1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-24 16:55:36 +03:00
betaflight/src/main/drivers/bus_spi_ll.c
Steve Evans 4aab87539f Implement queuing of SPI request segments
Use union in busSegment_t as per ledvinap feedback
2022-01-06 01:18:18 +00:00

701 lines
23 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#if defined(USE_SPI)
#include "common/utils.h"
#include "common/maths.h"
#include "drivers/bus.h"
#include "drivers/bus_spi.h"
#include "drivers/bus_spi_impl.h"
#include "drivers/dma.h"
#include "drivers/io.h"
#include "drivers/rcc.h"
#ifndef SPI2_SCK_PIN
#define SPI2_NSS_PIN PB12
#define SPI2_SCK_PIN PB13
#define SPI2_MISO_PIN PB14
#define SPI2_MOSI_PIN PB15
#endif
#ifndef SPI3_SCK_PIN
#define SPI3_NSS_PIN PA15
#define SPI3_SCK_PIN PB3
#define SPI3_MISO_PIN PB4
#define SPI3_MOSI_PIN PB5
#endif
#ifndef SPI4_SCK_PIN
#define SPI4_NSS_PIN PA15
#define SPI4_SCK_PIN PB3
#define SPI4_MISO_PIN PB4
#define SPI4_MOSI_PIN PB5
#endif
#ifndef SPI1_NSS_PIN
#define SPI1_NSS_PIN NONE
#endif
#ifndef SPI2_NSS_PIN
#define SPI2_NSS_PIN NONE
#endif
#ifndef SPI3_NSS_PIN
#define SPI3_NSS_PIN NONE
#endif
#ifndef SPI4_NSS_PIN
#define SPI4_NSS_PIN NONE
#endif
#define SPI_DEFAULT_TIMEOUT 10
#ifdef STM32H7
#define IS_DTCM(p) (((uint32_t)p & 0xfffe0000) == 0x20000000)
#elif defined(STM32F7)
#define IS_DTCM(p) (((uint32_t)p & 0xffff0000) == 0x20000000)
#elif defined(STM32G4)
#define IS_CCM(p) ((((uint32_t)p & 0xffff8000) == 0x10000000) || (((uint32_t)p & 0xffff8000) == 0x20018000))
#endif
static LL_SPI_InitTypeDef defaultInit =
{
.TransferDirection = LL_SPI_FULL_DUPLEX,
.Mode = LL_SPI_MODE_MASTER,
.DataWidth = LL_SPI_DATAWIDTH_8BIT,
.NSS = LL_SPI_NSS_SOFT,
.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV8,
.BitOrder = LL_SPI_MSB_FIRST,
.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE,
.ClockPolarity = LL_SPI_POLARITY_HIGH,
.ClockPhase = LL_SPI_PHASE_2EDGE,
};
static uint32_t spiDivisorToBRbits(SPI_TypeDef *instance, uint16_t divisor)
{
#if !defined(STM32H7)
// SPI2 and SPI3 are on APB1/AHB1 which PCLK is half that of APB2/AHB2.
