1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-19 22:35:23 +03:00
betaflight/src/main/drivers/adc_stm32f7xx.c

202 lines
7 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#include "system.h"
#include "io.h"
#include "io_impl.h"
#include "rcc.h"
#include "dma.h"
#include "sensor.h"
#include "accgyro.h"
#include "adc.h"
#include "adc_impl.h"
#ifndef ADC_INSTANCE
#define ADC_INSTANCE ADC1
#endif
const adcDevice_t adcHardware[] = {
{ .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), .DMAy_Streamx = DMA2_Stream4, .channel = DMA_CHANNEL_0 },
//{ .ADCx = ADC2, .rccADC = RCC_APB2(ADC2), .DMAy_Streamx = DMA2_Stream1, .channel = DMA_Channel_0 }
};
/* note these could be packed up for saving space */
const adcTagMap_t adcTagMap[] = {
/*
{ DEFIO_TAG_E__PF3, ADC_Channel_9 },
{ DEFIO_TAG_E__PF4, ADC_Channel_14 },
{ DEFIO_TAG_E__PF5, ADC_Channel_15 },
{ DEFIO_TAG_E__PF6, ADC_Channel_4 },
{ DEFIO_TAG_E__PF7, ADC_Channel_5 },
{ DEFIO_TAG_E__PF8, ADC_Channel_6 },
{ DEFIO_TAG_E__PF9, ADC_Channel_7 },
{ DEFIO_TAG_E__PF10, ADC_Channel_8 },
*/
{ DEFIO_TAG_E__PC0, ADC_CHANNEL_10 },
{ DEFIO_TAG_E__PC1, ADC_CHANNEL_11 },
{ DEFIO_TAG_E__PC2, ADC_CHANNEL_12 },
{ DEFIO_TAG_E__PC3, ADC_CHANNEL_13 },
{ DEFIO_TAG_E__PC4, ADC_CHANNEL_14 },
{ DEFIO_TAG_E__PC5, ADC_CHANNEL_15 },
{ DEFIO_TAG_E__PB0, ADC_CHANNEL_8 },
{ DEFIO_TAG_E__PB1, ADC_CHANNEL_9 },
{ DEFIO_TAG_E__PA0, ADC_CHANNEL_0 },
{ DEFIO_TAG_E__PA1, ADC_CHANNEL_1 },
{ DEFIO_TAG_E__PA2, ADC_CHANNEL_2 },
{ DEFIO_TAG_E__PA3, ADC_CHANNEL_3 },
{ DEFIO_TAG_E__PA4, ADC_CHANNEL_4 },
{ DEFIO_TAG_E__PA5, ADC_CHANNEL_5 },
{ DEFIO_TAG_E__PA6, ADC_CHANNEL_6 },
{ DEFIO_TAG_E__PA7, ADC_CHANNEL_7 },
};
ADCDevice adcDeviceByInstance(ADC_TypeDef *instance)
{
if (instance == ADC1)
return ADCDEV_1;
/*
if (instance == ADC2) // TODO add ADC2 and 3
return ADCDEV_2;
*/
return ADCINVALID;
}
void adcInit(const adcConfig_t *config)
{
uint8_t i;
uint8_t configuredAdcChannels = 0;
memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));
if (config->vbat.enabled) {
adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
}
if (config->rssi.enabled) {
adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL;
}
if (config->external1.enabled) {
adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
}
if (config->current.enabled) {
adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL;
}
ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
if (device == ADCINVALID)
return;
adcDevice_t adc = adcHardware[device];
bool adcActive = false;
for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcOperatingConfig[i].tag)
continue;
adcActive = true;
IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_MODE_ANALOG, 0, GPIO_NOPULL));
adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
adcOperatingConfig[i].dmaIndex = configuredAdcChannels++;
adcOperatingConfig[i].sampleTime = ADC_SAMPLETIME_480CYCLES;
adcOperatingConfig[i].enabled = true;
}
if (!adcActive) {
return;
}
RCC_ClockCmd(adc.rccADC, ENABLE);
dmaInit(dmaGetIdentifier(adc.DMAy_Streamx), OWNER_ADC, 0);
adc.ADCHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
adc.ADCHandle.Init.ContinuousConvMode = ENABLE;
adc.ADCHandle.Init.Resolution = ADC_RESOLUTION_12B;
adc.ADCHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
adc.ADCHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
adc.ADCHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
adc.ADCHandle.Init.NbrOfConversion = configuredAdcChannels;
adc.ADCHandle.Init.ScanConvMode = configuredAdcChannels > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group
adc.ADCHandle.Init.DiscontinuousConvMode = DISABLE;
adc.ADCHandle.Init.NbrOfDiscConversion = 0;
adc.ADCHandle.Init.DMAContinuousRequests = ENABLE;
adc.ADCHandle.Init.EOCSelection = DISABLE;
adc.ADCHandle.Instance = adc.ADCx;
/*##-1- Configure the ADC peripheral #######################################*/
if (HAL_ADC_Init(&adc.ADCHandle) != HAL_OK)
{
/* Initialization Error */
}
adc.DmaHandle.Init.Channel = adc.channel;
adc.DmaHandle.Init.Direction = DMA_PERIPH_TO_MEMORY;
adc.DmaHandle.Init.PeriphInc = DMA_PINC_DISABLE;
adc.DmaHandle.Init.MemInc = configuredAdcChannels > 1 ? DMA_MINC_ENABLE : DMA_MINC_DISABLE;
adc.DmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
adc.DmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
adc.DmaHandle.Init.Mode = DMA_CIRCULAR;
adc.DmaHandle.Init.Priority = DMA_PRIORITY_HIGH;
adc.DmaHandle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
adc.DmaHandle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
adc.DmaHandle.Init.MemBurst = DMA_MBURST_SINGLE;
adc.DmaHandle.Init.PeriphBurst = DMA_PBURST_SINGLE;
adc.DmaHandle.Instance = adc.DMAy_Streamx;
/*##-2- Initialize the DMA stream ##########################################*/
if (HAL_DMA_Init(&adc.DmaHandle) != HAL_OK)
{
/* Initialization Error */
}
__HAL_LINKDMA(&adc.ADCHandle, DMA_Handle, adc.DmaHandle);
uint8_t rank = 1;
for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcOperatingConfig[i].enabled) {
continue;
}
ADC_ChannelConfTypeDef sConfig;
sConfig.Channel = adcOperatingConfig[i].adcChannel;
sConfig.Rank = rank++;
sConfig.SamplingTime = adcOperatingConfig[i].sampleTime;
sConfig.Offset = 0;
/*##-3- Configure ADC regular channel ######################################*/
if (HAL_ADC_ConfigChannel(&adc.ADCHandle, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
}
}
//HAL_CLEANINVALIDATECACHE((uint32_t*)&adcValues, configuredAdcChannels);
/*##-4- Start the conversion process #######################################*/
if(HAL_ADC_Start_DMA(&adc.ADCHandle, (uint32_t*)&adcValues, configuredAdcChannels) != HAL_OK)
{
/* Start Conversation Error */
}
}