1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00
betaflight/src/main/sensors/gyro.c
2018-04-24 13:51:06 +12:00

1268 lines
44 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software: you can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "platform.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "config/feature.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/accgyro/accgyro_adxl345.h"
#include "drivers/accgyro/accgyro_bma280.h"
#include "drivers/accgyro/accgyro_fake.h"
#include "drivers/accgyro/accgyro_l3g4200d.h"
#include "drivers/accgyro/accgyro_l3gd20.h"
#include "drivers/accgyro/accgyro_lsm303dlhc.h"
#include "drivers/accgyro/accgyro_mma845x.h"
#include "drivers/accgyro/accgyro_mpu.h"
#include "drivers/accgyro/accgyro_mpu3050.h"
#include "drivers/accgyro/accgyro_mpu6050.h"
#include "drivers/accgyro/accgyro_mpu6500.h"
#include "drivers/accgyro/accgyro_spi_bmi160.h"
#include "drivers/accgyro/accgyro_spi_icm20649.h"
#include "drivers/accgyro/accgyro_spi_icm20689.h"
#include "drivers/accgyro/accgyro_spi_mpu6000.h"
#include "drivers/accgyro/accgyro_spi_mpu6500.h"
#include "drivers/accgyro/accgyro_spi_mpu9250.h"
#include "drivers/accgyro/gyro_sync.h"
#include "drivers/bus_spi.h"
#include "drivers/io.h"
#include "fc/config.h"
#include "fc/runtime_config.h"
#include "io/beeper.h"
#include "io/statusindicator.h"
#include "scheduler/scheduler.h"
#include "sensors/boardalignment.h"
#include "sensors/gyro.h"
#include "sensors/gyroanalyse.h"
#include "sensors/sensors.h"
#ifdef USE_HARDWARE_REVISION_DETECTION
#include "hardware_revision.h"
#endif
#if ((FLASH_SIZE > 128) && (defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_SPI_MPU6500)))
#define USE_GYRO_SLEW_LIMITER
#endif
FAST_RAM gyro_t gyro;
static FAST_RAM uint8_t gyroDebugMode;
static uint8_t gyroToUse = 0;
#ifdef USE_GYRO_OVERFLOW_CHECK
static FAST_RAM uint8_t overflowAxisMask;
#endif
static FAST_RAM float accumulatedMeasurements[XYZ_AXIS_COUNT];
static FAST_RAM float gyroPrevious[XYZ_AXIS_COUNT];
static FAST_RAM timeUs_t accumulatedMeasurementTimeUs;
static FAST_RAM timeUs_t accumulationLastTimeSampledUs;
static bool gyroHasOverflowProtection = true;
typedef struct gyroCalibration_s {
int32_t sum[XYZ_AXIS_COUNT];
stdev_t var[XYZ_AXIS_COUNT];
uint16_t calibratingG;
} gyroCalibration_t;
bool firstArmingCalibrationWasStarted = false;
#if GYRO_LPF_ORDER_MAX > BIQUAD_LPF_ORDER_MAX
#error "GYRO_LPF_ORDER_MAX is larger than BIQUAD_LPF_ORDER_MAX"
#endif
typedef union gyroLowpassFilter_u {
pt1Filter_t pt1FilterState;
biquadFilter_t biquadFilterState;
biquadFilterCascade_t biquadFilterCascadeState;
firFilterDenoise_t denoiseFilterState;
fastKalman_t fastKalmanFilterState;
} gyroLowpassFilter_t;
typedef struct gyroSensor_s {
gyroDev_t gyroDev;
gyroCalibration_t calibration;
// lowpass gyro soft filter
filterApplyFnPtr lowpassFilterApplyFn;
gyroLowpassFilter_t lowpassFilter[XYZ_AXIS_COUNT];
// lowpass2 gyro soft filter
filterApplyFnPtr lowpass2FilterApplyFn;
gyroLowpassFilter_t lowpass2Filter[XYZ_AXIS_COUNT];
// lagged moving average smoothing
filterApplyFnPtr lmaSmoothingApplyFn;
laggedMovingAverage_t lmaSmoothingFilter[XYZ_AXIS_COUNT];
// notch filters
filterApplyFnPtr notchFilter1ApplyFn;
biquadFilter_t notchFilter1[XYZ_AXIS_COUNT];
filterApplyFnPtr notchFilter2ApplyFn;
biquadFilter_t notchFilter2[XYZ_AXIS_COUNT];
filterApplyFnPtr notchFilterDynApplyFn;
biquadFilter_t notchFilterDyn[XYZ_AXIS_COUNT];
// overflow and recovery
timeUs_t overflowTimeUs;
bool overflowDetected;
#ifdef USE_YAW_SPIN_RECOVERY
timeUs_t yawSpinTimeUs;
bool yawSpinDetected;
#endif // USE_YAW_SPIN_RECOVERY
} gyroSensor_t;
STATIC_UNIT_TESTED FAST_RAM gyroSensor_t gyroSensor1;
#ifdef USE_DUAL_GYRO
STATIC_UNIT_TESTED FAST_RAM gyroSensor_t gyroSensor2;
#endif
#ifdef UNIT_TEST
STATIC_UNIT_TESTED gyroSensor_t * const gyroSensorPtr = &gyroSensor1;
STATIC_UNIT_TESTED gyroDev_t * const gyroDevPtr = &gyroSensor1.gyroDev;
#endif
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor);
static void gyroInitLowpassFilterLpf(gyroSensor_t *gyroSensor, int slot, int type, uint16_t lpfHz, int order);
#define DEBUG_GYRO_CALIBRATION 3
#ifdef STM32F10X
#define GYRO_SYNC_DENOM_DEFAULT 8
#elif defined(USE_GYRO_SPI_MPU6000) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \
|| defined(USE_GYRO_SPI_ICM20689)
#define GYRO_SYNC_DENOM_DEFAULT 1
#else
#define GYRO_SYNC_DENOM_DEFAULT 4
#endif
#define GYRO_OVERFLOW_TRIGGER_THRESHOLD 31980 // 97.5% full scale (1950dps for 2000dps gyro)
