1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-25 09:16:07 +03:00
betaflight/src/main/flight/autopilot.c
ctzsnooze 1c8fc156f0 refactoring, thanks PL
Co-Authored-By: Petr Ledvina <2318015+ledvinap@users.noreply.github.com>
2024-11-29 20:30:49 +11:00

392 lines
17 KiB
C

/*
* This file is part of Betaflight.
*
* Betaflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Betaflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Betaflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include "platform.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/filter.h"
#include "common/maths.h"
#include "common/vector.h"
#include "fc/rc.h"
#include "fc/runtime_config.h"
#include "flight/imu.h"
#include "flight/position.h"
#include "rx/rx.h"
#include "sensors/gyro.h"
#include "pg/autopilot.h"
#include "autopilot.h"
#define ALTITUDE_P_SCALE 0.01f
#define ALTITUDE_I_SCALE 0.003f
#define ALTITUDE_D_SCALE 0.01f
#define ALTITUDE_F_SCALE 0.01f
#define POSITION_P_SCALE 0.0012f
#define POSITION_I_SCALE 0.0001f
#define POSITION_D_SCALE 0.0015f
#define POSITION_A_SCALE 0.0008f
#define UPSAMPLING_CUTOFF_HZ 5.0f
static pidCoefficient_t altitudePidCoeffs;
static pidCoefficient_t positionPidCoeffs;
static float altitudeI = 0.0f;
static float throttleOut = 0.0f;
typedef struct efPidAxis_s {
bool isStopping;
float previousDistance;
float previousVelocity;
float integral;
pt1Filter_t velocityLpf;
pt1Filter_t accelerationLpf;
} efPidAxis_t;
typedef enum {
// axes are for ENU system; it is different from current Betaflight code
LON = 0, // X, east
LAT // Y, north
} axisEF_e;
typedef struct autopilotState_s {
gpsLocation_t targetLocation; // active / current target
float sanityCheckDistance;
float upsampleLpfGain; // for the Body Frame upsample filter for pitch and roll
float vaLpfCutoff; // velocity + acceleration lowpass filter cutoff
bool sticksActive;
float maxAngle;
vector2_t pidSumBF; // pid output, updated on each GPS update, rotated to body frame
pt3Filter_t upsampleLpfBF[RP_AXIS_COUNT]; // upsampling filter
efPidAxis_t efAxis[EF_AXIS_COUNT];
} autopilotState_t;
static autopilotState_t ap = {
.sanityCheckDistance = 1000.0f,
.upsampleLpfGain = 1.0f,
.vaLpfCutoff = 1.0f,
.sticksActive = false,
};
float autopilotAngle[RP_AXIS_COUNT];
static void resetEFAxisFilters(efPidAxis_t* efAxis, const float vaGain)
{
pt1FilterInit(&efAxis->velocityLpf, vaGain);
pt1FilterInit(&efAxis->accelerationLpf, vaGain);
}
void resetEFAxisParams(efPidAxis_t *efAxis, const float vaGain)
{
// at start only
resetEFAxisFilters(efAxis, vaGain);
efAxis->isStopping = true; // Enter starting (deceleration) 'phase'
efAxis->integral = 0.0f;
}
static void resetUpsampleFilters(void)
{
for (unsigned i = 0; i < ARRAYLEN(ap.upsampleLpfBF); i++) {
pt3FilterInit(&ap.upsampleLpfBF[i], ap.upsampleLpfGain);
}
}
// get sanity distance based on speed
static inline float sanityCheckDistance(const float gpsGroundSpeedCmS)
{
return fmaxf(1000.0f, gpsGroundSpeedCmS * 2.0f);
// distance flown in 2s at current speed. with minimum of 10m
}
void resetPositionControl(const gpsLocation_t *initialTargetLocation, unsigned taskRateHz)
{
// from pos_hold.c (or other client) when initiating position hold at target location
ap.targetLocation = *initialTargetLocation;
ap.sticksActive = false;
// set sanity check distance according to groundspeed at start, minimum of 10m
ap.sanityCheckDistance = sanityCheckDistance(gpsSol.groundSpeed);
for (unsigned i = 0; i < ARRAYLEN(ap.efAxis); i++) {
// clear anything stored in the filter at first call
resetEFAxisParams(&ap.efAxis[i], 1.0f);
}
const float taskInterval = 1.0f / taskRateHz;
ap.upsampleLpfGain = pt3FilterGain(UPSAMPLING_CUTOFF_HZ, taskInterval); // 5Hz; normally at 100Hz task rate
resetUpsampleFilters(); // clear accumlator from previous iterations
}
void autopilotInit(void)
{
const apConfig_t *cfg = apConfig();
ap.sticksActive = false;
ap.maxAngle = cfg->max_angle;
altitudePidCoeffs.Kp = cfg->altitude_P * ALTITUDE_P_SCALE;
altitudePidCoeffs.Ki = cfg->altitude_I * ALTITUDE_I_SCALE;
altitudePidCoeffs.Kd = cfg->altitude_D * ALTITUDE_D_SCALE;
altitudePidCoeffs.Kf = cfg->altitude_F * ALTITUDE_F_SCALE;
positionPidCoeffs.Kp = cfg->position_P * POSITION_P_SCALE;
positionPidCoeffs.Ki = cfg->position_I * POSITION_I_SCALE;
positionPidCoeffs.Kd = cfg->position_D * POSITION_D_SCALE;
positionPidCoeffs.Kf = cfg->position_A * POSITION_A_SCALE; // Kf used for acceleration
// initialise filters with approximate filter gains; location isn't used at this point.
