1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/src/platform/STM32/pwm_output_dshot.c
Jay Blackman 0bb1254ee8
Move RCC from drivers to platform (#14430)
* Move RCC from drivers to platform

* Extra line removed

* Suggestion from code rabbit

* Remove else and require explicit
2025-06-07 09:41:37 +10:00

438 lines
14 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "platform.h"
#ifdef USE_DSHOT
#include "build/debug.h"
#include "drivers/dma.h"
#include "drivers/dma_reqmap.h"
#include "drivers/io.h"
#include "drivers/nvic.h"
#include "platform/rcc.h"
#include "drivers/time.h"
#include "drivers/timer.h"
#include "drivers/system.h"
#if defined(STM32F4)
#include "stm32f4xx.h"
#endif
#include "drivers/pwm_output.h"
#include "drivers/dshot.h"
#include "dshot_dpwm.h"
#include "drivers/dshot_command.h"
#include "pwm_output_dshot_shared.h"
#ifdef USE_DSHOT_TELEMETRY
void dshotEnableChannels(unsigned motorCount)
{
for (unsigned i = 0; i < motorCount; i++) {
if (dmaMotors[i].output & TIMER_OUTPUT_N_CHANNEL) {
TIM_CCxNCmd(dmaMotors[i].timerHardware->tim, dmaMotors[i].timerHardware->channel, TIM_CCxN_Enable);
} else {
TIM_CCxCmd(dmaMotors[i].timerHardware->tim, dmaMotors[i].timerHardware->channel, TIM_CCx_Enable);
}
}
}
#endif
FAST_CODE void pwmDshotSetDirectionOutput(
motorDmaOutput_t * const motor
#ifndef USE_DSHOT_TELEMETRY
,TIM_OCInitTypeDef *pOcInit, DMA_InitTypeDef* pDmaInit
#endif
)
{
#ifdef USE_DSHOT_TELEMETRY
TIM_OCInitTypeDef* pOcInit = &motor->ocInitStruct;
DMA_InitTypeDef* pDmaInit = &motor->dmaInitStruct;
#endif
const timerHardware_t * const timerHardware = motor->timerHardware;
TIM_TypeDef *timer = timerHardware->tim;
dmaResource_t *dmaRef = motor->dmaRef;
#if defined(USE_DSHOT_DMAR) && !defined(USE_DSHOT_TELEMETRY)
if (useBurstDshot) {
dmaRef = timerHardware->dmaTimUPRef;
}
#endif
xDMA_DeInit(dmaRef);
#ifdef USE_DSHOT_TELEMETRY
motor->isInput = false;
#endif
timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Disable);
timerOCInit(timer, timerHardware->channel, pOcInit);
timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Enable);
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
pDmaInit->DMA_DIR = DMA_DIR_MemoryToPeripheral;
} else
#endif
{
#if defined(STM32F4)
pDmaInit->DMA_DIR = DMA_DIR_MemoryToPeripheral;
#endif
}
xDMA_Init(dmaRef, pDmaInit);
xDMA_ITConfig(dmaRef, DMA_IT_TC, ENABLE);
}
#ifdef USE_DSHOT_TELEMETRY
FAST_CODE
static void pwmDshotSetDirectionInput(
motorDmaOutput_t * const motor
)
{
DMA_InitTypeDef* pDmaInit = &motor->dmaInitStruct;
const timerHardware_t * const timerHardware = motor->timerHardware;
TIM_TypeDef *timer = timerHardware->tim;
dmaResource_t *dmaRef = motor->dmaRef;
xDMA_DeInit(dmaRef);
motor->isInput = true;
if (!inputStampUs) {
inputStampUs = micros();
}
TIM_ARRPreloadConfig(timer, ENABLE);
timer->ARR = 0xffffffff;
TIM_ICInit(timer, &motor->icInitStruct);
#if defined(STM32F4)
motor->dmaInitStruct.DMA_DIR = DMA_DIR_PeripheralToMemory;
#endif
xDMA_Init(dmaRef, pDmaInit);
}
#endif
void pwmCompleteDshotMotorUpdate(void)
{
/* If there is a dshot command loaded up, time it correctly with motor update*/
if (!dshotCommandQueueEmpty()) {
if (!dshotCommandOutputIsEnabled(pwmMotorCount)) {
return;
}
}
for (int i = 0; i < dmaMotorTimerCount; i++) {
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
xDMA_SetCurrDataCounter(dmaMotorTimers[i].dmaBurstRef, dmaMotorTimers[i].dmaBurstLength);