#define GYRO_OVERFLOW_RESET_THRESHOLD 30340 // 92.5% full scale (1850dps for 2000dps gyro)
PG_REGISTER_WITH_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 2);
#ifndef GYRO_CONFIG_USE_GYRO_DEFAULT
#ifdef USE_DUAL_GYRO
#define GYRO_CONFIG_USE_GYRO_DEFAULT GYRO_CONFIG_USE_GYRO_BOTH
#else
#define GYRO_CONFIG_USE_GYRO_DEFAULT GYRO_CONFIG_USE_GYRO_1
#endif
#endif
PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
.gyro_align = ALIGN_DEFAULT,
.gyroMovementCalibrationThreshold = 48,
.gyro_sync_denom = GYRO_SYNC_DENOM_DEFAULT,
.gyro_hardware_lpf = GYRO_HARDWARE_LPF_NORMAL,
.gyro_32khz_hardware_lpf = GYRO_32KHZ_HARDWARE_LPF_NORMAL,
.gyro_lowpass_type = FILTER_PT1,
.gyro_lowpass_hz = 90,
.gyro_lowpass_order = 1,
.gyro_lowpass2_type = FILTER_PT1,
.gyro_lowpass2_hz = 0,
.gyro_lowpass2_order = 1,
.gyro_high_fsr = false,
.gyro_use_32khz = false,
.gyro_to_use = GYRO_CONFIG_USE_GYRO_DEFAULT,
.gyro_soft_notch_hz_1 = 400,
.gyro_soft_notch_cutoff_1 = 300,
.gyro_soft_notch_hz_2 = 200,
.gyro_soft_notch_cutoff_2 = 100,
.checkOverflow = GYRO_OVERFLOW_CHECK_ALL_AXES,
.gyro_offset_yaw = 0,
.gyro_lma_depth = 0,
.gyro_lma_weight = 100,
.yaw_spin_recovery = true,
.yaw_spin_threshold = 1950,
);
const busDevice_t *gyroSensorBus(void)
{
#ifdef USE_DUAL_GYRO
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2) {
return &gyroSensor2.gyroDev.bus;
} else {
return &gyroSensor1.gyroDev.bus;
}
#else
return &gyroSensor1.gyroDev.bus;
#endif
}
const mpuConfiguration_t *gyroMpuConfiguration(void)
{
#ifdef USE_DUAL_GYRO
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2) {
return &gyroSensor2.gyroDev.mpuConfiguration;
} else {
return &gyroSensor1.gyroDev.mpuConfiguration;
}
#else
return &gyroSensor1.gyroDev.mpuConfiguration;
#endif
}
const mpuDetectionResult_t *gyroMpuDetectionResult(void)
{
#ifdef USE_DUAL_GYRO
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2) {
return &gyroSensor2.gyroDev.mpuDetectionResult;
} else {
return &gyroSensor1.gyroDev.mpuDetectionResult;
}
#else
return &gyroSensor1.gyroDev.mpuDetectionResult;
#endif
}
STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev)
{
gyroSensor_e gyroHardware = GYRO_DEFAULT;
switch (gyroHardware) {
case GYRO_DEFAULT:
FALLTHROUGH;
#ifdef USE_GYRO_MPU6050
case GYRO_MPU6050:
if (mpu6050GyroDetect(dev)) {
gyroHardware = GYRO_MPU6050;
#ifdef GYRO_MPU6050_ALIGN
dev->gyroAlign = GYRO_MPU6050_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_GYRO_L3G4200D
case GYRO_L3G4200D:
if (l3g4200dDetect(dev)) {
gyroHardware = GYRO_L3G4200D;
#ifdef GYRO_L3G4200D_ALIGN
dev->gyroAlign = GYRO_L3G4200D_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_GYRO_MPU3050
case GYRO_MPU3050:
if (mpu3050Detect(dev)) {
gyroHardware = GYRO_MPU3050;
#ifdef GYRO_MPU3050_ALIGN
dev->gyroAlign = GYRO_MPU3050_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_GYRO_L3GD20
case GYRO_L3GD20:
if (l3gd20Detect(dev)) {
gyroHardware = GYRO_L3GD20;
#ifdef GYRO_L3GD20_ALIGN
dev->gyroAlign = GYRO_L3GD20_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_GYRO_SPI_MPU6000
case GYRO_MPU6000:
if (mpu6000SpiGyroDetect(dev)) {
gyroHardware = GYRO_MPU6000;
#ifdef GYRO_MPU6000_ALIGN
dev->gyroAlign = GYRO_MPU6000_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
case GYRO_MPU6500:
case GYRO_ICM20601:
case GYRO_ICM20602:
case GYRO_ICM20608G:
#ifdef USE_GYRO_SPI_MPU6500
if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev)) {
#else
if (mpu6500GyroDetect(dev)) {
#endif
switch (dev->mpuDetectionResult.sensor) {
case MPU_9250_SPI:
gyroHardware = GYRO_MPU9250;
break;
case ICM_20601_SPI:
gyroHardware = GYRO_ICM20601;
break;
case ICM_20602_SPI:
gyroHardware = GYRO_ICM20602;
break;
case ICM_20608_SPI:
gyroHardware = GYRO_ICM20608G;
break;
default:
gyroHardware = GYRO_MPU6500;
}
#ifdef GYRO_MPU6500_ALIGN
dev->gyroAlign = GYRO_MPU6500_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_GYRO_SPI_MPU9250
case GYRO_MPU9250:
if (mpu9250SpiGyroDetect(dev)) {
gyroHardware = GYRO_MPU9250;
#ifdef GYRO_MPU9250_ALIGN
dev->gyroAlign = GYRO_MPU9250_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_GYRO_SPI_ICM20649
case GYRO_ICM20649:
if (icm20649SpiGyroDetect(dev)) {
gyroHardware = GYRO_ICM20649;
#ifdef GYRO_ICM20649_ALIGN
dev->gyroAlign = GYRO_ICM20649_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_GYRO_SPI_ICM20689
case GYRO_ICM20689:
if (icm20689SpiGyroDetect(dev)) {
gyroHardware = GYRO_ICM20689;
#ifdef GYRO_ICM20689_ALIGN
dev->gyroAlign = GYRO_ICM20689_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_ACCGYRO_BMI160
case GYRO_BMI160:
if (bmi160SpiGyroDetect(dev)) {
gyroHardware = GYRO_BMI160;
