mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-19 14:25:20 +03:00
fixed pwm init for airplane mode mistakenly deleting motors from the mix. flyingwing should really work now. removed led debug from althold git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@223 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
370 lines
12 KiB
C
Executable file
370 lines
12 KiB
C
Executable file
#include "board.h"
|
|
#include "mw.h"
|
|
|
|
int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3];
|
|
float accLPFVel[3];
|
|
int16_t acc_25deg = 0;
|
|
int32_t BaroAlt;
|
|
int16_t sonarAlt; //to think about the unit
|
|
int32_t EstAlt; // in cm
|
|
int16_t BaroPID = 0;
|
|
int32_t AltHold;
|
|
int16_t errorAltitudeI = 0;
|
|
float magneticDeclination = 0.0f; // calculated at startup from config
|
|
float accVelScale;
|
|
|
|
// **************
|
|
// gyro+acc IMU
|
|
// **************
|
|
int16_t gyroData[3] = { 0, 0, 0 };
|
|
int16_t gyroZero[3] = { 0, 0, 0 };
|
|
int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
|
|
|
|
static void getEstimatedAttitude(void);
|
|
|
|
void imuInit(void)
|
|
{
|
|
acc_25deg = acc_1G * 0.423f;
|
|
accVelScale = 9.80665f / acc_1G / 10000.0f;
|
|
|
|
#ifdef MAG
|
|
// if mag sensor is enabled, use it
|
|
if (sensors(SENSOR_MAG))
|
|
Mag_init();
|
|
#endif
|
|
}
|
|
|
|
|
|
void computeIMU(void)
|
|
{
|
|
uint32_t axis;
|
|
static int16_t gyroADCprevious[3] = { 0, 0, 0 };
|
|
int16_t gyroADCp[3];
|
|
int16_t gyroADCinter[3];
|
|
static uint32_t timeInterleave = 0;
|
|
static int16_t gyroYawSmooth = 0;
|
|
|
|
#define GYRO_INTERLEAVE
|
|
|
|
if (sensors(SENSOR_ACC)) {
|
|
ACC_getADC();
|
|
getEstimatedAttitude();
|
|
}
|
|
|
|
Gyro_getADC();
|
|
|
|
for (axis = 0; axis < 3; axis++) {
|
|
#ifdef GYRO_INTERLEAVE
|
|
gyroADCp[axis] = gyroADC[axis];
|
|
#else
|
|
gyroData[axis] = gyroADC[axis];
|
|
#endif
|
|
if (!sensors(SENSOR_ACC))
|
|
accADC[axis] = 0;
|
|
}
|
|
timeInterleave = micros();
|
|
annexCode();
|
|
#ifdef GYRO_INTERLEAVE
|
|
if ((micros() - timeInterleave) > 650) {
|
|
annex650_overrun_count++;
|
|
} else {
|
|
while ((micros() - timeInterleave) < 650); // empirical, interleaving delay between 2 consecutive reads
|
|
}
|
|
|
|
Gyro_getADC();
|
|
for (axis = 0; axis < 3; axis++) {
|
|
gyroADCinter[axis] = gyroADC[axis] + gyroADCp[axis];
|
|
// empirical, we take a weighted value of the current and the previous values
|
|
gyroData[axis] = (gyroADCinter[axis] + gyroADCprevious[axis]) / 3;
|
|
gyroADCprevious[axis] = gyroADCinter[axis] / 2;
|
|
if (!sensors(SENSOR_ACC))
|
|
accADC[axis] = 0;
|
|
}
|
|
#endif
|
|
|
|
if (feature(FEATURE_GYRO_SMOOTHING)) {
|
|
static uint8_t Smoothing[3] = { 0, 0, 0 };
|
|
static int16_t gyroSmooth[3] = { 0, 0, 0 };
|
|
if (Smoothing[0] == 0) {
|
|
// initialize
|
|
Smoothing[ROLL] = (cfg.gyro_smoothing_factor >> 16) & 0xff;
|
|
Smoothing[PITCH] = (cfg.gyro_smoothing_factor >> 8) & 0xff;
|
|
Smoothing[YAW] = (cfg.gyro_smoothing_factor) & 0xff;
|
|
}
|
|
for (axis = 0; axis < 3; axis++) {
|
|
gyroData[axis] = (int16_t)(((int32_t)((int32_t)gyroSmooth[axis] * (Smoothing[axis] - 1)) + gyroData[axis] + 1 ) / Smoothing[axis]);
|
|
gyroSmooth[axis] = gyroData[axis];
|
|
}
|
|
} else if (cfg.mixerConfiguration == MULTITYPE_TRI) {
|
|
gyroData[YAW] = (gyroYawSmooth * 2 + gyroData[YAW]) / 3;
|
|
gyroYawSmooth = gyroData[YAW];
|
|
}
|
|
}
|
|
|
|
// **************************************************
|
|
// Simplified IMU based on "Complementary Filter"
|
|
// Inspired by http://starlino.com/imu_guide.html
|
|
//
|
|
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
|
|
//
|
|
// The following ideas was used in this project:
|
|
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
|
|
// 2) Small-angle approximation: http://en.wikipedia.org/wiki/Small-angle_approximation
|
|
// 3) C. Hastings approximation for atan2()
|
|
// 4) Optimization tricks: http://www.hackersdelight.org/
|
|
//
|
|
// Currently Magnetometer uses separate CF which is used only
|
|
// for heading approximation.
