
uartPort->Handle.AdvancedInit.AdvFeatureInit |= UART_ADVFEATURE_RXINVERT_INIT;
uartPort->Handle.AdvancedInit.RxPinLevelInvert = UART_ADVFEATURE_RXINV_ENABLE;
}
if (uartPort->port.mode & MODE_TX)
{
uartPort->Handle.AdvancedInit.AdvFeatureInit |= UART_ADVFEATURE_TXINVERT_INIT;
uartPort->Handle.AdvancedInit.TxPinLevelInvert = UART_ADVFEATURE_TXINV_ENABLE;
}
}
}
// XXX uartReconfigure does not handle resource management properly.
void uartReconfigure(uartPort_t *uartPort)
{
/*RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit;
RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_USART3|
RCC_PERIPHCLK_UART4|RCC_PERIPHCLK_UART5|RCC_PERIPHCLK_USART6|RCC_PERIPHCLK_UART7|RCC_PERIPHCLK_UART8;
RCC_PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Usart3ClockSelection = RCC_USART3CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart4ClockSelection = RCC_UART4CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart5ClockSelection = RCC_UART5CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Usart6ClockSelection = RCC_USART6CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart7ClockSelection = RCC_UART7CLKSOURCE_SYSCLK;
RCC_PeriphClkInit.Uart8ClockSelection = RCC_UART8CLKSOURCE_SYSCLK;
HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit);*/
HAL_UART_DeInit(&uartPort->Handle);
uartPort->Handle.Init.BaudRate = uartPort->port.baudRate;
// according to the stm32 documentation wordlen has to be 9 for parity bits
// this does not seem to matter for rx but will give bad data on tx!
uartPort->Handle.Init.WordLength = (uartPort->port.options & SERIAL_PARITY_EVEN) ? UART_WORDLENGTH_9B : UART_WORDLENGTH_8B;
uartPort->Handle.Init.StopBits = (uartPort->port.options & SERIAL_STOPBITS_2) ? USART_STOPBITS_2 : USART_STOPBITS_1;
uartPort->Handle.Init.Parity = (uartPort->port.options & SERIAL_PARITY_EVEN) ? USART_PARITY_EVEN : USART_PARITY_NONE;
uartPort->Handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
uartPort->Handle.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
uartPort->Handle.Init.Mode = 0;
if (uartPort->port.mode & MODE_RX)
uartPort->Handle.Init.Mode |= UART_MODE_RX;
if (uartPort->port.mode & MODE_TX)
uartPort->Handle.Init.Mode |= UART_MODE_TX;
usartConfigurePinInversion(uartPort);
#ifdef TARGET_USART_CONFIG
void usartTargetConfigure(uartPort_t *);
usartTargetConfigure(uartPort);
#endif
if (uartPort->port.options & SERIAL_BIDIR)
{
HAL_HalfDuplex_Init(&uartPort->Handle);
}
else
{
HAL_UART_Init(&uartPort->Handle);
}
// Receive DMA or IRQ
if (uartPort->port.mode & MODE_RX)
{
if (uartPort->rxDMAStream)
{
uartPort->rxDMAHandle.Instance = uartPort->rxDMAStream;
uartPort->rxDMAHandle.Init.Channel = uartPort->rxDMAChannel;
uartPort->rxDMAHandle.Init.Direction = DMA_PERIPH_TO_MEMORY;
uartPort->rxDMAHandle.Init.PeriphInc = DMA_PINC_DISABLE;
uartPort->rxDMAHandle.Init.MemInc = DMA_MINC_ENABLE;
uartPort->rxDMAHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
uartPort->rxDMAHandle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
uartPort->rxDMAHandle.Init.Mode = DMA_CIRCULAR;
uartPort->rxDMAHandle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
uartPort->rxDMAHandle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
uartPort->rxDMAHandle.Init.PeriphBurst = DMA_PBURST_SINGLE;
uartPort->rxDMAHandle.Init.MemBurst = DMA_MBURST_SINGLE;
uartPort->rxDMAHandle.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_DeInit(&uartPort->rxDMAHandle);
HAL_DMA_Init(&uartPort->rxDMAHandle);
/* Associate the initialized DMA handle to the UART handle */
__HAL_LINKDMA(&uartPort->Handle, hdmarx, uartPort->rxDMAHandle);
HAL_UART_Receive_DMA(&uartPort->Handle, (uint8_t*)uartPort->port.rxBuffer, uartPort->port.rxBufferSize);
uartPort->rxDMAPos = __HAL_DMA_GET_COUNTER(&uartPort->rxDMAHandle);
}
else
{
/* Enable the UART Parity Error Interrupt */
SET_BIT(uartPort->USARTx->CR1, USART_CR1_PEIE);
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
SET_BIT(uartPort->USARTx->CR3, USART_CR3_EIE);
/* Enable the UART Data Register not empty Interrupt */
SET_BIT(uartPort->USARTx->CR1, USART_CR1_RXNEIE);
}
}
// Transmit DMA or IRQ
if (uartPort->port.mode & MODE_TX) {
if (uartPort->txDMAStream) {
uartPort->txDMAHandle.Instance = uartPort->txDMAStream;
uartPort->txDMAHandle.Init.Channel = uartPort->txDMAChannel;
