1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-24 16:55:36 +03:00
betaflight/src/main/rx/nrf24_inav.c
2018-05-27 13:13:20 +09:00

434 lines
16 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#ifdef USE_RX_INAV
#include "build/build_config.h"
#include "build/debug.h"
#include "common/utils.h"
#include "pg/rx.h"
#include "drivers/io.h"
#include "drivers/rx/rx_nrf24l01.h"
#include "drivers/time.h"
#include "rx/rx.h"
#include "rx/rx_spi.h"
#include "rx/nrf24_inav.h"
#include "telemetry/ltm.h"
// debug build flags
//#define DEBUG_NRF24_INAV
//#define NO_RF_CHANNEL_HOPPING
//#define USE_BIND_ADDRESS_FOR_DATA_STATE
#define USE_AUTO_ACKKNOWLEDGEMENT
/*
* iNav Protocol
* Data rate is 250Kbps - lower data rate for better reliability and range
*
* Uses auto acknowledgment and dynamic payload size
* ACK payload is used for handshaking in bind phase and telemetry in data phase
*
* Bind payload size is 16 bytes
* Data payload size is 8, 16 or 18 bytes dependent on variant of protocol, (small payload is read more quickly (marginal benefit))
*
* Bind Phase
* uses address {0x4b,0x5c,0x6d,0x7e,0x8f}
* uses channel 0x4c (76)
*
* Data Phase
* 1) Uses the address received in bind packet
*
* 2) Hops between RF channels generated from the address received in bind packet.
* The number of RF hopping channels is set during bind handshaking:
* the transmitter requests a number of bind channels in payload[7]
* the receiver sets ackPayload[7] with the number of hopping channels actually allocated - the transmitter must
* use this value.
* All receiver variants must support the 16 byte payload. Support for the 8 and 18 byte payload is optional.
*
* 3) Uses the payload size negotiated in the bind phase, payload size may be 8, 16 or 18 bytes
* a) For 8 byte payload there are 6 channels: AETR with resolution of 1 (10-bits are used for the channel data), and AUX1
* and AUX2 with resolution of 4 (8-bits are used for the channel data)
* b) For 16 byte payload there are 16 channels: eight 10-bit analog channels, two 8-bit analog channels, and six digital channels as follows:
* Channels 0 to 3, are the AETR channels, values 1000 to 2000 with resolution of 1 (10-bit channels)
* Channel AUX1 by deviation convention is used for rate, values 1000, 1500, 2000
* Channels AUX2 to AUX6 are binary channels, values 1000 or 2000,
* by deviation convention these channels are used for: flip, picture, video, headless, and return to home
* Channels AUX7 to AUX10 are analog channels, values 1000 to 2000 with resolution of 1 (10-bit channels)
* Channels AUX11 and AUX12 are analog channels, values 1000 to 2000 with resolution of 4 (8-bit channels)