xDMA_Cmd(dmaMotorTimers[i].dmaBurstRef, ENABLE);
TIM_DMAConfig(dmaMotorTimers[i].timer, TIM_DMABase_CCR1, TIM_DMABurstLength_4Transfers);
TIM_DMACmd(dmaMotorTimers[i].timer, TIM_DMA_Update, ENABLE);
} else
#endif
{
TIM_ARRPreloadConfig(dmaMotorTimers[i].timer, DISABLE);
dmaMotorTimers[i].timer->ARR = dmaMotorTimers[i].outputPeriod;
TIM_ARRPreloadConfig(dmaMotorTimers[i].timer, ENABLE);
TIM_SetCounter(dmaMotorTimers[i].timer, 0);
TIM_DMACmd(dmaMotorTimers[i].timer, dmaMotorTimers[i].timerDmaSources, ENABLE);
dmaMotorTimers[i].timerDmaSources = 0;
}
}
}
FAST_CODE static void motor_DMA_IRQHandler(dmaChannelDescriptor_t *descriptor)
{
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF)) {
motorDmaOutput_t * const motor = &dmaMotors[descriptor->userParam];
#ifdef USE_DSHOT_TELEMETRY
dshotDMAHandlerCycleCounters.irqAt = getCycleCounter();
#endif
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
xDMA_Cmd(motor->timerHardware->dmaTimUPRef, DISABLE);
TIM_DMACmd(motor->timerHardware->tim, TIM_DMA_Update, DISABLE);
} else
#endif
{
xDMA_Cmd(motor->dmaRef, DISABLE);
TIM_DMACmd(motor->timerHardware->tim, motor->timerDmaSource, DISABLE);
}
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
pwmDshotSetDirectionInput(motor);
xDMA_SetCurrDataCounter(motor->dmaRef, GCR_TELEMETRY_INPUT_LEN);
xDMA_Cmd(motor->dmaRef, ENABLE);
TIM_DMACmd(motor->timerHardware->tim, motor->timerDmaSource, ENABLE);
dshotDMAHandlerCycleCounters.changeDirectionCompletedAt = getCycleCounter();
}
#endif
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
}
}
bool pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint8_t reorderedMotorIndex, motorProtocolTypes_e pwmProtocolType, uint8_t output)
{
#ifdef USE_DSHOT_TELEMETRY
#define OCINIT motor->ocInitStruct
#define DMAINIT motor->dmaInitStruct
#else
TIM_OCInitTypeDef ocInitStruct;
DMA_InitTypeDef dmaInitStruct;
#define OCINIT ocInitStruct
#define DMAINIT dmaInitStruct
#endif
dmaResource_t *dmaRef = NULL;
#if defined(STM32F4)
uint32_t dmaChannel = 0;
#endif
#if defined(USE_DMA_SPEC)
const dmaChannelSpec_t *dmaSpec = dmaGetChannelSpecByTimer(timerHardware);
if (dmaSpec != NULL) {
dmaRef = dmaSpec->ref;
#if defined(STM32F4)
dmaChannel = dmaSpec->channel;
#endif
}
#else
dmaRef = timerHardware->dmaRef;
#if defined(STM32F4)
dmaChannel = timerHardware->dmaChannel;
#endif
#endif
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
dmaRef = timerHardware->dmaTimUPRef;
#if defined(STM32F4)
dmaChannel = timerHardware->dmaTimUPChannel;
#endif
}
#endif
if (dmaRef == NULL) {
return false;
}
dmaIdentifier_e dmaIdentifier = dmaGetIdentifier(dmaRef);
bool dmaIsConfigured = false;
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
const resourceOwner_t *owner = dmaGetOwner(dmaIdentifier);
if (owner->owner == OWNER_TIMUP && owner->resourceIndex == timerGetTIMNumber(timerHardware->tim)) {
dmaIsConfigured = true;
} else if (!dmaAllocate(dmaIdentifier, OWNER_TIMUP, timerGetTIMNumber(timerHardware->tim))) {
return false;
}
} else
#endif
{
if (!dmaAllocate(dmaIdentifier, OWNER_MOTOR, RESOURCE_INDEX(reorderedMotorIndex))) {
return false;
}
}
motorDmaOutput_t * const motor = &dmaMotors[motorIndex];
TIM_TypeDef *timer = timerHardware->tim;
// Boolean configureTimer is always true when different channels of the same timer are processed in sequence,
// causing the timer and the associated DMA initialized more than once.