#ifdef GYRO_BMI160_ALIGN
dev->gyroAlign = GYRO_BMI160_ALIGN;
#endif
break;
}
FALLTHROUGH;
#endif
#ifdef USE_FAKE_GYRO
case GYRO_FAKE:
if (fakeGyroDetect(dev)) {
gyroHardware = GYRO_FAKE;
break;
}
FALLTHROUGH;
#endif
default:
gyroHardware = GYRO_NONE;
}
if (gyroHardware != GYRO_NONE) {
detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware;
sensorsSet(SENSOR_GYRO);
}
return gyroHardware;
}
static bool gyroInitSensor(gyroSensor_t *gyroSensor)
{
gyroSensor->gyroDev.gyro_high_fsr = gyroConfig()->gyro_high_fsr;
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
|| defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) || defined(USE_GYRO_SPI_ICM20689)
mpuDetect(&gyroSensor->gyroDev);
mpuResetFn = gyroSensor->gyroDev.mpuConfiguration.resetFn; // must be set after mpuDetect
#endif
const gyroSensor_e gyroHardware = gyroDetect(&gyroSensor->gyroDev);
if (gyroHardware == GYRO_NONE) {
return false;
}
switch (gyroHardware) {
case GYRO_MPU6500:
case GYRO_MPU9250:
case GYRO_ICM20601:
case GYRO_ICM20602:
case GYRO_ICM20608G:
case GYRO_ICM20689:
// do nothing, as gyro supports 32kHz
break;
default:
// gyro does not support 32kHz
gyroConfigMutable()->gyro_use_32khz = false;
break;
}
// Must set gyro targetLooptime before gyroDev.init and initialisation of filters
gyro.targetLooptime = gyroSetSampleRate(&gyroSensor->gyroDev, gyroConfig()->gyro_hardware_lpf, gyroConfig()->gyro_sync_denom, gyroConfig()->gyro_use_32khz);
gyroSensor->gyroDev.hardware_lpf = gyroConfig()->gyro_hardware_lpf;
gyroSensor->gyroDev.hardware_32khz_lpf = gyroConfig()->gyro_32khz_hardware_lpf;
gyroSensor->gyroDev.initFn(&gyroSensor->gyroDev);
if (gyroConfig()->gyro_align != ALIGN_DEFAULT) {
gyroSensor->gyroDev.gyroAlign = gyroConfig()->gyro_align;
}
// As new gyros are supported, be sure to add them below based on whether they are subject to the overflow/inversion bug
// Any gyro not explicitly defined will default to not having built-in overflow protection as a safe alternative.
switch (gyroHardware) {
case GYRO_NONE: // Won't ever actually get here, but included to account for all gyro types
case GYRO_DEFAULT:
case GYRO_FAKE:
case GYRO_MPU6050:
case GYRO_L3G4200D:
case GYRO_MPU3050:
case GYRO_L3GD20:
case GYRO_BMI160:
case GYRO_MPU6000:
case GYRO_MPU6500:
case GYRO_MPU9250:
gyroSensor->gyroDev.gyroHasOverflowProtection = true;
break;
case GYRO_ICM20601:
case GYRO_ICM20602:
case GYRO_ICM20608G:
case GYRO_ICM20649: // we don't actually know if this is affected, but as there are currently no flight controllers using it we err on the side of caution
case GYRO_ICM20689:
gyroSensor->gyroDev.gyroHasOverflowProtection = false;
break;
default:
gyroSensor->gyroDev.gyroHasOverflowProtection = false; // default catch for newly added gyros until proven to be unaffected
break;
}
gyroInitSensorFilters(gyroSensor);
#ifdef USE_GYRO_DATA_ANALYSE
gyroDataAnalyseInit(gyro.targetLooptime);
#endif
return true;
}
bool gyroInit(void)
{
#ifdef USE_GYRO_OVERFLOW_CHECK
if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_YAW) {
overflowAxisMask = GYRO_OVERFLOW_Z;
} else if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_ALL_AXES) {
overflowAxisMask = GYRO_OVERFLOW_X | GYRO_OVERFLOW_Y | GYRO_OVERFLOW_Z;
} else {
overflowAxisMask = 0;
}
#endif
switch (debugMode) {
case DEBUG_FFT:
case DEBUG_GYRO_NOTCH:
case DEBUG_GYRO:
case DEBUG_GYRO_RAW:
gyroDebugMode = debugMode;
break;
default:
// debugMode is not gyro-related
gyroDebugMode = DEBUG_NONE;
break;
}
firstArmingCalibrationWasStarted = false;
bool ret = false;
memset(&gyro, 0, sizeof(gyro));
gyroToUse = gyroConfig()->gyro_to_use;
#if defined(USE_DUAL_GYRO) && defined(GYRO_1_CS_PIN)
if (gyroToUse == GYRO_CONFIG_USE_GYRO_1 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
gyroSensor1.gyroDev.bus.busdev_u.spi.csnPin = IOGetByTag(IO_TAG(GYRO_1_CS_PIN));
IOInit(gyroSensor1.gyroDev.bus.busdev_u.spi.csnPin, OWNER_MPU_CS, RESOURCE_INDEX(0));
IOHi(gyroSensor1.gyroDev.bus.busdev_u.spi.csnPin); // Ensure device is disabled, important when two devices are on the same bus.
IOConfigGPIO(gyroSensor1.gyroDev.bus.busdev_u.spi.csnPin, SPI_IO_CS_CFG);
}
#endif
#if defined(USE_DUAL_GYRO) && defined(GYRO_2_CS_PIN)
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
gyroSensor2.gyroDev.bus.busdev_u.spi.csnPin = IOGetByTag(IO_TAG(GYRO_2_CS_PIN));
IOInit(gyroSensor2.gyroDev.bus.busdev_u.spi.csnPin, OWNER_MPU_CS, RESOURCE_INDEX(1));
IOHi(gyroSensor2.gyroDev.bus.busdev_u.spi.csnPin); // Ensure device is disabled, important when two devices are on the same bus.