|
|
//
|
|
// Modified: 19/04/2011 by ziss_dm
|
|
// Version: V1.1
|
|
//
|
|
// code size deduction and tmp vector intermediate step for vector rotation computation: October 2011 by Alex
|
|
// **************************************************
|
|
|
|
//****** advanced users settings *******************
|
|
|
|
/* Set the Low Pass Filter factor for Magnetometer */
|
|
/* Increasing this value would reduce Magnetometer noise (not visible in GUI), but would increase Magnetometer lag time*/
|
|
/* Comment this if you do not want filter at all.*/
|
|
/* Default WMC value: n/a*/
|
|
//#define MG_LPF_FACTOR 4
|
|
|
|
/* Set the Gyro Weight for Gyro/Magnetometer complementary filter */
|
|
/* Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/
|
|
/* Default WMC value: n/a*/
|
|
#define GYR_CMPFM_FACTOR 200.0f
|
|
|
|
//****** end of advanced users settings *************
|
|
|
|
#define INV_GYR_CMPF_FACTOR (1.0f / ((float)cfg.gyro_cmpf_factor + 1.0f))
|
|
#define INV_GYR_CMPFM_FACTOR (1.0f / (GYR_CMPFM_FACTOR + 1.0f))
|
|
|
|
#define GYRO_SCALE ((1998 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) // 32767 / 16.4lsb/dps for MPU3000
|
|
|
|
// #define GYRO_SCALE ((2380 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) //should be 2279.44 but 2380 gives better result (ITG-3200)
|
|
// +-2000/sec deg scale
|
|
//#define GYRO_SCALE ((200.0f * PI)/((32768.0f / 5.0f / 4.0f ) * 180.0f * 1000000.0f) * 1.5f)
|
|
// +- 200/sec deg scale
|
|
// 1.5 is emperical, not sure what it means
|
|
// should be in rad/sec
|
|
|
|
typedef struct fp_vector {
|
|
float X;
|
|
float Y;
|
|
float Z;
|
|
} t_fp_vector_def;
|
|
|
|
typedef union {
|
|
float A[3];
|
|
t_fp_vector_def V;
|
|
} t_fp_vector;
|
|
|
|
t_fp_vector EstG;
|
|
|
|
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
|
|
void rotateV(struct fp_vector *v, float *delta)
|
|
{
|
|
struct fp_vector v_tmp = *v;
|
|
v->Z -= delta[ROLL] * v_tmp.X + delta[PITCH] * v_tmp.Y;
|
|
v->X += delta[ROLL] * v_tmp.Z - delta[YAW] * v_tmp.Y;
|
|
v->Y += delta[PITCH] * v_tmp.Z + delta[YAW] * v_tmp.X;
|
|
}
|
|
|
|
static int16_t _atan2f(float y, float x)
|
|
{
|
|
// no need for aidsy inaccurate shortcuts on a proper platform
|
|
return (int16_t)(atan2f(y, x) * (180.0f / M_PI * 10.0f));
|
|
}
|
|
|
|
static void getEstimatedAttitude(void)
|
|
{
|
|
uint32_t axis;
|
|
int32_t accMag = 0;
|
|
static t_fp_vector EstM;
|
|
#if defined(MG_LPF_FACTOR)
|
|
static int16_t mgSmooth[3];
|
|
#endif
|
|
static float accLPF[3];
|
|
static uint32_t previousT;
|
|
uint32_t currentT = micros();
|
|
float scale, deltaGyroAngle[3];
|
|
|
|
scale = (currentT - previousT) * GYRO_SCALE;
|
|
previousT = currentT;
|
|
|
|
// Initialization
|
|
for (axis = 0; axis < 3; axis++) {
|
|
deltaGyroAngle[axis] = gyroADC[axis] * scale;
|
|
if (cfg.acc_lpf_factor > 0) {
|
|
accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / cfg.acc_lpf_factor)) + accADC[axis] * (1.0f / cfg.acc_lpf_factor);
|
|
accSmooth[axis] = accLPF[axis];
|
|
} else {
|
|
accSmooth[axis] = accADC[axis];
|
|
}
|
|
accLPFVel[axis] = accLPFVel[axis] * (1.0f - (1.0f / cfg.acc_lpf_for_velocity)) + accADC[axis] * (1.0f / cfg.acc_lpf_for_velocity);
|
|
accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
|
|
|
|
if (sensors(SENSOR_MAG)) {
|
|
#if defined(MG_LPF_FACTOR)
|
|
mgSmooth[axis] = (mgSmooth[axis] * (MG_LPF_FACTOR - 1) + magADC[axis]) / MG_LPF_FACTOR; // LPF for Magnetometer values
|
|
#define MAG_VALUE mgSmooth[axis]
|
|
#else
|
|
#define MAG_VALUE magADC[axis]
|
|
#endif
|
|
}
|
|
}
|
|
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
|
|
|
|
rotateV(&EstG.V, deltaGyroAngle);
|
|
if (sensors(SENSOR_MAG))
|
|
rotateV(&EstM.V, deltaGyroAngle);
|
|
|
|
if (abs(accSmooth[ROLL]) < acc_25deg && abs(accSmooth[PITCH]) < acc_25deg && accSmooth[YAW] > 0)
|
|
f.SMALL_ANGLES_25 = 1;
|
|
else
|
|
f.SMALL_ANGLES_25 = 0;
|
|
|
|
// Apply complimentary filter (Gyro drift correction)
|
|
// If accel magnitude >1.4G or <0.6G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
|
|
// To do that, we just skip filter, as EstV already rotated by Gyro
|
|
if ((36 < accMag && accMag < 196) || f.SMALL_ANGLES_25) {
|
|
for (axis = 0; axis < 3; axis++)
|
|
EstG.A[axis] = (EstG.A[axis] * (float)cfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR;
|
|
}
|
|
|
|
if (sensors(SENSOR_MAG)) {
|
|
for (axis = 0; axis < 3; axis++)
|
|
EstM.A[axis] = (EstM.A[axis] * GYR_CMPFM_FACTOR + MAG_VALUE) * INV_GYR_CMPFM_FACTOR;
|
|
}
|
|
|
|
// Attitude of the estimated vector
|
|
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z);
|
|
angle[PITCH] = _atan2f(EstG.V.Y, EstG.V.Z);
|
|
|
|
#ifdef MAG
|
|
if (sensors(SENSOR_MAG)) {
|
|
// Attitude of the cross product vector GxM
|
|
heading = _atan2f(EstG.V.X * EstM.V.Z - EstG.V.Z * EstM.V.X, EstG.V.Z * EstM.V.Y - EstG.V.Y * EstM.V.Z);
|
|
heading = heading + magneticDeclination;
|
|
heading = heading / 10;
|
|
|
|
if (heading > 180)
|
|
heading = heading - 360;
|
|
else if (heading < -180)
|
|
heading = heading + 360;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef BARO
|
|
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
|
|
#define INIT_DELAY 4000000 // 4 sec initialization delay
|
|
|
|
int16_t applyDeadband16(int16_t value, int16_t deadband)
|
|
{
|
|
if (abs(value) < deadband) {
|
|
value = 0;
|
|
} else if (value > 0) {
|
|
value -= deadband;
|
|
} else if (value < 0) {
|
|
value += deadband;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
float applyDeadbandFloat(float value, int16_t deadband)
|
|
{
|
|
if (abs(value) < deadband) {
|
|
value = 0;
|
|
} else if (value > 0) {
|
|
value -= deadband;
|
|
} else if (value < 0) {
|
|