if (instance == SPI2 || instance == SPI3) {
divisor /= 2; // Safe for divisor == 0 or 1
}
#else
UNUSED(instance);
#endif
divisor = constrain(divisor, 2, 256);
#if defined(STM32H7)
const uint32_t baudRatePrescaler[8] = {
LL_SPI_BAUDRATEPRESCALER_DIV2,
LL_SPI_BAUDRATEPRESCALER_DIV4,
LL_SPI_BAUDRATEPRESCALER_DIV8,
LL_SPI_BAUDRATEPRESCALER_DIV16,
LL_SPI_BAUDRATEPRESCALER_DIV32,
LL_SPI_BAUDRATEPRESCALER_DIV64,
LL_SPI_BAUDRATEPRESCALER_DIV128,
LL_SPI_BAUDRATEPRESCALER_DIV256,
};
int prescalerIndex = ffs(divisor) - 2; // prescaler begins at "/2"
return baudRatePrescaler[prescalerIndex];
#else
return (ffs(divisor) - 2) << SPI_CR1_BR_Pos;
#endif
}
void spiInitDevice(SPIDevice device)
{
spiDevice_t *spi = &spiDevice[device];
if (!spi->dev) {
return;
}
// Enable SPI clock
RCC_ClockCmd(spi->rcc, ENABLE);
RCC_ResetCmd(spi->rcc, ENABLE);
IOInit(IOGetByTag(spi->sck), OWNER_SPI_SCK, RESOURCE_INDEX(device));
IOInit(IOGetByTag(spi->miso), OWNER_SPI_MISO, RESOURCE_INDEX(device));
IOInit(IOGetByTag(spi->mosi), OWNER_SPI_MOSI, RESOURCE_INDEX(device));
IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG, spi->misoAF);
IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->mosiAF);
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_HIGH, spi->sckAF);
LL_SPI_Disable(spi->dev);
LL_SPI_DeInit(spi->dev);
#if defined(STM32H7)
// Prevent glitching when SPI is disabled
LL_SPI_EnableGPIOControl(spi->dev);
LL_SPI_SetFIFOThreshold(spi->dev, LL_SPI_FIFO_TH_01DATA);
LL_SPI_Init(spi->dev, &defaultInit);
#else
LL_SPI_SetRxFIFOThreshold(spi->dev, SPI_RXFIFO_THRESHOLD_QF);
LL_SPI_Init(spi->dev, &defaultInit);
LL_SPI_Enable(spi->dev);
#endif
}
void spiInternalResetDescriptors(busDevice_t *bus)
{
LL_DMA_InitTypeDef *initTx = bus->initTx;
LL_DMA_StructInit(initTx);
#if defined(STM32G4) || defined(STM32H7)
initTx->PeriphRequest = bus->dmaTx->channel;
#else
initTx->Channel = bus->dmaTx->channel;
#endif
initTx->Mode = LL_DMA_MODE_NORMAL;
initTx->Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
#if defined(STM32H7)
initTx->PeriphOrM2MSrcAddress = (uint32_t)&bus->busType_u.spi.instance->TXDR;
#else
initTx->PeriphOrM2MSrcAddress = (uint32_t)&bus->busType_u.spi.instance->DR;
#endif
initTx->Priority = LL_DMA_PRIORITY_LOW;
initTx->PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
initTx->PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_BYTE;
initTx->MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
if (bus->dmaRx) {
LL_DMA_InitTypeDef *initRx = bus->initRx;
LL_DMA_StructInit(initRx);
#if defined(STM32G4) || defined(STM32H7)
initRx->PeriphRequest = bus->dmaRx->channel;
#else
initRx->Channel = bus->dmaRx->channel;
#endif
initRx->Mode = LL_DMA_MODE_NORMAL;
initRx->Direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY;
#if defined(STM32H7)
initRx->PeriphOrM2MSrcAddress = (uint32_t)&bus->busType_u.spi.instance->RXDR;
#else
initRx->PeriphOrM2MSrcAddress = (uint32_t)&bus->busType_u.spi.instance->DR;
#endif
initRx->Priority = LL_DMA_PRIORITY_LOW;
initRx->PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
initRx->PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_BYTE;
}
}
void spiInternalResetStream(dmaChannelDescriptor_t *descriptor)
{
// Disable the stream
#if defined(STM32G4)
LL_DMA_DisableChannel(descriptor->dma, descriptor->stream);
while (LL_DMA_IsEnabledChannel(descriptor->dma, descriptor->stream));
#else
LL_DMA_DisableStream(descriptor->dma, descriptor->stream);
while (LL_DMA_IsEnabledStream(descriptor->dma, descriptor->stream));
#endif
// Clear any pending interrupt flags
DMA_CLEAR_FLAG(descriptor, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
}