IOConfigGPIO(gyroSensor2.gyroDev.bus.busdev_u.spi.csnPin, SPI_IO_CS_CFG);
}
#endif
gyroSensor1.gyroDev.gyroAlign = ALIGN_DEFAULT;
#if defined(GYRO_1_EXTI_PIN)
gyroSensor1.gyroDev.mpuIntExtiTag = IO_TAG(GYRO_1_EXTI_PIN);
#elif defined(MPU_INT_EXTI)
gyroSensor1.gyroDev.mpuIntExtiTag = IO_TAG(MPU_INT_EXTI);
#elif defined(USE_HARDWARE_REVISION_DETECTION)
gyroSensor1.gyroDev.mpuIntExtiTag = selectMPUIntExtiConfigByHardwareRevision();
#else
gyroSensor1.gyroDev.mpuIntExtiTag = IO_TAG_NONE;
#endif // GYRO_1_EXTI_PIN
#ifdef USE_DUAL_GYRO
#ifdef GYRO_1_ALIGN
gyroSensor1.gyroDev.gyroAlign = GYRO_1_ALIGN;
#endif
gyroSensor1.gyroDev.bus.bustype = BUSTYPE_SPI;
spiBusSetInstance(&gyroSensor1.gyroDev.bus, GYRO_1_SPI_INSTANCE);
if (gyroToUse == GYRO_CONFIG_USE_GYRO_1 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
ret = gyroInitSensor(&gyroSensor1);
if (!ret) {
return false; // TODO handle failure of first gyro detection better. - Perhaps update the config to use second gyro then indicate a new failure mode and reboot.
}
gyroHasOverflowProtection = gyroHasOverflowProtection && gyroSensor1.gyroDev.gyroHasOverflowProtection;
}
#else // USE_DUAL_GYRO
ret = gyroInitSensor(&gyroSensor1);
gyroHasOverflowProtection = gyroHasOverflowProtection && gyroSensor1.gyroDev.gyroHasOverflowProtection;
#endif // USE_DUAL_GYRO
#ifdef USE_DUAL_GYRO
gyroSensor2.gyroDev.gyroAlign = ALIGN_DEFAULT;
#if defined(GYRO_2_EXTI_PIN)
gyroSensor2.gyroDev.mpuIntExtiTag = IO_TAG(GYRO_2_EXTI_PIN);
#elif defined(USE_HARDWARE_REVISION_DETECTION)
gyroSensor2.gyroDev.mpuIntExtiTag = selectMPUIntExtiConfigByHardwareRevision();
#else
gyroSensor2.gyroDev.mpuIntExtiTag = IO_TAG_NONE;
#endif // GYRO_2_EXTI_PIN
#ifdef GYRO_2_ALIGN
gyroSensor2.gyroDev.gyroAlign = GYRO_2_ALIGN;
#endif
gyroSensor2.gyroDev.bus.bustype = BUSTYPE_SPI;
spiBusSetInstance(&gyroSensor2.gyroDev.bus, GYRO_2_SPI_INSTANCE);
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
ret = gyroInitSensor(&gyroSensor2);
if (!ret) {
return false; // TODO handle failure of second gyro detection better. - Perhaps update the config to use first gyro then indicate a new failure mode and reboot.
}
gyroHasOverflowProtection = gyroHasOverflowProtection && gyroSensor2.gyroDev.gyroHasOverflowProtection;
}
#endif
return ret;
}
void gyroInitLowpassFilterLpf(gyroSensor_t *gyroSensor, int slot, int type, uint16_t lpfHz, int order)
{
filterApplyFnPtr *lowpassFilterApplyFn;
gyroLowpassFilter_t *lowpassFilter = NULL;
switch (slot) {
case FILTER_LOWPASS:
lowpassFilterApplyFn = &gyroSensor->lowpassFilterApplyFn;
lowpassFilter = gyroSensor->lowpassFilter;
break;
case FILTER_LOWPASS2:
lowpassFilterApplyFn = &gyroSensor->lowpass2FilterApplyFn;
lowpassFilter = gyroSensor->lowpass2Filter;
break;
default:
return;
}
// Establish some common constants
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
const float gyroDt = gyro.targetLooptime * 1e-6f;
// Gain could be calculated a little later as it is specific to the pt1/bqrcf2/fkf branches
const float gain = pt1FilterGain(lpfHz, gyroDt);
// Dereference the pointer to null before checking valid cutoff and filter
// type. It will be overridden for positive cases.
*lowpassFilterApplyFn = &nullFilterApply;
// If lowpass cutoff has been specified and is less than the Nyquist frequency
if (lpfHz && lpfHz <= gyroFrequencyNyquist) {
switch (type) {
case FILTER_PT1:
*lowpassFilterApplyFn = (filterApplyFnPtr) pt1FilterApply;
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
pt1FilterInit(&lowpassFilter[axis].pt1FilterState, gain);
}
break;
case FILTER_BIQUAD:
*lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApply;
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
biquadFilterInitLPF(&lowpassFilter[axis].biquadFilterState, lpfHz, gyro.targetLooptime);
}
break;
case FILTER_BIQUAD_RC_FIR2:
*lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApply;
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
biquadRCFIR2FilterInit(&lowpassFilter[axis].biquadFilterState, gain);
}
break;
case FILTER_BUTTERWORTH:
*lowpassFilterApplyFn = (filterApplyFnPtr) biquadCascadeFilterApply;
if (order <= GYRO_LPF_ORDER_MAX) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
int *sections = &lowpassFilter[axis].biquadFilterCascadeState.sections;
biquadFilter_t *biquadSections = lowpassFilter[axis].biquadFilterCascadeState.biquad;
*sections = biquadFilterLpfCascadeInit(biquadSections, order, lpfHz, gyro.targetLooptime);
}
}
break;
case FILTER_FAST_KALMAN:
*lowpassFilterApplyFn = (filterApplyFnPtr) fastKalmanUpdate;
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
fastKalmanInit(&lowpassFilter[axis].fastKalmanFilterState, gain / 2);
}
break;
#if defined(USE_FIR_FILTER_DENOISE)
case FILTER_FIR:
*lowpassFilterApplyFn = (filterApplyFnPtr) firFilterDenoiseUpdate;
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
firFilterDenoiseInit(&lowpassFilter[axis].denoiseFilterState, lpfHz, gyro.targetLooptime);
}
break;
#endif
}
}
}
static void gyroInitLmaSmoothing(gyroSensor_t *gyroSensor, uint8_t depth, uint8_t weight)
{
gyroSensor->lmaSmoothingApplyFn = nullFilterApply;
if (depth && weight) {
const uint8_t windowSize = depth + 1;
const float lmaWeight = weight * 0.01f;
gyroSensor->lmaSmoothingApplyFn = (filterApplyFnPtr)lmaSmoothingUpdate;
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
lmaSmoothingInit(&gyroSensor->lmaSmoothingFilter[axis], windowSize, lmaWeight);
}
}
}
static uint16_t calculateNyquistAdjustedNotchHz(uint16_t notchHz, uint16_t notchCutoffHz)
{
