1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-24 16:55:36 +03:00
betaflight/src/main/rx/nrf24_v202.c
2017-05-26 14:03:28 +01:00

261 lines
9.2 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
// this file is copied with modifications from bradwii for jd385
// see https://github.com/hackocopter/bradwii-jd385
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <platform.h>
#ifdef USE_RX_V202
#include "build/build_config.h"
#include "common/utils.h"
#include "drivers/rx_nrf24l01.h"
#include "drivers/time.h"
#include "rx/rx.h"
#include "rx/rx_spi.h"
#include "rx/nrf24_v202.h"
/*
* V202 Protocol
* No auto acknowledgment
* Payload size is 16 and static
* Data rate is 1Mbps, there is a 256Kbps data rate used by the Deviation transmitter implementation
* Bind Phase
* uses address {0x66, 0x88, 0x68, 0x68, 0x68}
* uses channels from the frequency hopping table
* Data phase
* uses same address as bind phase
* hops between 16 channels that are set using the txId sent in the bind packet and the frequency hopping table
*/
#define V2X2_PAYLOAD_SIZE 16
#define V2X2_NFREQCHANNELS 16
#define TXIDSIZE 3
#define V2X2_RC_CHANNEL_COUNT 11
enum {
// packet[14] flags
V2X2_FLAG_CAMERA = 0x01, // also automatic Missile Launcher and Hoist in one direction
V2X2_FLAG_VIDEO = 0x02, // also Sprayer, Bubbler, Missile Launcher(1), and Hoist in the other dir.
V2X2_FLAG_FLIP = 0x04,
V2X2_FLAG_UNK9 = 0x08,
V2X2_FLAG_LED = 0x10,
V2X2_FLAG_UNK10 = 0x20,
V2X2_FLAG_BIND = 0xC0,
// packet[10] flags
V2X2_FLAG_HEADLESS = 0x02,
V2X2_FLAG_MAG_CAL_X = 0x08,
V2X2_FLAG_MAG_CAL_Y = 0x20
};
enum {
PHASE_NOT_BOUND = 0,
PHASE_BOUND
};
// This is frequency hopping table for V202 protocol
// The table is the first 4 rows of 32 frequency hopping
// patterns, all other rows are derived from the first 4.
// For some reason the protocol avoids channels, dividing
// by 16 and replaces them by subtracting 3 from the channel
// number in this case.
// The pattern is defined by 5 least significant bits of
// sum of 3 bytes comprising TX id
static const uint8_t v2x2_freq_hopping[][V2X2_NFREQCHANNELS] = {
{ 0x27, 0x1B, 0x39, 0x28, 0x24, 0x22, 0x2E, 0x36,
0x19, 0x21, 0x29, 0x14, 0x1E, 0x12, 0x2D, 0x18 }, // 00
{ 0x2E, 0x33, 0x25, 0x38, 0x19, 0x12, 0x18, 0x16,
0x2A, 0x1C, 0x1F, 0x37, 0x2F, 0x23, 0x34, 0x10 }, // 01
{ 0x11, 0x1A, 0x35, 0x24, 0x28, 0x18, 0x25, 0x2A,
0x32, 0x2C, 0x14, 0x27, 0x36, 0x34, 0x1C, 0x17 }, // 02
{ 0x22, 0x27, 0x17, 0x39, 0x34, 0x28, 0x2B, 0x1D,
0x18, 0x2A, 0x21, 0x38, 0x10, 0x26, 0x20, 0x1F } // 03
};
STATIC_UNIT_TESTED uint8_t rf_channels[V2X2_NFREQCHANNELS];
STATIC_UNIT_TESTED uint8_t rf_ch_num;
STATIC_UNIT_TESTED uint8_t bind_phase;
static uint32_t packet_timer;
STATIC_UNIT_TESTED uint8_t txid[TXIDSIZE];
static uint32_t rx_timeout;
extern uint16_t rxSpiRcData[];
static const unsigned char v2x2_channelindex[] = {RC_SPI_THROTTLE,RC_SPI_YAW,RC_SPI_PITCH,RC_SPI_ROLL,