resetPositionControl(&gpsSol.llh, 100);
}
void resetAltitudeControl (void) {
altitudeI = 0.0f;
}
void altitudeControl(float targetAltitudeCm, float taskIntervalS, float targetAltitudeStep)
{
const float verticalVelocityCmS = getAltitudeDerivative();
const float altitudeErrorCm = targetAltitudeCm - getAltitudeCm();
const float altitudeP = altitudeErrorCm * altitudePidCoeffs.Kp;
// reduce the iTerm gain for errors greater than 200cm (2m), otherwise it winds up too much
const float itermRelax = (fabsf(altitudeErrorCm) < 200.0f) ? 1.0f : 0.1f;
altitudeI += altitudeErrorCm * altitudePidCoeffs.Ki * itermRelax * taskIntervalS;
// limit iTerm to not more than 200 throttle units
altitudeI = constrainf(altitudeI, -200.0f, 200.0f);
// increase D when velocity is high, typically when initiating hold at high vertical speeds
// 1.0 when less than 5 m/s, 2x at 10m/s, 2.5 at 20 m/s, 2.8 at 50 m/s, asymptotes towards max 3.0.
float dBoost = 1.0f;
{
const float startValue = 500.0f; // velocity at which D should start to increase
const float altDeriv = fabsf(verticalVelocityCmS);
if (altDeriv > startValue) {
const float ratio = altDeriv / startValue;
dBoost = (3.0f * ratio - 2.0f) / ratio;
}
}
const float altitudeD = verticalVelocityCmS * dBoost * altitudePidCoeffs.Kd;
const float altitudeF = targetAltitudeStep * altitudePidCoeffs.Kf;
const float hoverOffset = apConfig()->hover_throttle - PWM_RANGE_MIN;
float throttleOffset = altitudeP + altitudeI - altitudeD + altitudeF + hoverOffset;
const float tiltMultiplier = 1.0f / fmaxf(getCosTiltAngle(), 0.5f);
// 1 = flat, 1.3 at 40 degrees, 1.56 at 50 deg, max 2.0 at 60 degrees or higher
// note: the default limit of Angle Mode is 60 degrees
throttleOffset *= tiltMultiplier;
float newThrottle = PWM_RANGE_MIN + throttleOffset;
newThrottle = constrainf(newThrottle, apConfig()->throttle_min, apConfig()->throttle_max);
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 0, lrintf(newThrottle)); // normal range 1000-2000 but is before constraint
newThrottle = scaleRangef(newThrottle, MAX(rxConfig()->mincheck, PWM_RANGE_MIN), PWM_RANGE_MAX, 0.0f, 1.0f);
throttleOut = constrainf(newThrottle, 0.0f, 1.0f);
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 1, lrintf(tiltMultiplier * 100));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 3, lrintf(targetAltitudeCm));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 4, lrintf(altitudeP));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 5, lrintf(altitudeI));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 6, lrintf(-altitudeD));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 7, lrintf(altitudeF));
}
void setSticksActiveStatus(bool areSticksActive)
{
ap.sticksActive = areSticksActive;
}
void setTargetLocationByAxis(const gpsLocation_t* newTargetLocation, axisEF_e efAxisIdx)
// not used at present but needed by upcoming GPS code
{
if (efAxisIdx == LON) {
ap.targetLocation.lon = newTargetLocation->lon; // update East-West / / longitude position
} else {
ap.targetLocation.lat = newTargetLocation->lat; // update North-South / latitude position
}
}
bool positionControl(void)
{
unsigned debugAxis = gyroConfig()->gyro_filter_debug_axis;
static vector2_t debugGpsDistance = { 0 }; // keep last calculated distance for DEBUG
static vector2_t debugPidSumEF = { 0 }; // and last pidsum in EF