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
if (notchHz > gyroFrequencyNyquist) {
if (notchCutoffHz < gyroFrequencyNyquist) {
notchHz = gyroFrequencyNyquist;
} else {
notchHz = 0;
}
}
return notchHz;
}
#if defined(USE_GYRO_SLEW_LIMITER)
void gyroInitSlewLimiter(gyroSensor_t *gyroSensor) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroSensor->gyroDev.gyroADCRawPrevious[axis] = 0;
}
}
#endif
static void gyroInitFilterNotch1(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz)
{
gyroSensor->notchFilter1ApplyFn = nullFilterApply;
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
if (notchHz != 0 && notchCutoffHz != 0) {
gyroSensor->notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply;
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
biquadFilterInit(&gyroSensor->notchFilter1[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
}
}
}
static void gyroInitFilterNotch2(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz)
{
gyroSensor->notchFilter2ApplyFn = nullFilterApply;
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
if (notchHz != 0 && notchCutoffHz != 0) {
gyroSensor->notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply;
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
biquadFilterInit(&gyroSensor->notchFilter2[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
}
}
}
#ifdef USE_GYRO_DATA_ANALYSE
static bool isDynamicFilterActive(void)
{
return feature(FEATURE_DYNAMIC_FILTER);
}
static void gyroInitFilterDynamicNotch(gyroSensor_t *gyroSensor)
{
gyroSensor->notchFilterDynApplyFn = nullFilterApply;
if (isDynamicFilterActive()) {
gyroSensor->notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
const float notchQ = filterGetNotchQ(400, 390); //just any init value
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
biquadFilterInit(&gyroSensor->notchFilterDyn[axis], 400, gyro.targetLooptime, notchQ, FILTER_NOTCH);
}
}
}
#endif
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor)
{
#if defined(USE_GYRO_SLEW_LIMITER)
gyroInitSlewLimiter(gyroSensor);
#endif
gyroInitLowpassFilterLpf(
gyroSensor,
FILTER_LOWPASS,
gyroConfig()->gyro_lowpass_type,
gyroConfig()->gyro_lowpass_hz,
gyroConfig()->gyro_lowpass_order
);
gyroInitLowpassFilterLpf(
gyroSensor,
FILTER_LOWPASS2,
gyroConfig()->gyro_lowpass2_type,
gyroConfig()->gyro_lowpass2_hz,
gyroConfig()->gyro_lowpass2_order
);
gyroInitLmaSmoothing(gyroSensor, gyroConfig()->gyro_lma_depth, gyroConfig()->gyro_lma_weight);
gyroInitFilterNotch1(gyroSensor, gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1);
gyroInitFilterNotch2(gyroSensor, gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2);
#ifdef USE_GYRO_DATA_ANALYSE
gyroInitFilterDynamicNotch(gyroSensor);
#endif
}
void gyroInitFilters(void)
{
gyroInitSensorFilters(&gyroSensor1);
#ifdef USE_DUAL_GYRO
gyroInitSensorFilters(&gyroSensor2);
#endif
}
FAST_CODE bool isGyroSensorCalibrationComplete(const gyroSensor_t *gyroSensor)
{
return gyroSensor->calibration.calibratingG == 0;
}
FAST_CODE bool isGyroCalibrationComplete(void)
{
#ifdef USE_DUAL_GYRO
switch (gyroToUse) {
default:
case GYRO_CONFIG_USE_GYRO_1: {
return isGyroSensorCalibrationComplete(&gyroSensor1);
}
case GYRO_CONFIG_USE_GYRO_2: {
return isGyroSensorCalibrationComplete(&gyroSensor2);
}
case GYRO_CONFIG_USE_GYRO_BOTH: {
return isGyroSensorCalibrationComplete(&gyroSensor1) && isGyroSensorCalibrationComplete(&gyroSensor2);
}
}
#else
return isGyroSensorCalibrationComplete(&gyroSensor1);
#endif
}
static bool isOnFinalGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
{
return gyroCalibration->calibratingG == 1;
}
static uint16_t gyroCalculateCalibratingCycles(void)
{
return (CALIBRATING_GYRO_TIME_US / gyro.targetLooptime);
}
static bool isOnFirstGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
{
return gyroCalibration->calibratingG == gyroCalculateCalibratingCycles();
}
static void gyroSetCalibrationCycles(gyroSensor_t *gyroSensor)
{
gyroSensor->calibration.calibratingG = gyroCalculateCalibratingCycles();
}
void gyroStartCalibration(bool isFirstArmingCalibration)
{
if (!(isFirstArmingCalibration && firstArmingCalibrationWasStarted)) {
gyroSetCalibrationCycles(&gyroSensor1);
#ifdef USE_DUAL_GYRO
gyroSetCalibrationCycles(&gyroSensor2);
#endif
if (isFirstArmingCalibration) {
firstArmingCalibrationWasStarted = true;
}
}
}
bool isFirstArmingGyroCalibrationRunning(void)
{
return firstArmingCalibrationWasStarted && !isGyroCalibrationComplete();
}
STATIC_UNIT_TESTED void performGyroCalibration(gyroSensor_t *gyroSensor, uint8_t gyroMovementCalibrationThreshold)
{
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
// Reset g[axis] at start of calibration
if (isOnFirstGyroCalibrationCycle(&gyroSensor->calibration)) {
gyroSensor->calibration.sum[axis] = 0;
devClear(&gyroSensor->calibration.var[axis]);
// gyroZero is set to zero until calibration complete
gyroSensor->gyroDev.gyroZero[axis] = 0;
}
// Sum up CALIBRATING_GYRO_TIME_US readings
gyroSensor->calibration.sum[axis] += gyroSensor->gyroDev.gyroADCRaw[axis];
devPush(&gyroSensor->calibration.var[axis], gyroSensor->gyroDev.gyroADCRaw[axis]);
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
const float stddev = devStandardDeviation(&gyroSensor->calibration.var[axis]);
DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(stddev));
// check deviation and startover in case the model was moved
if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) {
gyroSetCalibrationCycles(gyroSensor);
return;
}
// please take care with exotic boardalignment !!