uartPort->txDMAHandle.Init.Direction = DMA_MEMORY_TO_PERIPH;
uartPort->txDMAHandle.Init.PeriphInc = DMA_PINC_DISABLE;
uartPort->txDMAHandle.Init.MemInc = DMA_MINC_ENABLE;
uartPort->txDMAHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
uartPort->txDMAHandle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
uartPort->txDMAHandle.Init.Mode = DMA_NORMAL;
uartPort->txDMAHandle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
uartPort->txDMAHandle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
uartPort->txDMAHandle.Init.PeriphBurst = DMA_PBURST_SINGLE;
uartPort->txDMAHandle.Init.MemBurst = DMA_MBURST_SINGLE;
uartPort->txDMAHandle.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_DeInit(&uartPort->txDMAHandle);
HAL_StatusTypeDef status = HAL_DMA_Init(&uartPort->txDMAHandle);
if (status != HAL_OK)
{
while (1);
}
/* Associate the initialized DMA handle to the UART handle */
__HAL_LINKDMA(&uartPort->Handle, hdmatx, uartPort->txDMAHandle);
__HAL_DMA_SET_COUNTER(&uartPort->txDMAHandle, 0);
} else {
/* Enable the UART Transmit Data Register Empty Interrupt */
SET_BIT(uartPort->USARTx->CR1, USART_CR1_TXEIE);
}
}
return;
}
serialPort_t *uartOpen(UARTDevice_e device, serialReceiveCallbackPtr callback, void *callbackData, uint32_t baudRate, portMode_e mode, portOptions_e options)
{
uartPort_t *s = serialUART(device, baudRate, mode, options);
if (!s) {
return (serialPort_t *)s;
}
s->txDMAEmpty = true;
// common serial initialisation code should move to serialPort::init()
s->port.rxBufferHead = s->port.rxBufferTail = 0;
s->port.txBufferHead = s->port.txBufferTail = 0;
// callback works for IRQ-based RX ONLY
s->port.rxCallback = callback;
s->port.rxCallbackData = callbackData;
s->port.mode = mode;
s->port.baudRate = baudRate;
s->port.options = options;
uartReconfigure(s);
return (serialPort_t *)s;
}
void uartSetBaudRate(serialPort_t *instance, uint32_t baudRate)
{
uartPort_t *uartPort = (uartPort_t *)instance;
uartPort->port.baudRate = baudRate;
uartReconfigure(uartPort);
}
void uartSetMode(serialPort_t *instance, portMode_e mode)
{
uartPort_t *uartPort = (uartPort_t *)instance;
uartPort->port.mode = mode;
uartReconfigure(uartPort);
}
void uartStartTxDMA(uartPort_t *s)
{
uint16_t size = 0;
uint32_t fromwhere=0;
HAL_UART_StateTypeDef state = HAL_UART_GetState(&s->Handle);
if ((state & HAL_UART_STATE_BUSY_TX) == HAL_UART_STATE_BUSY_TX)
return;
if (s->port.txBufferHead > s->port.txBufferTail) {
size = s->port.txBufferHead - s->port.txBufferTail;
fromwhere = s->port.txBufferTail;
s->port.txBufferTail = s->port.txBufferHead;
} else {
size = s->port.txBufferSize - s->port.txBufferTail;
fromwhere = s->port.txBufferTail;
s->port.txBufferTail = 0;
}
s->txDMAEmpty = false;
//HAL_CLEANCACHE((uint8_t *)&s->port.txBuffer[fromwhere],size);
HAL_UART_Transmit_DMA(&s->Handle, (uint8_t *)&s->port.txBuffer[fromwhere], size);
}
uint32_t uartTotalRxBytesWaiting(const serialPort_t *instance)
{
uartPort_t *s = (uartPort_t*)instance;
if (s->rxDMAStream) {
uint32_t rxDMAHead = __HAL_DMA_GET_COUNTER(s->Handle.hdmarx);
if (rxDMAHead >= s->rxDMAPos) {
return rxDMAHead - s->rxDMAPos;
} else {
return s->port.rxBufferSize + rxDMAHead - s->rxDMAPos;
}
}
if (s->port.rxBufferHead >= s->port.rxBufferTail) {
return s->port.rxBufferHead - s->port.rxBufferTail;
} else {
return s->port.rxBufferSize + s->port.rxBufferHead - s->port.rxBufferTail;
}
}
uint32_t uartTotalTxBytesFree(const serialPort_t *instance)
{
uartPort_t *s = (uartPort_t*)instance;
uint32_t bytesUsed;
if (s->port.txBufferHead >= s->port.txBufferTail) {
bytesUsed = s->port.txBufferHead - s->port.txBufferTail;
} else {
bytesUsed = s->port.txBufferSize + s->port.txBufferHead - s->port.txBufferTail;
}
if (s->txDMAStream) {
/*
* When we queue up a DMA request, we advance the Tx buffer tail before the transfer finishes, so we must add
* the remaining size of that in-progress transfer here instead:
*/
bytesUsed += __HAL_DMA_GET_COUNTER(s->Handle.hdmatx);
/*
* If the Tx buffer is being written to very quickly, we might have advanced the head into the buffer
* space occupied by the current DMA transfer. In that case the "bytesUsed" total will actually end up larger
* than the total Tx buffer size, because we'll end up transmitting the same buffer region twice. (So we'll be
* transmitting a garbage mixture of old and new bytes).