value += deadband;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
float InvSqrt(float x)
|
|
{
|
|
union {
|
|
int32_t i;
|
|
float f;
|
|
} conv;
|
|
conv.f = x;
|
|
conv.i = 0x5f3759df - (conv.i >> 1);
|
|
return 0.5f * conv.f * (3.0f - x * conv.f * conv.f);
|
|
}
|
|
|
|
int32_t isq(int32_t x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
void getEstimatedAltitude(void)
|
|
{
|
|
static uint32_t deadLine = INIT_DELAY;
|
|
static int16_t baroHistTab[BARO_TAB_SIZE_MAX];
|
|
static int8_t baroHistIdx;
|
|
static int32_t baroHigh;
|
|
uint32_t dTime;
|
|
int16_t error;
|
|
float invG;
|
|
int16_t accZ;
|
|
static float vel = 0.0f;
|
|
static int32_t lastBaroAlt;
|
|
float baroVel;
|
|
|
|
if ((int32_t)(currentTime - deadLine) < UPDATE_INTERVAL)
|
|
return;
|
|
dTime = currentTime - deadLine;
|
|
deadLine = currentTime;
|
|
|
|
// **** Alt. Set Point stabilization PID ****
|
|
baroHistTab[baroHistIdx] = BaroAlt / 10;
|
|
baroHigh += baroHistTab[baroHistIdx];
|
|
baroHigh -= baroHistTab[(baroHistIdx + 1) % cfg.baro_tab_size];
|
|
|
|
baroHistIdx++;
|
|
if (baroHistIdx == cfg.baro_tab_size)
|
|
baroHistIdx = 0;
|
|
|
|
EstAlt = EstAlt * cfg.baro_noise_lpf + (baroHigh * 10.0f / (cfg.baro_tab_size - 1)) * (1.0f - cfg.baro_noise_lpf); // additional LPF to reduce baro noise
|
|
|
|
// P
|
|
error = constrain(AltHold - EstAlt, -300, 300);
|
|
error = applyDeadband16(error, 10); // remove small P parametr to reduce noise near zero position
|
|
BaroPID = constrain((cfg.P8[PIDALT] * error / 100), -150, +150);
|
|
|
|
// I
|
|
errorAltitudeI += error * cfg.I8[PIDALT] / 50;
|
|
errorAltitudeI = constrain(errorAltitudeI, -30000, 30000);
|
|
BaroPID += (errorAltitudeI / 500); // I in range +/-60
|
|
|
|
// projection of ACC vector to global Z, with 1G subtructed
|
|
// Math: accZ = A * G / |G| - 1G
|
|
invG = InvSqrt(isq(EstG.V.X) + isq(EstG.V.Y) + isq(EstG.V.Z));
|
|
accZ = (accLPFVel[ROLL] * EstG.V.X + accLPFVel[PITCH] * EstG.V.Y + accLPFVel[YAW] * EstG.V.Z) * invG - acc_1G;
|
|
accZ = applyDeadband16(accZ, acc_1G / cfg.accz_deadband);
|
|
debug[0] = accZ;
|
|
|
|
// Integrator - velocity, cm/sec
|
|
vel += accZ * accVelScale * dTime;
|
|
|
|
baroVel = (EstAlt - lastBaroAlt) / (dTime / 1000000.0f);
|
|
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
|
|
baroVel = applyDeadbandFloat(baroVel, 10); // to reduce noise near zero
|
|
lastBaroAlt = EstAlt;
|
|
debug[1] = baroVel;
|
|
|
|
// apply Complimentary Filter to keep near zero caluculated velocity based on baro velocity
|
|
vel = vel * cfg.baro_cf + baroVel * (1.0f - cfg.baro_cf);
|
|
// vel = constrain(vel, -300, 300); // constrain velocity +/- 300cm/s
|
|
debug[2] = vel;
|
|
// debug[3] = applyDeadbandFloat(vel, 5);
|
|
|
|
// D
|
|
BaroPID -= constrain(cfg.D8[PIDALT] * applyDeadbandFloat(vel, 5) / 20, -150, 150);
|
|
debug[3] = BaroPID;
|
|
}
|
|
#endif /* BARO */
|