gyroSensor->gyroDev.gyroZero[axis] = gyroSensor->calibration.sum[axis] / gyroCalculateCalibratingCycles();
if (axis == Z) {
gyroSensor->gyroDev.gyroZero[axis] -= ((float)gyroConfig()->gyro_offset_yaw / 100);
}
}
}
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics
if (!firstArmingCalibrationWasStarted || (getArmingDisableFlags() & ~ARMING_DISABLED_CALIBRATING) == 0) {
beeper(BEEPER_GYRO_CALIBRATED);
}
}
--gyroSensor->calibration.calibratingG;
}
#if defined(USE_GYRO_SLEW_LIMITER)
FAST_CODE int32_t gyroSlewLimiter(gyroSensor_t *gyroSensor, int axis)
{
int32_t ret = (int32_t)gyroSensor->gyroDev.gyroADCRaw[axis];
if (gyroConfig()->checkOverflow || gyroHasOverflowProtection) {
// don't use the slew limiter if overflow checking is on or gyro is not subject to overflow bug
return ret;
}
if (abs(ret - gyroSensor->gyroDev.gyroADCRawPrevious[axis]) > (1<<14)) {
// there has been a large change in value, so assume overflow has occurred and return the previous value
ret = gyroSensor->gyroDev.gyroADCRawPrevious[axis];
} else {
gyroSensor->gyroDev.gyroADCRawPrevious[axis] = ret;
}
return ret;
}
#endif
static void checkForOverflow(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs)
{
#ifdef USE_GYRO_OVERFLOW_CHECK
// check for overflow to handle Yaw Spin To The Moon (YSTTM)
// ICM gyros are specified to +/- 2000 deg/sec, in a crash they can go out of spec.
// This can cause an overflow and sign reversal in the output.
// Overflow and sign reversal seems to result in a gyro value of +1996 or -1996.
if (gyroSensor->overflowDetected) {
const float gyroOverflowResetRate = GYRO_OVERFLOW_RESET_THRESHOLD * gyroSensor->gyroDev.scale;
if ((abs(gyro.gyroADCf[X]) < gyroOverflowResetRate)
&& (abs(gyro.gyroADCf[Y]) < gyroOverflowResetRate)
&& (abs(gyro.gyroADCf[Z]) < gyroOverflowResetRate)) {
// if we have 50ms of consecutive OK gyro vales, then assume yaw readings are OK again and reset overflowDetected
// reset requires good OK values on all axes
if (cmpTimeUs(currentTimeUs, gyroSensor->overflowTimeUs) > 50000) {
gyroSensor->overflowDetected = false;
}
} else {
// not a consecutive OK value, so reset the overflow time
gyroSensor->overflowTimeUs = currentTimeUs;
}
} else {
#ifndef SIMULATOR_BUILD
// check for overflow in the axes set in overflowAxisMask
gyroOverflow_e overflowCheck = GYRO_OVERFLOW_NONE;
const float gyroOverflowTriggerRate = GYRO_OVERFLOW_TRIGGER_THRESHOLD * gyroSensor->gyroDev.scale;
if (abs(gyro.gyroADCf[X]) > gyroOverflowTriggerRate) {
overflowCheck |= GYRO_OVERFLOW_X;
}
if (abs(gyro.gyroADCf[Y]) > gyroOverflowTriggerRate) {
overflowCheck |= GYRO_OVERFLOW_Y;
}
if (abs(gyro.gyroADCf[Z]) > gyroOverflowTriggerRate) {
overflowCheck |= GYRO_OVERFLOW_Z;
}
if (overflowCheck & overflowAxisMask) {
gyroSensor->overflowDetected = true;
gyroSensor->overflowTimeUs = currentTimeUs;
#ifdef USE_YAW_SPIN_RECOVERY
gyroSensor->yawSpinDetected = false;
#endif // USE_YAW_SPIN_RECOVERY
}
#endif // SIMULATOR_BUILD
}
#else
UNUSED(gyroSensor);
UNUSED(currentTimeUs);
#endif // USE_GYRO_OVERFLOW_CHECK
}
static void checkForYawSpin(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs)
{
#ifdef USE_YAW_SPIN_RECOVERY
// if not in overflow mode, handle yaw spins above threshold
#ifdef USE_GYRO_OVERFLOW_CHECK
if (gyroSensor->overflowDetected) {
gyroSensor->yawSpinDetected = false;
return;
}
#endif // USE_GYRO_OVERFLOW_CHECK
if (gyroSensor->yawSpinDetected) {
const float yawSpinResetRate = gyroConfig()->yaw_spin_threshold - 100.0f;
if (abs(gyro.gyroADCf[Z]) < yawSpinResetRate) {
// testing whether 20ms of consecutive OK gyro yaw values is enough
if (cmpTimeUs(currentTimeUs, gyroSensor->yawSpinTimeUs) > 20000) {
gyroSensor->yawSpinDetected = false;
}
} else {
// reset the yaw spin time
gyroSensor->yawSpinTimeUs = currentTimeUs;
}
} else {
#ifndef SIMULATOR_BUILD
// check for spin on yaw axis only
const float yawSpinTriggerRate = gyroConfig()->yaw_spin_threshold;
if (abs(gyro.gyroADCf[Z]) > yawSpinTriggerRate) {
gyroSensor->yawSpinDetected = true;
gyroSensor->yawSpinTimeUs = currentTimeUs;
}
#endif // SIMULATOR_BUILD
}
#else
UNUSED(gyroSensor);
UNUSED(currentTimeUs);
#endif // USE_YAW_SPIN_RECOVERY
}
static FAST_CODE NOINLINE void gyroUpdateSensor(gyroSensor_t *gyroSensor, timeUs_t currentTimeUs)
{
if (!gyroSensor->gyroDev.readFn(&gyroSensor->gyroDev)) {
return;
}
gyroSensor->gyroDev.dataReady = false;
if (isGyroSensorCalibrationComplete(gyroSensor)) {
// move 16-bit gyro data into 32-bit variables to avoid overflows in calculations
#if defined(USE_GYRO_SLEW_LIMITER)
gyroSensor->gyroDev.gyroADC[X] = gyroSlewLimiter(gyroSensor, X) - gyroSensor->gyroDev.gyroZero[X];
