1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-23 00:05:33 +03:00
betaflight/src/sensors_acceleration.c
Dominic Clifton 4a23491d49 Introduce better naming consistency for some union members. remove type
prefix from a typedef.

Conflicts:

	obj/cleanflight_OLIMEXINO.hex
	src/flight_common.c
2014-05-28 20:13:13 +01:00

166 lines
5.8 KiB
C

#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "common/axis.h"
#include "drivers/accgyro_common.h"
#include "flight_common.h"
#include "sensors_common.h"
#include "buzzer.h"
#include "boardalignment.h"
#include "runtime_config.h"
#include "config.h"
#include "sensors_acceleration.h"
acc_t acc; // acc access functions
uint8_t accHardware = ACC_DEFAULT; // which accel chip is used/detected
sensor_align_e accAlign = 0;
uint16_t acc_1G = 256; // this is the 1G measured acceleration.
uint16_t calibratingA = 0; // the calibration is done is the main loop. Calibrating decreases at each cycle down to 0, then we enter in a normal mode.
extern uint16_t InflightcalibratingA;
extern bool AccInflightCalibrationArmed;
extern bool AccInflightCalibrationMeasurementDone;
extern bool AccInflightCalibrationSavetoEEProm;
extern bool AccInflightCalibrationActive;
static flightDynamicsTrims_t *accelerationTrims;
void accSetCalibrationCycles(uint16_t calibrationCyclesRequired)
{
calibratingA = calibrationCyclesRequired;
}
bool isAccelerationCalibrationComplete(void)
{
return calibratingA == 0;
}
bool isOnFinalAccelerationCalibrationCycle(void)
{
return calibratingA == 1;
}
bool isOnFirstAccelerationCalibrationCycle(void)
{
return calibratingA == CALIBRATING_ACC_CYCLES;
}
void performAcclerationCalibration(rollAndPitchTrims_t *rollAndPitchTrims)
{
static int32_t a[3];
uint8_t axis;
for (axis = 0; axis < 3; axis++) {
// Reset a[axis] at start of calibration
if (isOnFirstAccelerationCalibrationCycle())
a[axis] = 0;
// Sum up CALIBRATING_ACC_CYCLES readings
a[axis] += accADC[axis];
// Reset global variables to prevent other code from using un-calibrated data
accADC[axis] = 0;
accelerationTrims->raw[axis] = 0;
}
if (isOnFinalAccelerationCalibrationCycle()) {
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
accelerationTrims->raw[FD_ROLL] = (a[FD_ROLL] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES;
accelerationTrims->raw[FD_PITCH] = (a[FD_PITCH] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES;
accelerationTrims->raw[FD_YAW] = (a[FD_YAW] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES - acc_1G;
resetRollAndPitchTrims(rollAndPitchTrims);
saveAndReloadCurrentProfileToCurrentProfileSlot();
}
calibratingA--;
}
void performInflightAccelerationCalibration(rollAndPitchTrims_t *rollAndPitchTrims)
{
uint8_t axis;
static int32_t b[3];
static int16_t accZero_saved[3] = { 0, 0, 0 };
static rollAndPitchTrims_t angleTrim_saved = { { 0, 0 } };
// Saving old zeropoints before measurement
if (InflightcalibratingA == 50) {
accZero_saved[FD_ROLL] = accelerationTrims->raw[FD_ROLL];
accZero_saved[FD_PITCH] = accelerationTrims->raw[FD_PITCH];
accZero_saved[FD_YAW] = accelerationTrims->raw[FD_YAW];
angleTrim_saved.values.roll = rollAndPitchTrims->values.roll;
angleTrim_saved.values.pitch = rollAndPitchTrims->values.pitch;
}
if (InflightcalibratingA > 0) {
for (axis = 0; axis < 3; axis++) {
// Reset a[axis] at start of calibration
if (InflightcalibratingA == 50)
b[axis] = 0;
// Sum up 50 readings
b[axis] += accADC[axis];
// Clear global variables for next reading
accADC[axis] = 0;
accelerationTrims->raw[axis] = 0;
}
// all values are measured
if (InflightcalibratingA == 1) {
AccInflightCalibrationActive = false;
AccInflightCalibrationMeasurementDone = true;
queueConfirmationBeep(2); // buzzer to indicatiing the end of calibration
// recover saved values to maintain current flight behavior until new values are transferred
accelerationTrims->raw[FD_ROLL] = accZero_saved[FD_ROLL];
accelerationTrims->raw[FD_PITCH] = accZero_saved[FD_PITCH];
accelerationTrims->raw[FD_YAW] = accZero_saved[FD_YAW];
rollAndPitchTrims->values.roll = angleTrim_saved.values.roll;
rollAndPitchTrims->values.pitch = angleTrim_saved.values.pitch;
}
InflightcalibratingA--;
}
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
if (AccInflightCalibrationSavetoEEProm) { // the copter is landed, disarmed and the combo has been done again
AccInflightCalibrationSavetoEEProm = false;
accelerationTrims->raw[FD_ROLL] = b[FD_ROLL] / 50;
accelerationTrims->raw[FD_PITCH] = b[FD_PITCH] / 50;
accelerationTrims->raw[FD_YAW] = b[FD_YAW] / 50 - acc_1G; // for nunchuk 200=1G
resetRollAndPitchTrims(rollAndPitchTrims);
saveAndReloadCurrentProfileToCurrentProfileSlot();
}
}
void applyAccelerationTrims(flightDynamicsTrims_t *accelerationTrims)
{
accADC[FD_ROLL] -= accelerationTrims->raw[FD_ROLL];
accADC[FD_PITCH] -= accelerationTrims->raw[FD_PITCH];
accADC[FD_YAW] -= accelerationTrims->raw[FD_YAW];
}
void updateAccelerationReadings(rollAndPitchTrims_t *rollAndPitchTrims)
{
acc.read(accADC);
alignSensors(accADC, accADC, accAlign);
if (!isAccelerationCalibrationComplete()) {
performAcclerationCalibration(rollAndPitchTrims);
}
if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
performInflightAccelerationCalibration(rollAndPitchTrims);
}
applyAccelerationTrims(accelerationTrims);
}
void setAccelerationTrims(flightDynamicsTrims_t *accelerationTrimsToUse)
{
accelerationTrims = accelerationTrimsToUse;
}