static bool spiInternalReadWriteBufPolled(SPI_TypeDef *instance, const uint8_t *txData, uint8_t *rxData, int len)
{
#if defined(STM32H7)
int txLen = len;
int rxLen = len;
LL_SPI_SetTransferSize(instance, txLen);
LL_SPI_Enable(instance);
LL_SPI_StartMasterTransfer(instance);
while (txLen || rxLen) {
if (txLen && LL_SPI_IsActiveFlag_TXP(instance)) {
uint8_t b = txData ? *(txData++) : 0xFF;
LL_SPI_TransmitData8(instance, b);
txLen--;
}
if (rxLen && LL_SPI_IsActiveFlag_RXP(instance)) {
uint8_t b = LL_SPI_ReceiveData8(instance);
if (rxData) {
*(rxData++) = b;
}
rxLen--;
}
}
while (!LL_SPI_IsActiveFlag_EOT(instance));
LL_SPI_ClearFlag_TXTF(instance);
LL_SPI_Disable(instance);
#else
// set 16-bit transfer
CLEAR_BIT(instance->CR2, SPI_RXFIFO_THRESHOLD);
while (len > 1) {
while (!LL_SPI_IsActiveFlag_TXE(instance));
uint16_t w;
if (txData) {
w = *((uint16_t *)txData);
txData += 2;
} else {
w = 0xFFFF;
}
LL_SPI_TransmitData16(instance, w);
while (!LL_SPI_IsActiveFlag_RXNE(instance));
w = LL_SPI_ReceiveData16(instance);
if (rxData) {
*((uint16_t *)rxData) = w;
rxData += 2;
}
len -= 2;
}
// set 8-bit transfer
SET_BIT(instance->CR2, SPI_RXFIFO_THRESHOLD);
if (len) {
while (!LL_SPI_IsActiveFlag_TXE(instance));
uint8_t b = txData ? *(txData++) : 0xFF;
LL_SPI_TransmitData8(instance, b);
while (!LL_SPI_IsActiveFlag_RXNE(instance));
b = LL_SPI_ReceiveData8(instance);
if (rxData) {
*(rxData++) = b;
}
--len;
}
#endif
return true;
}
void spiInternalInitStream(const extDevice_t *dev, bool preInit)
{
STATIC_DMA_DATA_AUTO uint8_t dummyTxByte = 0xff;
STATIC_DMA_DATA_AUTO uint8_t dummyRxByte;
busDevice_t *bus = dev->bus;
busSegment_t *segment = bus->curSegment;
if (preInit) {
// Prepare the init structure for the next segment to reduce inter-segment interval
segment++;
if(segment->len == 0) {
// There's no following segment
return;
}
}
int len = segment->len;
uint8_t *txData = segment->u.buffers.txData;
LL_DMA_InitTypeDef *initTx = bus->initTx;
if (txData) {
#ifdef __DCACHE_PRESENT
#ifdef STM32H7
if ((txData < &_dmaram_start__) || (txData >= &_dmaram_end__)) {
#else
// No need to flush DTCM memory
if (!IS_DTCM(txData)) {
#endif
// Flush the D cache to ensure the data to be written is in main memory
SCB_CleanDCache_by_Addr(
(uint32_t *)((uint32_t)txData & ~CACHE_LINE_MASK),
(((uint32_t)txData & CACHE_LINE_MASK) + len - 1 + CACHE_LINE_SIZE) & ~CACHE_LINE_MASK);
}
#endif // __DCACHE_PRESENT
initTx->MemoryOrM2MDstAddress = (uint32_t)txData;
initTx->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
} else {
initTx->MemoryOrM2MDstAddress = (uint32_t)&dummyTxByte;
initTx->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_NOINCREMENT;
}
initTx->NbData = len;
#if !defined(STM32G4) && !defined(STM32H7)
if (dev->bus->dmaRx) {
#endif
uint8_t *rxData = segment->u.buffers.rxData;
LL_DMA_InitTypeDef *initRx = bus->initRx;
if (rxData) {
/* Flush the D cache for the start and end of the receive buffer as
* the cache will be invalidated after the transfer and any valid data
* just before/after must be in memory at that point
*/
#ifdef __DCACHE_PRESENT
// No need to flush/invalidate DTCM memory
#ifdef STM32H7
if ((rxData < &_dmaram_start__) || (rxData >= &_dmaram_end__)) {
#else
// No need to flush DTCM memory
if (!IS_DTCM(rxData)) {
#endif
SCB_CleanInvalidateDCache_by_Addr(
(uint32_t *)((uint32_t)rxData & ~CACHE_LINE_MASK),
(((uint32_t)rxData & CACHE_LINE_MASK) + len - 1 + CACHE_LINE_SIZE) & ~CACHE_LINE_MASK);
}
#endif // __DCACHE_PRESENT
initRx->MemoryOrM2MDstAddress = (uint32_t)rxData;
initRx->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
} else {
initRx->MemoryOrM2MDstAddress = (uint32_t)&dummyRxByte;