gyroSensor->gyroDev.gyroADC[Y] = gyroSlewLimiter(gyroSensor, Y) - gyroSensor->gyroDev.gyroZero[Y];
gyroSensor->gyroDev.gyroADC[Z] = gyroSlewLimiter(gyroSensor, Z) - gyroSensor->gyroDev.gyroZero[Z];
#else
gyroSensor->gyroDev.gyroADC[X] = gyroSensor->gyroDev.gyroADCRaw[X] - gyroSensor->gyroDev.gyroZero[X];
gyroSensor->gyroDev.gyroADC[Y] = gyroSensor->gyroDev.gyroADCRaw[Y] - gyroSensor->gyroDev.gyroZero[Y];
gyroSensor->gyroDev.gyroADC[Z] = gyroSensor->gyroDev.gyroADCRaw[Z] - gyroSensor->gyroDev.gyroZero[Z];
#endif
alignSensors(gyroSensor->gyroDev.gyroADC, gyroSensor->gyroDev.gyroAlign);
} else {
performGyroCalibration(gyroSensor, gyroConfig()->gyroMovementCalibrationThreshold);
// still calibrating, so no need to further process gyro data
return;
}
#ifdef USE_GYRO_DATA_ANALYSE
if (isDynamicFilterActive()) {
gyroDataAnalyse(&gyroSensor->gyroDev, gyroSensor->notchFilterDyn);
}
#endif
const timeDelta_t sampleDeltaUs = currentTimeUs - accumulationLastTimeSampledUs;
accumulationLastTimeSampledUs = currentTimeUs;
accumulatedMeasurementTimeUs += sampleDeltaUs;
if (gyroConfig()->checkOverflow && !gyroHasOverflowProtection) {
checkForOverflow(gyroSensor, currentTimeUs);
}
if (gyroConfig()->yaw_spin_recovery) {
checkForYawSpin(gyroSensor, currentTimeUs);
}
if (gyroDebugMode == DEBUG_NONE) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
// NOTE: this branch optimized for when there is no gyro debugging, ensure it is kept in step with non-optimized branch
float gyroADCf = gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
gyroADCf = gyroSensor->lowpass2FilterApplyFn((filter_t *)&gyroSensor->lowpass2Filter[axis], gyroADCf);
gyroADCf = gyroSensor->lmaSmoothingApplyFn((filter_t *)&gyroSensor->lmaSmoothingFilter[axis], gyroADCf);
#ifdef USE_GYRO_DATA_ANALYSE
gyroADCf = gyroSensor->notchFilterDynApplyFn((filter_t *)&gyroSensor->notchFilterDyn[axis], gyroADCf);
#endif
gyroADCf = gyroSensor->notchFilter1ApplyFn((filter_t *)&gyroSensor->notchFilter1[axis], gyroADCf);
gyroADCf = gyroSensor->notchFilter2ApplyFn((filter_t *)&gyroSensor->notchFilter2[axis], gyroADCf);
gyroADCf = gyroSensor->lowpassFilterApplyFn((filter_t *)&gyroSensor->lowpassFilter[axis], gyroADCf);
gyroSensor->gyroDev.gyroADCf[axis] = gyroADCf;
if (!gyroSensor->overflowDetected) {
// integrate using trapezium rule to avoid bias
accumulatedMeasurements[axis] += 0.5f * (gyroPrevious[axis] + gyroADCf) * sampleDeltaUs;
gyroPrevious[axis] = gyroADCf;
}
}
} else {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
DEBUG_SET(DEBUG_GYRO_RAW, axis, gyroSensor->gyroDev.gyroADCRaw[axis]);
// scale gyro output to degrees per second
float gyroADCf = gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
// DEBUG_GYRO_NOTCH records the unfiltered gyro output
DEBUG_SET(DEBUG_GYRO_NOTCH, axis, lrintf(gyroADCf));
// apply lowpass2 filter
gyroADCf = gyroSensor->lowpass2FilterApplyFn((filter_t *)&gyroSensor->lowpass2Filter[axis], gyroADCf);
gyroADCf = gyroSensor->lmaSmoothingApplyFn((filter_t *)&gyroSensor->lmaSmoothingFilter[axis], gyroADCf);
#ifdef USE_GYRO_DATA_ANALYSE
// apply dynamic notch filter
if (isDynamicFilterActive()) {
if (axis == 0) {
DEBUG_SET(DEBUG_FFT, 0, lrintf(gyroADCf)); // store raw data
}
gyroADCf = gyroSensor->notchFilterDynApplyFn((filter_t *)&gyroSensor->notchFilterDyn[axis], gyroADCf);
if (axis == 0) {
DEBUG_SET(DEBUG_FFT, 1, lrintf(gyroADCf)); // store data after dynamic notch
}
}
#endif
// apply static notch filters
gyroADCf = gyroSensor->notchFilter1ApplyFn((filter_t *)&gyroSensor->notchFilter1[axis], gyroADCf);
gyroADCf = gyroSensor->notchFilter2ApplyFn((filter_t *)&gyroSensor->notchFilter2[axis], gyroADCf);
// apply lowpass2 filter
DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf));
gyroADCf = gyroSensor->lowpassFilterApplyFn((filter_t *)&gyroSensor->lowpassFilter[axis], gyroADCf);
gyroSensor->gyroDev.gyroADCf[axis] = gyroADCf;
if (!gyroSensor->overflowDetected) {
// integrate using trapezium rule to avoid bias
accumulatedMeasurements[axis] += 0.5f * (gyroPrevious[axis] + gyroADCf) * sampleDeltaUs;
gyroPrevious[axis] = gyroADCf;
}
}
}
}
FAST_CODE void gyroUpdate(timeUs_t currentTimeUs)
{
#ifdef USE_DUAL_GYRO
switch (gyroToUse) {
case GYRO_CONFIG_USE_GYRO_1:
gyroUpdateSensor(&gyroSensor1, currentTimeUs);
if (isGyroSensorCalibrationComplete(&gyroSensor1)) {
gyro.gyroADCf[X] = gyroSensor1.gyroDev.gyroADCf[X];
gyro.gyroADCf[Y] = gyroSensor1.gyroDev.gyroADCf[Y];
gyro.gyroADCf[Z] = gyroSensor1.gyroDev.gyroADCf[Z];
}
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyroSensor1.gyroDev.gyroADCRaw[X]);
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyroSensor1.gyroDev.gyroADCRaw[Y]);