RC_SPI_AUX1,RC_SPI_AUX2,RC_SPI_AUX3,RC_SPI_AUX4,RC_SPI_AUX5,RC_SPI_AUX6,RC_SPI_AUX7};
static void prepare_to_bind(void)
{
packet_timer = micros();
for (int i = 0; i < V2X2_NFREQCHANNELS; ++i) {
rf_channels[i] = v2x2_freq_hopping[0][i];
}
rx_timeout = 1000L;
}
static void switch_channel(void)
{
NRF24L01_WriteReg(NRF24L01_05_RF_CH, rf_channels[rf_ch_num]);
if (++rf_ch_num >= V2X2_NFREQCHANNELS) rf_ch_num = 0;
}
static void v2x2_set_tx_id(uint8_t *id)
{
uint8_t sum;
txid[0] = id[0];
txid[1] = id[1];
txid[2] = id[2];
sum = id[0] + id[1] + id[2];
// Base row is defined by lowest 2 bits
const uint8_t *fh_row = v2x2_freq_hopping[sum & 0x03];
// Higher 3 bits define increment to corresponding row
uint8_t increment = (sum & 0x1e) >> 2;
for (int i = 0; i < V2X2_NFREQCHANNELS; ++i) {
uint8_t val = fh_row[i] + increment;
// Strange avoidance of channels divisible by 16
rf_channels[i] = (val & 0x0f) ? val : val - 3;
}
}
static void decode_bind_packet(uint8_t *packet)
{
if ((packet[14] & V2X2_FLAG_BIND) == V2X2_FLAG_BIND) {
// Fill out rf_channels with bound protocol parameters
v2x2_set_tx_id(&packet[7]);
bind_phase = PHASE_BOUND;
rx_timeout = 1000L; // find the channel as fast as possible
}
}
// Returns whether the data was successfully decoded
static rx_spi_received_e decode_packet(uint8_t *packet)
{
if(bind_phase != PHASE_BOUND) {
decode_bind_packet(packet);
return RX_SPI_RECEIVED_BIND;
}
// Decode packet
if ((packet[14] & V2X2_FLAG_BIND) == V2X2_FLAG_BIND) {
return RX_SPI_RECEIVED_BIND;
}
if (packet[7] != txid[0] ||
packet[8] != txid[1] ||
packet[9] != txid[2]) {
return RX_SPI_RECEIVED_NONE;
}
// Restore regular interval
rx_timeout = 10000L; // 4ms interval, duplicate packets, (8ms unique) + 25%
// TREA order in packet to MultiWii order is handled by
// correct assignment to channelindex
// Throttle 0..255 to 1000..2000
rxSpiRcData[v2x2_channelindex[0]] = ((uint16_t)packet[0]) * 1000 / 255 + 1000;
for (int i = 1; i < 4; ++i) {
uint8_t a = packet[i];
rxSpiRcData[v2x2_channelindex[i]] = ((uint16_t)(a < 0x80 ? 0x7f - a : a)) * 1000 / 255 + 1000;
}
const uint8_t flags[] = {V2X2_FLAG_LED, V2X2_FLAG_FLIP, V2X2_FLAG_CAMERA, V2X2_FLAG_VIDEO}; // two more unknown bits
for (int i = 4; i < 8; ++i) {
rxSpiRcData[v2x2_channelindex[i]] = (packet[14] & flags[i-4]) ? PWM_RANGE_MAX : PWM_RANGE_MIN;
}
const uint8_t flags10[] = {V2X2_FLAG_HEADLESS, V2X2_FLAG_MAG_CAL_X, V2X2_FLAG_MAG_CAL_Y};
for (int i = 8; i < 11; ++i) {
rxSpiRcData[v2x2_channelindex[i]] = (packet[10] & flags10[i-8]) ? PWM_RANGE_MAX : PWM_RANGE_MIN;
}
packet_timer = micros();
return RX_SPI_RECEIVED_DATA;
}
void v202Nrf24SetRcDataFromPayload(uint16_t *rcData, const uint8_t *packet)
{
UNUSED(rcData);
UNUSED(packet);
// Ideally the decoding of the packet should be moved into here, to reduce the overhead of v202DataReceived function.