static uint16_t gpsStamp = 0;
if (gpsHasNewData(&gpsStamp)) {
const float gpsDataInterval = getGpsDataIntervalSeconds(); // interval for current GPS data value 0.05 - 2.5s
const float gpsDataFreq = getGpsDataFrequencyHz();
// get lat and long distances from current location (gpsSol.llh) to target location
vector2_t gpsDistance;
GPS_distance2d(&gpsSol.llh, &ap.targetLocation, &gpsDistance); // X is EW/lon, Y is NS/lat
debugGpsDistance = gpsDistance;
const float distanceNormCm = vector2Norm(&gpsDistance);
// ** Sanity check **
// primarily to detect flyaway from no Mag or badly oriented Mag
// must accept some overshoot at the start, especially if entering at high speed
if (distanceNormCm > ap.sanityCheckDistance) {
return false;
}
// update filters according to current GPS update rate
const float vaGain = pt1FilterGain(ap.vaLpfCutoff, gpsDataInterval);
const float iTermLeakGain = 1.0f - pt1FilterGainFromDelay(2.5f, gpsDataInterval); // 2.5s time constant
vector2_t pidSum = { 0 }; // P+I in loop, D+A added after the axis loop (after limiting it)
vector2_t pidDA; // D+A
for (axisEF_e efAxisIdx = LON; efAxisIdx <= LAT; efAxisIdx++) {
efPidAxis_t *efAxis = &ap.efAxis[efAxisIdx];
// separate PID controllers for longitude (EastWest or EW, X) and latitude (NorthSouth or NS, Y)
const float axisDistance = gpsDistance.v[efAxisIdx];
// ** P **
const float pidP = axisDistance * positionPidCoeffs.Kp;
pidSum.v[efAxisIdx] += pidP;
// ** I **
// only add to iTerm while in hold phase
efAxis->integral += efAxis->isStopping ? 0.0f : axisDistance * gpsDataInterval;
const float pidI = efAxis->integral * positionPidCoeffs.Ki;
pidSum.v[efAxisIdx] += pidI;
// ** D ** //
// Velocity derived from GPS position works better than module supplied GPS Speed and Heading information
const float velocity = (axisDistance - efAxis->previousDistance) * gpsDataFreq; // cm/s
efAxis->previousDistance = axisDistance;
pt1FilterUpdateCutoff(&efAxis->velocityLpf, vaGain);
const float velocityFiltered = pt1FilterApply(&efAxis->velocityLpf, velocity);
float pidD = velocityFiltered * positionPidCoeffs.Kd;
// differentiate velocity another time to get acceleration
float acceleration = (velocityFiltered - efAxis->previousVelocity) * gpsDataFreq;
efAxis->previousVelocity = velocityFiltered;
// apply second filter to acceleration (acc is filtered twice)
pt1FilterUpdateCutoff(&efAxis->accelerationLpf, vaGain);
const float accelerationFiltered = pt1FilterApply(&efAxis->accelerationLpf, acceleration);
const float pidA = accelerationFiltered * positionPidCoeffs.Kf;
if (ap.sticksActive) {
// sticks active 'phase', prepare to enter stopping
efAxis->isStopping = true;
// slowly leak iTerm away
efAxis->integral *= iTermLeakGain;
efAxis->previousDistance = 0.0f; // avoid D and A spikes
// rest is handled after axis loop
} else if (efAxis->isStopping) {
// 'phase' after sticks are centered, but before craft has stopped in given PID axis
pidD *= 1.6f; // aribitrary D boost to stop more quickly when sticks are centered
// detect velocity zero crossing (velocityFiltered is delayed by filter)
if (velocity * velocityFiltered < 0.0f) {
// when an axis has nearly stopped moving, reset it and end it's start phase
const int8_t llhAxisInv = 1 - efAxisIdx; // because we have Lat first in gpsLocation_t, but efAxisIdx handles lon first.