DEBUG_SET(DEBUG_DUAL_GYRO, 0, lrintf(gyroSensor1.gyroDev.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO, 1, lrintf(gyroSensor1.gyroDev.gyroADCf[Y]));
DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 0, lrintf(gyro.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 1, lrintf(gyro.gyroADCf[Y]));
break;
case GYRO_CONFIG_USE_GYRO_2:
gyroUpdateSensor(&gyroSensor2, currentTimeUs);
if (isGyroSensorCalibrationComplete(&gyroSensor2)) {
gyro.gyroADCf[X] = gyroSensor2.gyroDev.gyroADCf[X];
gyro.gyroADCf[Y] = gyroSensor2.gyroDev.gyroADCf[Y];
gyro.gyroADCf[Z] = gyroSensor2.gyroDev.gyroADCf[Z];
}
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyroSensor2.gyroDev.gyroADCRaw[X]);
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyroSensor2.gyroDev.gyroADCRaw[Y]);
DEBUG_SET(DEBUG_DUAL_GYRO, 2, lrintf(gyroSensor2.gyroDev.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO, 3, lrintf(gyroSensor2.gyroDev.gyroADCf[Y]));
DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 2, lrintf(gyro.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 3, lrintf(gyro.gyroADCf[Y]));
break;
case GYRO_CONFIG_USE_GYRO_BOTH:
gyroUpdateSensor(&gyroSensor1, currentTimeUs);
gyroUpdateSensor(&gyroSensor2, currentTimeUs);
if (isGyroSensorCalibrationComplete(&gyroSensor1) && isGyroSensorCalibrationComplete(&gyroSensor2)) {
gyro.gyroADCf[X] = (gyroSensor1.gyroDev.gyroADCf[X] + gyroSensor2.gyroDev.gyroADCf[X]) / 2.0f;
gyro.gyroADCf[Y] = (gyroSensor1.gyroDev.gyroADCf[Y] + gyroSensor2.gyroDev.gyroADCf[Y]) / 2.0f;
gyro.gyroADCf[Z] = (gyroSensor1.gyroDev.gyroADCf[Z] + gyroSensor2.gyroDev.gyroADCf[Z]) / 2.0f;
}
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyroSensor1.gyroDev.gyroADCRaw[X]);
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyroSensor1.gyroDev.gyroADCRaw[Y]);
DEBUG_SET(DEBUG_DUAL_GYRO, 0, lrintf(gyroSensor1.gyroDev.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO, 1, lrintf(gyroSensor1.gyroDev.gyroADCf[Y]));
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyroSensor2.gyroDev.gyroADCRaw[X]);
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyroSensor2.gyroDev.gyroADCRaw[Y]);
DEBUG_SET(DEBUG_DUAL_GYRO, 2, lrintf(gyroSensor2.gyroDev.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO, 3, lrintf(gyroSensor2.gyroDev.gyroADCf[Y]));
DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 1, lrintf(gyro.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO_COMBINE, 2, lrintf(gyro.gyroADCf[Y]));
DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 0, lrintf(gyroSensor1.gyroDev.gyroADCf[X] - gyroSensor2.gyroDev.gyroADCf[X]));
DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 1, lrintf(gyroSensor1.gyroDev.gyroADCf[Y] - gyroSensor2.gyroDev.gyroADCf[Y]));
DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 2, lrintf(gyroSensor1.gyroDev.gyroADCf[Z] - gyroSensor2.gyroDev.gyroADCf[Z]));
break;
}
#else
gyroUpdateSensor(&gyroSensor1, currentTimeUs);
gyro.gyroADCf[X] = gyroSensor1.gyroDev.gyroADCf[X];
gyro.gyroADCf[Y] = gyroSensor1.gyroDev.gyroADCf[Y];
gyro.gyroADCf[Z] = gyroSensor1.gyroDev.gyroADCf[Z];
#endif
}
bool gyroGetAccumulationAverage(float *accumulationAverage)
{
if (accumulatedMeasurementTimeUs > 0) {
// If we have gyro data accumulated, calculate average rate that will yield the same rotation
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
accumulationAverage[axis] = accumulatedMeasurements[axis] / accumulatedMeasurementTimeUs;
accumulatedMeasurements[axis] = 0.0f;
}
accumulatedMeasurementTimeUs = 0;
return true;
} else {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
accumulationAverage[axis] = 0.0f;
}
return false;
}
}
void gyroReadTemperature(void)
{
if (gyroSensor1.gyroDev.temperatureFn) {
gyroSensor1.gyroDev.temperatureFn(&gyroSensor1.gyroDev, &gyroSensor1.gyroDev.temperature);
}
}
int16_t gyroGetTemperature(void)
{
return gyroSensor1.gyroDev.temperature;
}
int16_t gyroRateDps(int axis)
{
#ifdef USE_DUAL_GYRO
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2) {
return lrintf(gyro.gyroADCf[axis] / gyroSensor2.gyroDev.scale);
} else {
return lrintf(gyro.gyroADCf[axis] / gyroSensor1.gyroDev.scale);
}
#else
return lrintf(gyro.gyroADCf[axis] / gyroSensor1.gyroDev.scale);
#endif
}
bool gyroOverflowDetected(void)
{
return gyroSensor1.overflowDetected;
}
#ifdef USE_YAW_SPIN_RECOVERY
bool gyroYawSpinDetected(void)
{
return gyroSensor1.yawSpinDetected;
}
#endif // USE_YAW_SPIN_RECOVERY
uint16_t gyroAbsRateDps(int axis)
{
return fabsf(gyro.gyroADCf[axis]);
}
#ifdef USE_GYRO_REGISTER_DUMP
uint8_t gyroReadRegister(uint8_t reg)
{
return mpuGyroReadRegister(gyroSensorBus(), reg);
}
#endif