// To fix this, getTimerIndex must be expanded to return if a new timer has been requested.
// However, since the initialization is idempotent, it is left as is in a favor of flash space (for now).
const uint8_t timerIndex = getTimerIndex(timer);
const bool configureTimer = (timerIndex == dmaMotorTimerCount-1);
motor->timer = &dmaMotorTimers[timerIndex];
motor->index = motorIndex;
motor->timerHardware = timerHardware;
const IO_t motorIO = IOGetByTag(timerHardware->tag);
uint8_t pupMode = 0;
pupMode = (output & TIMER_OUTPUT_INVERTED) ? GPIO_PuPd_DOWN : GPIO_PuPd_UP;
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
output ^= TIMER_OUTPUT_INVERTED;
}
#endif
motor->iocfg = IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, pupMode);
IOConfigGPIOAF(motorIO, motor->iocfg, timerHardware->alternateFunction);
if (configureTimer) {
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
RCC_ClockCmd(timerRCC(timer), ENABLE);
TIM_Cmd(timer, DISABLE);
TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(lrintf((float) timerClock(timer) / getDshotHz(pwmProtocolType) + 0.01f) - 1);
TIM_TimeBaseStructure.TIM_Period = (pwmProtocolType == MOTOR_PROTOCOL_PROSHOT1000 ? (MOTOR_NIBBLE_LENGTH_PROSHOT) : MOTOR_BITLENGTH) - 1;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(timer, &TIM_TimeBaseStructure);
}
TIM_OCStructInit(&OCINIT);
OCINIT.TIM_OCMode = TIM_OCMode_PWM1;
if (output & TIMER_OUTPUT_N_CHANNEL) {
OCINIT.TIM_OutputNState = TIM_OutputNState_Enable;
OCINIT.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
OCINIT.TIM_OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_Low : TIM_OCNPolarity_High;
} else {
OCINIT.TIM_OutputState = TIM_OutputState_Enable;
OCINIT.TIM_OCIdleState = TIM_OCIdleState_Set;
OCINIT.TIM_OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High;
}
OCINIT.TIM_Pulse = 0;
#ifdef USE_DSHOT_TELEMETRY
TIM_ICStructInit(&motor->icInitStruct);
motor->icInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI;
motor->icInitStruct.TIM_ICPolarity = TIM_ICPolarity_BothEdge;
motor->icInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1;
motor->icInitStruct.TIM_Channel = timerHardware->channel;
motor->icInitStruct.TIM_ICFilter = 2;
#endif
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
motor->timer->dmaBurstRef = dmaRef;
} else
#endif
{
motor->timerDmaSource = timerDmaSource(timerHardware->channel);
motor->timer->timerDmaSources &= ~motor->timerDmaSource;
}
xDMA_Cmd(dmaRef, DISABLE);
xDMA_DeInit(dmaRef);
if (!dmaIsConfigured) {
dmaEnable(dmaIdentifier);
}
DMA_StructInit(&DMAINIT);
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
motor->timer->dmaBurstBuffer = &dshotBurstDmaBuffer[timerIndex][0];
DMAINIT.DMA_Channel = timerHardware->dmaTimUPChannel;
DMAINIT.DMA_Memory0BaseAddr = (uint32_t)motor->timer->dmaBurstBuffer;
DMAINIT.DMA_DIR = DMA_DIR_MemoryToPeripheral;
