1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/src/main/sensors/acceleration.c

127 lines
3.7 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "platform.h"
#ifdef USE_ACC
#include "build/debug.h"
#include "common/filter.h"
#include "common/utils.h"
#include "config/feature.h"
#include "sensors/acceleration_init.h"
#include "sensors/boardalignment.h"
#include "sensors/gyro.h"
#include "acceleration.h"
FAST_DATA_ZERO_INIT acc_t acc; // acc access functions
static inline void alignAccelerometer(void)
{
switch (acc.dev.accAlign) {
case ALIGN_CUSTOM:
alignSensorViaMatrix(&acc.accADC, &acc.dev.rotationMatrix);
break;
default:
alignSensorViaRotation(&acc.accADC, acc.dev.accAlign);
break;
}
}
static inline void calibrateAccelerometer(void)
{
if (!accIsCalibrationComplete()) {
// acc.accADC is held at 0 until calibration is completed
performAccelerometerCalibration(&accelerometerConfigMutable()->accelerometerTrims);
}
if (featureIsEnabled(FEATURE_INFLIGHT_ACC_CAL)) {
performInflightAccelerationCalibration(&accelerometerConfigMutable()->accelerometerTrims);
}
}
static inline void applyAccelerationTrims(const flightDynamicsTrims_t *accelerationTrims)
{
acc.accADC.x -= accelerationTrims->raw[X];
acc.accADC.y -= accelerationTrims->raw[Y];
acc.accADC.z -= accelerationTrims->raw[Z];
}
static inline void postProcessAccelerometer(void)
{
static vector3_t accAdcPrev;
for (unsigned axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
// Apply anti-alias filter for attitude task (if enabled)
if (axis == gyro.gyroDebugAxis) {
DEBUG_SET(DEBUG_ACCELEROMETER, 0, lrintf(acc.accADC.v[axis]));
}
if (accelerationRuntime.accLpfCutHz) {
acc.accADC.v[axis] = pt2FilterApply(&accelerationRuntime.accFilter[axis], acc.accADC.v[axis]);
}
// Calculate derivative of acc (jerk)
acc.jerk.v[axis] = (acc.accADC.v[axis] - accAdcPrev.v[axis]) * acc.sampleRateHz;
accAdcPrev.v[axis] = acc.accADC.v[axis];
if (axis == gyro.gyroDebugAxis) {
DEBUG_SET(DEBUG_ACCELEROMETER, 1, lrintf(acc.accADC.v[axis]));
DEBUG_SET(DEBUG_ACCELEROMETER, 3, lrintf(acc.jerk.v[axis] * 1e-2f));
}
}
acc.accMagnitude = vector3Norm(&acc.accADC) * acc.dev.acc_1G_rec;
acc.jerkMagnitude = vector3Norm(&acc.jerk) * acc.dev.acc_1G_rec;
DEBUG_SET(DEBUG_ACCELEROMETER, 2, lrintf(acc.accMagnitude * 1e3f));
DEBUG_SET(DEBUG_ACCELEROMETER, 4, lrintf(acc.jerkMagnitude * 1e3f));
}
void accUpdate(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
if (!acc.dev.readFn(&acc.dev)) {
return;
}
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
acc.accADC.v[axis] = acc.dev.ADCRaw[axis];
}
alignAccelerometer();
calibrateAccelerometer();
applyAccelerationTrims(accelerationRuntime.accelerationTrims);
postProcessAccelerometer();
acc.isAccelUpdatedAtLeastOnce = true;
}
#endif // USE_ACC