* c) For 18 byte payload there are 18 channels, the first 16 channelsar are as for 16 byte payload, and then there are two
* additional channels: AUX13 and AUX14 both with resolution of 4 (8-bit channels)
*/
#define RC_CHANNEL_COUNT 16 // standard variant of the protocol has 16 RC channels
#define RC_CHANNEL_COUNT_MAX MAX_SUPPORTED_RC_CHANNEL_COUNT // up to 18 RC channels are supported
enum {
RATE_LOW = 0,
RATE_MID = 1,
RATE_HIGH = 2
};
enum {
FLAG_FLIP = 0x01,
FLAG_PICTURE = 0x02,
FLAG_VIDEO = 0x04,
FLAG_RTH = 0x08,
FLAG_HEADLESS = 0x10
};
typedef enum {
STATE_BIND = 0,
STATE_DATA
} protocol_state_t;
STATIC_UNIT_TESTED protocol_state_t protocolState;
STATIC_UNIT_TESTED uint8_t ackPayload[NRF24L01_MAX_PAYLOAD_SIZE];
#define BIND_PAYLOAD0 0xae // 10101110
#define BIND_PAYLOAD1 0xc9 // 11001001
#define BIND_ACK_PAYLOAD0 0x83 // 10000111
#define BIND_ACK_PAYLOAD1 0xa5 // 10100101
#define INAV_PROTOCOL_PAYLOAD_SIZE_MIN 8
#define INAV_PROTOCOL_PAYLOAD_SIZE_DEFAULT 16
#define INAV_PROTOCOL_PAYLOAD_SIZE_MAX 18
STATIC_UNIT_TESTED const uint8_t payloadSize = INAV_PROTOCOL_PAYLOAD_SIZE_DEFAULT;
uint8_t receivedPowerSnapshot;
#define RX_TX_ADDR_LEN 5
// set rxTxAddr to the bind address
STATIC_UNIT_TESTED uint8_t rxTxAddr[RX_TX_ADDR_LEN] = {0x4b,0x5c,0x6d,0x7e,0x8f};
uint32_t *rxSpiIdPtr;
#define RX_TX_ADDR_4 0xD2 // rxTxAddr[4] always set to this value
// radio channels for frequency hopping
#define INAV_RF_CHANNEL_COUNT_MAX 8
#define INAV_RF_CHANNEL_HOPPING_COUNT_DEFAULT 4
STATIC_UNIT_TESTED const uint8_t inavRfChannelHoppingCount = INAV_RF_CHANNEL_HOPPING_COUNT_DEFAULT;
STATIC_UNIT_TESTED uint8_t inavRfChannelCount;
STATIC_UNIT_TESTED uint8_t inavRfChannelIndex;
STATIC_UNIT_TESTED uint8_t inavRfChannels[INAV_RF_CHANNEL_COUNT_MAX];
#define INAV_RF_BIND_CHANNEL 0x4c
static uint32_t timeOfLastHop;
static const uint32_t hopTimeout = 5000; // 5ms
STATIC_UNIT_TESTED bool inavCheckBindPacket(const uint8_t *payload)
{
bool bindPacket = false;
if (payload[0] == BIND_PAYLOAD0 && payload[1] == BIND_PAYLOAD1) {
bindPacket = true;
if (protocolState ==STATE_BIND) {
rxTxAddr[0] = payload[2];
rxTxAddr[1] = payload[3];
rxTxAddr[2] = payload[4];
rxTxAddr[3] = payload[5];
rxTxAddr[4] = payload[6];
/*inavRfChannelHoppingCount = payload[7]; // !!TODO not yet implemented on transmitter
if (inavRfChannelHoppingCount > INAV_RF_CHANNEL_COUNT_MAX) {
inavRfChannelHoppingCount = INAV_RF_CHANNEL_COUNT_MAX;
}*/
if (rxSpiIdPtr != NULL && *rxSpiIdPtr == 0) {
// copy the rxTxAddr so it can be saved
memcpy(rxSpiIdPtr, rxTxAddr, sizeof(uint32_t));
}
}
}
return bindPacket;
}
void inavNrf24SetRcDataFromPayload(uint16_t *rcData, const uint8_t *payload)
{
memset(rcData, 0, MAX_SUPPORTED_RC_CHANNEL_COUNT * sizeof(uint16_t));