initRx->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_NOINCREMENT;
}
initRx->NbData = len;
#if !defined(STM32G4) && !defined(STM32H7)
}
#endif
}
void spiInternalStartDMA(const extDevice_t *dev)
{
busDevice_t *bus = dev->bus;
// Assert Chip Select
IOLo(dev->busType_u.spi.csnPin);
dmaChannelDescriptor_t *dmaTx = bus->dmaTx;
dmaChannelDescriptor_t *dmaRx = bus->dmaRx;
#if !defined(STM32G4) && !defined(STM32H7)
if (dmaRx) {
#endif
// Use the correct callback argument
dmaRx->userParam = (uint32_t)dev;
// Clear transfer flags
DMA_CLEAR_FLAG(dmaTx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
DMA_CLEAR_FLAG(dmaRx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
#ifdef STM32G4
// Disable channels to enable update
LL_DMA_DisableChannel(dmaTx->dma, dmaTx->stream);
LL_DMA_DisableChannel(dmaRx->dma, dmaRx->stream);
/* Use the Rx interrupt as this occurs once the SPI operation is complete whereas the Tx interrupt
* occurs earlier when the Tx FIFO is empty, but the SPI operation is still in progress
*/
LL_DMA_EnableIT_TC(dmaRx->dma, dmaRx->stream);
// Update channels
LL_DMA_Init(dmaTx->dma, dmaTx->stream, bus->initTx);
LL_DMA_Init(dmaRx->dma, dmaRx->stream, bus->initRx);
LL_SPI_EnableDMAReq_RX(dev->bus->busType_u.spi.instance);
// Enable channels
LL_DMA_EnableChannel(dmaTx->dma, dmaTx->stream);
LL_DMA_EnableChannel(dmaRx->dma, dmaRx->stream);
LL_SPI_EnableDMAReq_TX(dev->bus->busType_u.spi.instance);
#else
DMA_Stream_TypeDef *streamRegsTx = (DMA_Stream_TypeDef *)dmaTx->ref;
DMA_Stream_TypeDef *streamRegsRx = (DMA_Stream_TypeDef *)dmaRx->ref;
// Disable streams to enable update
LL_DMA_WriteReg(streamRegsTx, CR, 0U);
LL_DMA_WriteReg(streamRegsRx, CR, 0U);
/* Use the Rx interrupt as this occurs once the SPI operation is complete whereas the Tx interrupt
* occurs earlier when the Tx FIFO is empty, but the SPI operation is still in progress
*/
LL_EX_DMA_EnableIT_TC(streamRegsRx);
// Update streams
LL_DMA_Init(dmaTx->dma, dmaTx->stream, bus->initTx);
LL_DMA_Init(dmaRx->dma, dmaRx->stream, bus->initRx);
/* Note from AN4031
*
* If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
* (FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide
* the first required data to the peripheral (in case of memory-to-peripheral transfer).
*/
// Enable the SPI DMA Tx & Rx requests
#if defined(STM32H7)
LL_SPI_SetTransferSize(dev->bus->busType_u.spi.instance, dev->bus->curSegment->len);
LL_DMA_EnableStream(dmaTx->dma, dmaTx->stream);
LL_DMA_EnableStream(dmaRx->dma, dmaRx->stream);
SET_BIT(dev->bus->busType_u.spi.instance->CFG1, SPI_CFG1_RXDMAEN | SPI_CFG1_TXDMAEN);
LL_SPI_Enable(dev->bus->busType_u.spi.instance);
LL_SPI_StartMasterTransfer(dev->bus->busType_u.spi.instance);
#else
// Enable streams
LL_DMA_EnableStream(dmaTx->dma, dmaTx->stream);
LL_DMA_EnableStream(dmaRx->dma, dmaRx->stream);
SET_BIT(dev->bus->busType_u.spi.instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
#endif
#if !defined(STM32G4) && !defined(STM32H7)
} else {
DMA_Stream_TypeDef *streamRegsTx = (DMA_Stream_TypeDef *)dmaTx->ref;
// Use the correct callback argument
dmaTx->userParam = (uint32_t)dev;
// Clear transfer flags
DMA_CLEAR_FLAG(dmaTx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
// Disable streams to enable update
LL_DMA_WriteReg(streamRegsTx, CR, 0U);
LL_EX_DMA_EnableIT_TC(streamRegsTx);
// Update streams
LL_DMA_Init(dmaTx->dma, dmaTx->stream, bus->initTx);
/* Note from AN4031
*
* If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
* (FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide
* the first required data to the peripheral (in case of memory-to-peripheral transfer).
