1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00
betaflight/src/test/unit/sensor_gyro_unittest.cc

166 lines
5.1 KiB
C++

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <limits.h>
#include <algorithm>
extern "C" {
#include <platform.h>
#include "build/build_config.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/utils.h"
#include "drivers/accgyro/accgyro_fake.h"
#include "drivers/accgyro/accgyro_mpu.h"
#include "drivers/sensor.h"
#include "io/beeper.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "scheduler/scheduler.h"
#include "sensors/gyro.h"
#include "sensors/gyro_init.h"
#include "sensors/acceleration.h"
#include "sensors/sensors.h"
STATIC_UNIT_TESTED gyroHardware_e gyroDetect(gyroDev_t *dev);
struct gyroSensor_s;
STATIC_UNIT_TESTED void performGyroCalibration(struct gyroSensor_s *gyroSensor, uint8_t gyroMovementCalibrationThreshold);
STATIC_UNIT_TESTED bool fakeGyroRead(gyroDev_t *gyro);
uint8_t debugMode;
int16_t debug[DEBUG16_VALUE_COUNT];
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
extern gyroSensor_s * const gyroSensorPtr;
extern gyroDev_t * const gyroDevPtr;
TEST(SensorGyro, Detect)
{
const gyroHardware_e detected = gyroDetect(gyroDevPtr);
EXPECT_EQ(GYRO_FAKE, detected);
}
TEST(SensorGyro, Init)
{
pgResetAll();
const bool initialised = gyroInit();
EXPECT_TRUE(initialised);
EXPECT_EQ(GYRO_FAKE, detectedSensors[SENSOR_INDEX_GYRO]);
}
TEST(SensorGyro, Read)
{
pgResetAll();
gyroInit();
fakeGyroSet(gyroDevPtr, 5, 6, 7);
const bool read = gyroDevPtr->readFn(gyroDevPtr);
EXPECT_TRUE(read);
EXPECT_EQ(5, gyroDevPtr->gyroADCRaw[X]);
EXPECT_EQ(6, gyroDevPtr->gyroADCRaw[Y]);
EXPECT_EQ(7, gyroDevPtr->gyroADCRaw[Z]);
}
TEST(SensorGyro, Calibrate)
{
pgResetAll();
gyroInit();
gyroSetTargetLooptime(1);
fakeGyroSet(gyroDevPtr, 5, 6, 7);
const bool read = gyroDevPtr->readFn(gyroDevPtr);
EXPECT_TRUE(read);
EXPECT_EQ(5, gyroDevPtr->gyroADCRaw[X]);
EXPECT_EQ(6, gyroDevPtr->gyroADCRaw[Y]);
EXPECT_EQ(7, gyroDevPtr->gyroADCRaw[Z]);
static const int gyroMovementCalibrationThreshold = 32;
gyroDevPtr->gyroZero[X] = 8;
gyroDevPtr->gyroZero[Y] = 9;
gyroDevPtr->gyroZero[Z] = 10;
performGyroCalibration(gyroSensorPtr, gyroMovementCalibrationThreshold);
EXPECT_EQ(8, gyroDevPtr->gyroZero[X]);
EXPECT_EQ(9, gyroDevPtr->gyroZero[Y]);
EXPECT_EQ(10, gyroDevPtr->gyroZero[Z]);
gyroStartCalibration(false);
EXPECT_FALSE(gyroIsCalibrationComplete());
while (!gyroIsCalibrationComplete()) {
gyroDevPtr->readFn(gyroDevPtr);
performGyroCalibration(gyroSensorPtr, gyroMovementCalibrationThreshold);
}
EXPECT_EQ(5, gyroDevPtr->gyroZero[X]);
EXPECT_EQ(6, gyroDevPtr->gyroZero[Y]);
EXPECT_EQ(7, gyroDevPtr->gyroZero[Z]);
}
TEST(SensorGyro, Update)
{
pgResetAll();
// turn off filters
gyroConfigMutable()->gyro_lowpass_hz = 0;
gyroConfigMutable()->gyro_lowpass2_hz = 0;
gyroConfigMutable()->gyro_soft_notch_hz_1 = 0;
gyroConfigMutable()->gyro_soft_notch_hz_2 = 0;
gyroInit();
gyroSetTargetLooptime(1);
gyroDevPtr->readFn = fakeGyroRead;
gyroStartCalibration(false);
EXPECT_FALSE(gyroIsCalibrationComplete());
fakeGyroSet(gyroDevPtr, 5, 6, 7);
gyroUpdate();
while (!gyroIsCalibrationComplete()) {
fakeGyroSet(gyroDevPtr, 5, 6, 7);
gyroUpdate();
}
EXPECT_TRUE(gyroIsCalibrationComplete());
EXPECT_EQ(5, gyroDevPtr->gyroZero[X]);
EXPECT_EQ(6, gyroDevPtr->gyroZero[Y]);
EXPECT_EQ(7, gyroDevPtr->gyroZero[Z]);
EXPECT_FLOAT_EQ(0, gyro.gyroADCf[X]);
EXPECT_FLOAT_EQ(0, gyro.gyroADCf[Y]);
EXPECT_FLOAT_EQ(0, gyro.gyroADCf[Z]);
gyroUpdate();
// expect zero values since gyro is calibrated
EXPECT_FLOAT_EQ(0, gyro.gyroADCf[X]);
EXPECT_FLOAT_EQ(0, gyro.gyroADCf[Y]);
EXPECT_FLOAT_EQ(0, gyro.gyroADCf[Z]);
fakeGyroSet(gyroDevPtr, 15, 26, 97);
gyroUpdate();
EXPECT_NEAR(10 * gyroDevPtr->scale, gyro.gyroADC[X], 1e-3); // gyro.gyroADC values are scaled
EXPECT_NEAR(20 * gyroDevPtr->scale, gyro.gyroADC[Y], 1e-3);
EXPECT_NEAR(90 * gyroDevPtr->scale, gyro.gyroADC[Z], 1e-3);
}
// STUBS
extern "C" {
uint32_t micros(void) {return 0;}
void beeper(beeperMode_e) {}
uint8_t detectedSensors[] = { GYRO_NONE, ACC_NONE };
timeDelta_t getGyroUpdateRate(void) {return gyro.targetLooptime;}
void sensorsSet(uint32_t) {}
void schedulerResetTaskStatistics(taskId_e) {}
int getArmingDisableFlags(void) {return 0;}
void writeEEPROM(void) {}
}