// payload[0] and payload[1] are zero in DATA state
// the AETR channels have 10 bit resolution
uint8_t lowBits = payload[6]; // least significant bits for AETR
rcData[RC_SPI_ROLL] = PWM_RANGE_MIN + ((payload[2] << 2) | (lowBits & 0x03)); // Aileron
lowBits >>= 2;
rcData[RC_SPI_PITCH] = PWM_RANGE_MIN + ((payload[3] << 2) | (lowBits & 0x03)); // Elevator
lowBits >>= 2;
rcData[RC_SPI_THROTTLE] = PWM_RANGE_MIN + ((payload[4] << 2) | (lowBits & 0x03)); // Throttle
lowBits >>= 2;
rcData[RC_SPI_YAW] = PWM_RANGE_MIN + ((payload[5] << 2) | (lowBits & 0x03)); // Rudder
if (payloadSize == INAV_PROTOCOL_PAYLOAD_SIZE_MIN) {
// small payload variant of protocol, supports 6 channels
rcData[RC_SPI_AUX1] = PWM_RANGE_MIN + (payload[7] << 2);
rcData[RC_SPI_AUX2] = PWM_RANGE_MIN + (payload[1] << 2);
} else {
// channel AUX1 is used for rate, as per the deviation convention
const uint8_t rate = payload[7];
// AUX1
if (rate == RATE_HIGH) {
rcData[RC_CHANNEL_RATE] = PWM_RANGE_MAX;
} else if (rate == RATE_MID) {
rcData[RC_CHANNEL_RATE] = PWM_RANGE_MIDDLE;
} else {
rcData[RC_CHANNEL_RATE] = PWM_RANGE_MIN;
}
// channels AUX2 to AUX7 use the deviation convention
const uint8_t flags = payload[8];
rcData[RC_CHANNEL_FLIP]= (flags & FLAG_FLIP) ? PWM_RANGE_MAX : PWM_RANGE_MIN; // AUX2
rcData[RC_CHANNEL_PICTURE]= (flags & FLAG_PICTURE) ? PWM_RANGE_MAX : PWM_RANGE_MIN; // AUX3
rcData[RC_CHANNEL_VIDEO]= (flags & FLAG_VIDEO) ? PWM_RANGE_MAX : PWM_RANGE_MIN; // AUX4
rcData[RC_CHANNEL_HEADLESS]= (flags & FLAG_HEADLESS) ? PWM_RANGE_MAX : PWM_RANGE_MIN; //AUX5
rcData[RC_CHANNEL_RTH]= (flags & FLAG_RTH) ? PWM_RANGE_MAX : PWM_RANGE_MIN; // AUX6
// channels AUX7 to AUX10 have 10 bit resolution
lowBits = payload[13]; // least significant bits for AUX7 to AUX10
rcData[RC_SPI_AUX7] = PWM_RANGE_MIN + ((payload[9] << 2) | (lowBits & 0x03));
lowBits >>= 2;
rcData[RC_SPI_AUX8] = PWM_RANGE_MIN + ((payload[10] << 2) | (lowBits & 0x03));
lowBits >>= 2;
rcData[RC_SPI_AUX9] = PWM_RANGE_MIN + ((payload[11] << 2) | (lowBits & 0x03));
lowBits >>= 2;
rcData[RC_SPI_AUX10] = PWM_RANGE_MIN + ((payload[12] << 2) | (lowBits & 0x03));
lowBits >>= 2;
// channels AUX11 and AUX12 have 8 bit resolution
rcData[RC_SPI_AUX11] = PWM_RANGE_MIN + (payload[14] << 2);
rcData[RC_SPI_AUX12] = PWM_RANGE_MIN + (payload[15] << 2);
}
if (payloadSize == INAV_PROTOCOL_PAYLOAD_SIZE_MAX) {
// large payload variant of protocol
// channels AUX13 to AUX16 have 8 bit resolution
rcData[RC_SPI_AUX13] = PWM_RANGE_MIN + (payload[16] << 2);
rcData[RC_SPI_AUX14] = PWM_RANGE_MIN + (payload[17] << 2);
}
}
static void inavHopToNextChannel(void)
{
++inavRfChannelIndex;
if (inavRfChannelIndex >= inavRfChannelCount) {