*
* Be kind to callers and pretend like our buffer can only ever be 100% full.
*/
if (bytesUsed >= s->port.txBufferSize - 1) {
return 0;
}
}
return (s->port.txBufferSize - 1) - bytesUsed;
}
bool isUartTransmitBufferEmpty(const serialPort_t *instance)
{
const uartPort_t *s = (uartPort_t *)instance;
if (s->txDMAStream)
return s->txDMAEmpty;
else
return s->port.txBufferTail == s->port.txBufferHead;
}
uint8_t uartRead(serialPort_t *instance)
{
uint8_t ch;
uartPort_t *s = (uartPort_t *)instance;
if (s->rxDMAStream) {
ch = s->port.rxBuffer[s->port.rxBufferSize - s->rxDMAPos];
if (--s->rxDMAPos == 0)
s->rxDMAPos = s->port.rxBufferSize;
} else {
ch = s->port.rxBuffer[s->port.rxBufferTail];
if (s->port.rxBufferTail + 1 >= s->port.rxBufferSize) {
s->port.rxBufferTail = 0;
} else {
s->port.rxBufferTail++;
}
}
return ch;
}
void uartWrite(serialPort_t *instance, uint8_t ch)
{
uartPort_t *s = (uartPort_t *)instance;
s->port.txBuffer[s->port.txBufferHead] = ch;
if (s->port.txBufferHead + 1 >= s->port.txBufferSize) {
s->port.txBufferHead = 0;
} else {
s->port.txBufferHead++;
}
if (s->txDMAStream) {
if (!(s->txDMAStream->CR & 1))
uartStartTxDMA(s);
} else {
__HAL_UART_ENABLE_IT(&s->Handle, UART_IT_TXE);
}
}
const struct serialPortVTable uartVTable[] = {
{
.serialWrite = uartWrite,
.serialTotalRxWaiting = uartTotalRxBytesWaiting,
.serialTotalTxFree = uartTotalTxBytesFree,
.serialRead = uartRead,
.serialSetBaudRate = uartSetBaudRate,
.isSerialTransmitBufferEmpty = isUartTransmitBufferEmpty,
.setMode = uartSetMode,
.setCtrlLineStateCb = NULL,
.setBaudRateCb = NULL,
.writeBuf = NULL,
.beginWrite = NULL,
.endWrite = NULL,
}
};
#ifdef USE_UART1
// USART1 Rx/Tx IRQ Handler
void USART1_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_1]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART2
// USART2 Rx/Tx IRQ Handler
void USART2_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_2]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART3
// USART3 Rx/Tx IRQ Handler
void USART3_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_3]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART4
// UART4 Rx/Tx IRQ Handler
void UART4_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_4]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART5
// UART5 Rx/Tx IRQ Handler
void UART5_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_5]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART6
// USART6 Rx/Tx IRQ Handler
void USART6_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_6]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART7
// UART7 Rx/Tx IRQ Handler
void UART7_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_7]->port);
uartIrqHandler(s);
}
#endif
#ifdef USE_UART8
// UART8 Rx/Tx IRQ Handler
void UART8_IRQHandler(void)
{
uartPort_t *s = &(uartDevmap[UARTDEV_8]->port);
uartIrqHandler(s);
}
#endif
#endif