*/
// Enable the SPI DMA Tx request
// Enable streams
LL_DMA_EnableStream(dmaTx->dma, dmaTx->stream);
SET_BIT(dev->bus->busType_u.spi.instance->CR2, SPI_CR2_TXDMAEN);
}
#endif
#endif
}
void spiInternalStopDMA (const extDevice_t *dev)
{
busDevice_t *bus = dev->bus;
dmaChannelDescriptor_t *dmaTx = bus->dmaTx;
dmaChannelDescriptor_t *dmaRx = bus->dmaRx;
SPI_TypeDef *instance = bus->busType_u.spi.instance;
#if !defined(STM32G4) && !defined(STM32H7)
if (dmaRx) {
#endif
// Disable the DMA engine and SPI interface
#ifdef STM32G4
LL_DMA_DisableChannel(dmaTx->dma, dmaTx->stream);
LL_DMA_DisableChannel(dmaRx->dma, dmaRx->stream);
#else
LL_DMA_DisableStream(dmaRx->dma, dmaRx->stream);
LL_DMA_DisableStream(dmaTx->dma, dmaTx->stream);
#endif
// Clear transfer flags
DMA_CLEAR_FLAG(dmaRx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
LL_SPI_DisableDMAReq_TX(instance);
LL_SPI_DisableDMAReq_RX(instance);
#if defined(STM32H7)
LL_SPI_ClearFlag_TXTF(dev->bus->busType_u.spi.instance);
LL_SPI_Disable(dev->bus->busType_u.spi.instance);
#endif
#if !defined(STM32G4) && !defined(STM32H7)
} else {
SPI_TypeDef *instance = bus->busType_u.spi.instance;
// Ensure the current transmission is complete
while (LL_SPI_IsActiveFlag_BSY(instance));
// Drain the RX buffer
while (LL_SPI_IsActiveFlag_RXNE(instance)) {
instance->DR;
}
// Disable the DMA engine and SPI interface
LL_DMA_DisableStream(dmaTx->dma, dmaTx->stream);
DMA_CLEAR_FLAG(dmaTx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
LL_SPI_DisableDMAReq_TX(instance);
#endif
#if !defined(STM32G4) && !defined(STM32H7)
}
#endif
}
// DMA transfer setup and start
void spiSequenceStart(const extDevice_t *dev)
{
busDevice_t *bus = dev->bus;
SPI_TypeDef *instance = bus->busType_u.spi.instance;
spiDevice_t *spi = &spiDevice[spiDeviceByInstance(instance)];
bool dmaSafe = dev->useDMA;
uint32_t xferLen = 0;
uint32_t segmentCount = 0;
bus->initSegment = true;
// Switch bus speed
#if !defined(STM32H7)
LL_SPI_Disable(instance);
#endif
if (dev->busType_u.spi.speed != bus->busType_u.spi.speed) {
LL_SPI_SetBaudRatePrescaler(instance, spiDivisorToBRbits(instance, dev->busType_u.spi.speed));
bus->busType_u.spi.speed = dev->busType_u.spi.speed;
}
// Switch SPI clock polarity/phase if necessary
if (dev->busType_u.spi.leadingEdge != bus->busType_u.spi.leadingEdge) {
if (dev->busType_u.spi.leadingEdge) {
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_LOW, spi->sckAF);
LL_SPI_SetClockPhase(instance, LL_SPI_PHASE_1EDGE);
LL_SPI_SetClockPolarity(instance, LL_SPI_POLARITY_LOW);
}
else {
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_HIGH, spi->sckAF);
LL_SPI_SetClockPhase(instance, LL_SPI_PHASE_2EDGE);
LL_SPI_SetClockPolarity(instance, LL_SPI_POLARITY_HIGH);
}
bus->busType_u.spi.leadingEdge = dev->busType_u.spi.leadingEdge;
}
#if !defined(STM32H7)
LL_SPI_Enable(instance);
#endif
/* Where data is being read into a buffer which is cached, where the start or end of that
* buffer is not cache aligned, there is a risk of corruption of other data in that cache line.