inavRfChannelIndex = 0;
}
NRF24L01_SetChannel(inavRfChannels[inavRfChannelIndex]);
#ifdef DEBUG_NRF24_INAV
debug[0] = inavRfChannels[inavRfChannelIndex];
#endif
}
// The hopping channels are determined by the low bits of rxTxAddr
STATIC_UNIT_TESTED void inavSetHoppingChannels(void)
{
#ifdef NO_RF_CHANNEL_HOPPING
// just stay on bind channel, useful for debugging
inavRfChannelCount = 1;
inavRfChannels[0] = INAV_RF_BIND_CHANNEL;
#else
inavRfChannelCount = inavRfChannelHoppingCount;
const uint8_t addr = rxTxAddr[0];
uint8_t ch = 0x10 + (addr & 0x07);
for (int ii = 0; ii < INAV_RF_CHANNEL_COUNT_MAX; ++ii) {
inavRfChannels[ii] = ch;
ch += 0x0c;
}
#endif
}
static void inavSetBound(void)
{
protocolState = STATE_DATA;
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rxTxAddr, RX_TX_ADDR_LEN);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rxTxAddr, RX_TX_ADDR_LEN);
timeOfLastHop = micros();
inavRfChannelIndex = 0;
inavSetHoppingChannels();
NRF24L01_SetChannel(inavRfChannels[0]);
#ifdef DEBUG_NRF24_INAV
debug[0] = inavRfChannels[inavRfChannelIndex];
#endif
}
static void writeAckPayload(const uint8_t *data, uint8_t length)
{
NRF24L01_WriteReg(NRF24L01_07_STATUS, BV(NRF24L01_07_STATUS_MAX_RT));
NRF24L01_WriteAckPayload(data, length, NRF24L01_PIPE0);
}
static void writeTelemetryAckPayload(void)
{
#ifdef USE_TELEMETRY_NRF24_LTM
// set up telemetry data, send back telemetry data in the ACK packet
static uint8_t sequenceNumber = 0;
static ltm_frame_e ltmFrameType = LTM_FRAME_START;
ackPayload[0] = sequenceNumber++;
const int ackPayloadSize = getLtmFrame(&ackPayload[1], ltmFrameType) + 1;
++ltmFrameType;
if (ltmFrameType > LTM_FRAME_COUNT) {
ltmFrameType = LTM_FRAME_START;
}
writeAckPayload(ackPayload, ackPayloadSize);
#ifdef DEBUG_NRF24_INAV
debug[1] = ackPayload[0]; // sequenceNumber
debug[2] = ackPayload[1]; // frame type, 'A', 'S' etc
debug[3] = ackPayload[2]; // pitch for AFrame
#endif
#endif
}
static void writeBindAckPayload(uint8_t *payload)
{
#ifdef USE_AUTO_ACKKNOWLEDGEMENT
// send back the payload with the first two bytes set to zero as the ack
payload[0] = BIND_ACK_PAYLOAD0;
payload[1] = BIND_ACK_PAYLOAD1;
// respond to request for rfChannelCount;
payload[7] = inavRfChannelHoppingCount;
// respond to request for payloadSize
switch (payloadSize) {
case INAV_PROTOCOL_PAYLOAD_SIZE_MIN:
case INAV_PROTOCOL_PAYLOAD_SIZE_DEFAULT:
case INAV_PROTOCOL_PAYLOAD_SIZE_MAX:
payload[8] = payloadSize;
break;
default:
payload[8] = INAV_PROTOCOL_PAYLOAD_SIZE_DEFAULT;
break;
}
writeAckPayload(payload, payloadSize);
#else
UNUSED(payload);
#endif
}
/*
* This is called periodically by the scheduler.
* Returns RX_SPI_RECEIVED_DATA if a data packet was received.