DMAINIT.DMA_FIFOMode = DMA_FIFOMode_Enable;
DMAINIT.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
DMAINIT.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMAINIT.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMAINIT.DMA_PeripheralBaseAddr = (uint32_t)&timerHardware->tim->DMAR;
DMAINIT.DMA_BufferSize = (pwmProtocolType == MOTOR_PROTOCOL_PROSHOT1000) ? PROSHOT_DMA_BUFFER_SIZE : DSHOT_DMA_BUFFER_SIZE; // XXX
DMAINIT.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMAINIT.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMAINIT.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
DMAINIT.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
DMAINIT.DMA_Mode = DMA_Mode_Normal;
DMAINIT.DMA_Priority = DMA_Priority_High;
} else
#endif
{
motor->dmaBuffer = &dshotDmaBuffer[motorIndex][0];
#if defined(STM32F4)
DMAINIT.DMA_Channel = dmaChannel;
DMAINIT.DMA_Memory0BaseAddr = (uint32_t)motor->dmaBuffer;
DMAINIT.DMA_DIR = DMA_DIR_MemoryToPeripheral;
DMAINIT.DMA_FIFOMode = DMA_FIFOMode_Enable;
DMAINIT.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull;
DMAINIT.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMAINIT.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
#endif
DMAINIT.DMA_PeripheralBaseAddr = (uint32_t)timerChCCR(timerHardware);
DMAINIT.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMAINIT.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMAINIT.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
DMAINIT.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
DMAINIT.DMA_Mode = DMA_Mode_Normal;
DMAINIT.DMA_Priority = DMA_Priority_High;
}
// XXX Consolidate common settings in the next refactor
motor->dmaRef = dmaRef;
#ifdef USE_DSHOT_TELEMETRY
motor->dshotTelemetryDeadtimeUs = DSHOT_TELEMETRY_DEADTIME_US + 1000000 *
(16 * MOTOR_BITLENGTH) / getDshotHz(pwmProtocolType);
motor->timer->outputPeriod = (pwmProtocolType == MOTOR_PROTOCOL_PROSHOT1000 ? (MOTOR_NIBBLE_LENGTH_PROSHOT) : MOTOR_BITLENGTH) - 1;
pwmDshotSetDirectionOutput(motor);
#else
pwmDshotSetDirectionOutput(motor, &OCINIT, &DMAINIT);
#endif
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
if (!dmaIsConfigured) {
dmaSetHandler(dmaIdentifier, motor_DMA_IRQHandler, NVIC_PRIO_DSHOT_DMA, motor->index);
}
} else
#endif
{
dmaSetHandler(dmaIdentifier, motor_DMA_IRQHandler, NVIC_PRIO_DSHOT_DMA, motor->index);
}
TIM_Cmd(timer, ENABLE);
if (output & TIMER_OUTPUT_N_CHANNEL) {
TIM_CCxNCmd(timer, timerHardware->channel, TIM_CCxN_Enable);
} else {
TIM_CCxCmd(timer, timerHardware->channel, TIM_CCx_Enable);
}
if (configureTimer) {
TIM_ARRPreloadConfig(timer, ENABLE);
TIM_CtrlPWMOutputs(timer, ENABLE);
TIM_Cmd(timer, ENABLE);
}
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
// avoid high line during startup to prevent bootloader activation
*timerChCCR(timerHardware) = 0xffff;
}
#endif
motor->configured = true;
return true;
}
#endif