}
static rx_spi_received_e readrx(uint8_t *packet)
{
if (!(NRF24L01_ReadReg(NRF24L01_07_STATUS) & BV(NRF24L01_07_STATUS_RX_DR))) {
uint32_t t = micros() - packet_timer;
if (t > rx_timeout) {
switch_channel();
packet_timer = micros();
}
return RX_SPI_RECEIVED_NONE;
}
packet_timer = micros();
NRF24L01_WriteReg(NRF24L01_07_STATUS, BV(NRF24L01_07_STATUS_RX_DR)); // clear the RX_DR flag
NRF24L01_ReadPayload(packet, V2X2_PAYLOAD_SIZE);
NRF24L01_FlushRx();
switch_channel();
return decode_packet(packet);
}
/*
* This is called periodically by the scheduler.
* Returns RX_SPI_RECEIVED_DATA if a data packet was received.
*/
rx_spi_received_e v202Nrf24DataReceived(uint8_t *packet)
{
return readrx(packet);
}
static void v202Nrf24Setup(rx_spi_protocol_e protocol)
{
NRF24L01_Initialize(BV(NRF24L01_00_CONFIG_EN_CRC) | BV(NRF24L01_00_CONFIG_CRCO)); // 2-bytes CRC
NRF24L01_WriteReg(NRF24L01_01_EN_AA, 0x00); // No Auto Acknowledgment
NRF24L01_WriteReg(NRF24L01_02_EN_RXADDR, BV(NRF24L01_02_EN_RXADDR_ERX_P0)); // Enable data pipe 0
NRF24L01_WriteReg(NRF24L01_03_SETUP_AW, NRF24L01_03_SETUP_AW_5BYTES); // 5-byte RX/TX address
NRF24L01_WriteReg(NRF24L01_04_SETUP_RETR, 0xFF); // 4ms retransmit t/o, 15 tries
if (protocol == RX_SPI_NRF24_V202_250K) {
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_250Kbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
} else {
NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_1Mbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
}
NRF24L01_WriteReg(NRF24L01_07_STATUS, BV(NRF24L01_07_STATUS_RX_DR) | BV(NRF24L01_07_STATUS_TX_DS) | BV(NRF24L01_07_STATUS_MAX_RT)); // Clear data ready, data sent, and retransmit
NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, V2X2_PAYLOAD_SIZE); // bytes of data payload for pipe 0
NRF24L01_WriteReg(NRF24L01_17_FIFO_STATUS, 0x00); // Just in case, no real bits to write here
#define RX_TX_ADDR_LEN 5
const uint8_t rx_tx_addr[RX_TX_ADDR_LEN] = {0x66, 0x88, 0x68, 0x68, 0x68};
NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rx_tx_addr, RX_TX_ADDR_LEN);
NRF24L01_WriteRegisterMulti(NRF24L01_10_TX_ADDR, rx_tx_addr, RX_TX_ADDR_LEN);
NRF24L01_FlushTx();
NRF24L01_FlushRx();
rf_ch_num = 0;
bind_phase = PHASE_NOT_BOUND;
prepare_to_bind();
switch_channel();
NRF24L01_SetRxMode(); // enter receive mode to start listening for packets
}
void v202Nrf24Init(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfig)
{
rxRuntimeConfig->channelCount = V2X2_RC_CHANNEL_COUNT;
v202Nrf24Setup((rx_spi_protocol_e)rxConfig->rx_spi_protocol);
}
#endif