* After the read is complete, the cache lines covering the structure will be invalidated to ensure
* that the processor sees the read data, not what was in cache previously. Unfortunately if
* there is any other data in the area covered by those cache lines, at the start or end of the
* buffer, it too will be invalidated, so had the processor written to those locations during the DMA
* operation those written values will be lost.
*/
// Check that any reads are cache aligned and of multiple cache lines in length
for (busSegment_t *checkSegment = bus->curSegment; checkSegment->len; checkSegment++) {
// Check there is no receive data as only transmit DMA is available
if ((checkSegment->u.buffers.rxData) && (bus->dmaRx == (dmaChannelDescriptor_t *)NULL)) {
dmaSafe = false;
break;
}
#ifdef STM32H7
// Check if RX data can be DMAed
if ((checkSegment->u.buffers.rxData) &&
// DTCM can't be accessed by DMA1/2 on the H7
(IS_DTCM(checkSegment->u.buffers.rxData) ||
// Memory declared as DMA_RAM will have an address between &_dmaram_start__ and &_dmaram_end__
(((checkSegment->u.buffers.rxData < &_dmaram_start__) || (checkSegment->u.buffers.rxData >= &_dmaram_end__)) &&
(((uint32_t)checkSegment->u.buffers.rxData & (CACHE_LINE_SIZE - 1)) || (checkSegment->len & (CACHE_LINE_SIZE - 1)))))) {
dmaSafe = false;
break;
}
// Check if TX data can be DMAed
else if ((checkSegment->u.buffers.txData) && IS_DTCM(checkSegment->u.buffers.txData)) {
dmaSafe = false;
break;
}
#elif defined(STM32F7)
if ((checkSegment->u.buffers.rxData) &&
// DTCM is accessible and uncached on the F7
(!IS_DTCM(checkSegment->u.buffers.rxData) &&
(((uint32_t)checkSegment->u.buffers.rxData & (CACHE_LINE_SIZE - 1)) || (checkSegment->len & (CACHE_LINE_SIZE - 1))))) {
dmaSafe = false;
break;
}
#elif defined(STM32G4)
// Check if RX data can be DMAed
if ((checkSegment->u.buffers.rxData) &&
// CCM can't be accessed by DMA1/2 on the G4
IS_CCM(checkSegment->u.buffers.rxData)) {
dmaSafe = false;
break;
}
if ((checkSegment->u.buffers.txData) &&
// CCM can't be accessed by DMA1/2 on the G4
IS_CCM(checkSegment->u.buffers.txData)) {
dmaSafe = false;
break;
}
#endif
// Note that these counts are only valid if dmaSafe is true
segmentCount++;
xferLen += checkSegment->len;
}
// Use DMA if possible
if (bus->useDMA && dmaSafe && ((segmentCount > 1) || (xferLen > 8))) {
// Intialise the init structures for the first transfer
spiInternalInitStream(dev, false);
// Start the transfers
spiInternalStartDMA(dev);
} else {
// Manually work through the segment list performing a transfer for each
while (bus->curSegment->len) {
// Assert Chip Select
IOLo(dev->busType_u.spi.csnPin);
spiInternalReadWriteBufPolled(
bus->busType_u.spi.instance,
bus->curSegment->u.buffers.txData,
bus->curSegment->u.buffers.rxData,
bus->curSegment->len);
if (bus->curSegment->negateCS) {
// Negate Chip Select
IOHi(dev->busType_u.spi.csnPin);
}
if (bus->curSegment->callback) {
switch(bus->curSegment->callback(dev->callbackArg)) {
case BUS_BUSY:
// Repeat the last DMA segment
bus->curSegment--;
break;
case BUS_ABORT:
bus->curSegment = (busSegment_t *)BUS_SPI_FREE;
return;
case BUS_READY:
default:
// Advance to the next DMA segment
break;
}
}
bus->curSegment++;
}
// If a following transaction has been linked, start it
if (bus->curSegment->u.link.dev) {
const extDevice_t *nextDev = bus->curSegment->u.link.dev;
busSegment_t *nextSegments = bus->curSegment->u.link.segments;
busSegment_t *endSegment = bus->curSegment;
bus->curSegment = nextSegments;
endSegment->u.link.dev = NULL;
spiSequenceStart(nextDev);
} else {
// The end of the segment list has been reached, so mark transactions as complete
bus->curSegment = (busSegment_t *)BUS_SPI_FREE;
}
}
}
#endif