ap.targetLocation.coords[llhAxisInv] = gpsSol.llh.coords[llhAxisInv]; // forcing P to zero
efAxis->previousDistance = 0.0f; // ensuring no D jump from the updated location
efAxis->isStopping = false;
if (ap.efAxis[LAT].isStopping == ap.efAxis[LON].isStopping) {
// when both axes have stopped moving, reset the sanity distance to 10m default
ap.sanityCheckDistance = sanityCheckDistance(1000);
}
}
}
pidDA.v[efAxisIdx] = pidD + pidA; // save DA here, processed after axis loop
if (debugAxis == efAxisIdx) {
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 0, lrintf(distanceNormCm)); // same for both axes
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 4, lrintf(pidP * 10));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 5, lrintf(pidI * 10));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 6, lrintf(pidD * 10));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 7, lrintf(pidA * 10));
}
} // end for loop
{
// limit sum of D and A per axis based on total DA vector length, otherwise can be too aggressive when starting at speed
// limit is 35 degrees from D and A alone, arbitrary value. 20 is a bit too low, allows a lot of overshoot
// note: an angle of more than 35 degrees can still be achieved as P and I grow
const float maxDAAngle = 35.0f; // D+A limit in degrees; arbitrary angle
const float mag = vector2Norm(&pidDA);
if (mag > maxDAAngle) {
vector2Scale(&pidDA, &pidDA, maxDAAngle / mag);
}
}
// add constrained DA to sum
vector2Add(&pidSum, &pidSum, &pidDA);
debugPidSumEF = pidSum;
vector2_t anglesBF;
if (ap.sticksActive) {
// if a Position Hold deadband is set, and sticks are outside deadband, allow pilot control in angle mode
anglesBF = (vector2_t){{0, 0}}; // set output PIDS to 0; upsampling filter will smooth this
// reset target location each cycle (and set previousDistance to zero in for loop), to keep D current, and avoid a spike when stopping
ap.targetLocation = gpsSol.llh;
// keep updating sanity check distance while sticks are out because speed may get high
ap.sanityCheckDistance = sanityCheckDistance(gpsSol.groundSpeed);
} else {
// ** Rotate pid Sum to body frame, and convert it into pitch and roll **
// attitude.values.yaw increases clockwise from north
// PID is running in ENU, adapt angle (to 0deg = EAST);
// rotation is from EarthFrame to BodyFrame, no change of sign from heading
const float angle = DECIDEGREES_TO_RADIANS(attitude.values.yaw - 900);
vector2_t pidBodyFrame; // pid output in body frame; X is forward, Y is left
vector2Rotate(&pidBodyFrame, &pidSum, angle); // rotate by angle counterclockwise
anglesBF.v[AI_ROLL] = -pidBodyFrame.y; // negative roll to fly left
anglesBF.v[AI_PITCH] = pidBodyFrame.x; // positive pitch for forward
// limit angle vector to maxAngle
const float mag = vector2Norm(&anglesBF);
if (mag > ap.maxAngle && mag > 0.0f) {
vector2Scale(&anglesBF, &anglesBF, ap.maxAngle / mag);
}
}
ap.pidSumBF = anglesBF; // this value will be upsampled
}
// Final output to pid.c Angle Mode at 100Hz with PT3 upsampling
for (unsigned i = 0; i < RP_AXIS_COUNT; i++) {
// note: upsampling should really be done in earth frame, to avoid 10Hz wobbles if pilot yaws and the controller is applying significant pitch or roll
autopilotAngle[i] = pt3FilterApply(&ap.upsampleLpfBF[i], ap.pidSumBF.v[i]);
}
if (debugAxis < 2) {
// this is different from @ctzsnooze version
// debugAxis = 0: store longitude + roll
// debugAxis = 1: store latitude + pitch
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 1, lrintf(debugGpsDistance.v[debugAxis])); // cm
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 2, lrintf(debugPidSumEF.v[debugAxis] * 10)); // deg * 10
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 3, lrintf(autopilotAngle[debugAxis] * 10)); // deg * 10
}
return true;
}
bool isBelowLandingAltitude(void)
{
return getAltitudeCm() < 100.0f * apConfig()->landing_altitude_m;
}
float getAutopilotThrottle(void)
{
return throttleOut;
}
bool isAutopilotInControl(void)
{
return !ap.sticksActive;
}