*/
rx_spi_received_e inavNrf24DataReceived(uint8_t *payload)
{
rx_spi_received_e ret = RX_SPI_RECEIVED_NONE;
uint32_t timeNowUs;
switch (protocolState) {
case STATE_BIND:
if (NRF24L01_ReadPayloadIfAvailable(payload, payloadSize)) {
const bool bindPacket = inavCheckBindPacket(payload);
if (bindPacket) {
ret = RX_SPI_RECEIVED_BIND;
writeBindAckPayload(payload);
// got a bind packet, so set the hopping channels and the rxTxAddr and start listening for data
inavSetBound();
}
}
break;
case STATE_DATA:
timeNowUs = micros();
// read the payload, processing of payload is deferred
if (NRF24L01_ReadPayloadIfAvailable(payload, payloadSize)) {
receivedPowerSnapshot = NRF24L01_ReadReg(NRF24L01_09_RPD); // set to 1 if received power > -64dBm
const bool bindPacket = inavCheckBindPacket(payload);
if (bindPacket) {
// transmitter may still continue to transmit bind packets after we have switched to data mode
ret = RX_SPI_RECEIVED_BIND;
writeBindAckPayload(payload);
} else {
ret = RX_SPI_RECEIVED_DATA;
writeTelemetryAckPayload();
}
}
if ((ret == RX_SPI_RECEIVED_DATA) || (timeNowUs > timeOfLastHop + hopTimeout)) {
inavHopToNextChannel();
timeOfLastHop = timeNowUs;
}
break;
}
return ret;
}
static void inavNrf24Setup(rx_spi_protocol_e protocol, const uint32_t *rxSpiId, int rfChannelHoppingCount)
{
UNUSED(protocol);
UNUSED(rfChannelHoppingCount);
// sets PWR_UP, EN_CRC, CRCO - 2 byte CRC, only get IRQ pin interrupt on RX_DR
NRF24L01_Initialize(BV(NRF24L01_00_CONFIG_EN_CRC) | BV(NRF24L01_00_CONFIG_CRCO) | BV(NRF24L01_00_CONFIG_MASK_MAX_RT) | BV(NRF24L01_00_CONFIG_MASK_TX_DS));
#ifdef USE_AUTO_ACKKNOWLEDGEMENT
NRF24L01_WriteReg(NRF24L01_01_EN_AA, BV(NRF24L01_01_EN_AA_ENAA_P0)); // auto acknowledgment on P0
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, BV(NRF24L01_02_EN_RXADDR_ERX_P0));
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, NRF24L01_03_SETUP_AW_5BYTES); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0);
NRF24L01_Activate(0x73); // activate R_RX_PL_WID, W_ACK_PAYLOAD, and W_TX_PAYLOAD_NOACK registers
NRF24L01_WriteReg(NRF24L01_1D_FEATURE, BV(NRF24L01_1D_FEATURE_EN_ACK_PAY) | BV(NRF24L01_1D_FEATURE_EN_DPL));
NRF24L01_WriteReg(NRF24L01_1C_DYNPD, BV(NRF24L01_1C_DYNPD_DPL_P0)); // enable dynamic payload length on P0
//NRF24L01_Activate(0x73); // deactivate R_RX_PL_WID, W_ACK_PAYLOAD, and W_TX_PAYLOAD_NOACK registers
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rxTxAddr, RX_TX_ADDR_LEN);
#else
NRF24L01_SetupBasic();
#endif
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_250Kbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
// RX_ADDR for pipes P1-P5 are left at default values
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rxTxAddr, RX_TX_ADDR_LEN);
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, payloadSize);
#ifdef USE_BIND_ADDRESS_FOR_DATA_STATE
inavSetBound();
UNUSED(rxSpiId);
#else
rxSpiId = NULL; // !!TODO remove this once configurator supports setting rx_id
if (rxSpiId == NULL || *rxSpiId == 0) {
rxSpiIdPtr = NULL;
protocolState = STATE_BIND;
inavRfChannelCount = 1;
inavRfChannelIndex = 0;
NRF24L01_SetChannel(INAV_RF_BIND_CHANNEL);
} else {
rxSpiIdPtr = (uint32_t*)rxSpiId;
// use the rxTxAddr provided and go straight into DATA_STATE
memcpy(rxTxAddr, rxSpiId, sizeof(uint32_t));
rxTxAddr[4] = RX_TX_ADDR_4;
inavSetBound();
}
#endif
NRF24L01_SetRxMode(); // enter receive mode to start listening for packets
// put a null packet in the transmit buffer to be sent as ACK on first receive
writeAckPayload(ackPayload, payloadSize);
}
bool inavNrf24Init(const rxSpiConfig_t *rxSpiConfig, rxRuntimeConfig_t *rxRuntimeConfig)
{
rxRuntimeConfig->channelCount = RC_CHANNEL_COUNT_MAX;
inavNrf24Setup((rx_spi_protocol_e)rxSpiConfig->rx_spi_protocol, &rxSpiConfig->rx_spi_id, rxSpiConfig->rx_spi_rf_channel_count);
return true;
}
#endif