1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 11:29:58 +03:00
betaflight/src/main/fc/core.c
ctzsnooze 7156dc84a3
Update turtle / crashflip mode (#13905)
* stop motors after 90 degrees of rotation and with max rate

* handle no accelerometer data

* improve check for acc, although seems to be OK without it

* disable all attenuation if rate is set to zero

* refactoring thanks Karate

* use sensors.h

* remove unnecessary arming check

* exit crashFlip immediately switch is reverted if throttle is zero

* add Crashflip Rate to OSD

* Revert unnecessary changes in crashflip core.c code

and clarify comments about crashflip switch

* update / minimise comments, thanks Karate

* ensure all names say `crashflip` consistently

* Undo quick re-arm because motrors were not reversed

* fix issue with reversed motors, we must disarm

* ignore yaw rotation and set gyro limit to 1900 deg/s

* default attenuation to off (crashflip_rate = 0)

* refactoring, increase rate limit to allow stronger inhibition

* enable in race_pro mode

* don't attenuate on attitude until a significant change occurs

* no attenuation for small changes

* Updates from review by PL

* remove whitespace

* refactor motorOutput, update comments, renaming variables

thanks PL

* changes from review PL

* only permit fast re-arm if crashflip rate set and crashflip was successful

* properly exit turtle mode

* add crashFlipSuccessful to unit test extern c

* small updates from review

* improved crashflip switch handling

* remove unnecessary motors normal check
2024-10-05 07:58:33 +10:00

1384 lines
47 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "platform.h"
#include "blackbox/blackbox.h"
#include "blackbox/blackbox_fielddefs.h"
#include "build/debug.h"
#include "cli/cli.h"
#include "cms/cms.h"
#include "common/axis.h"
#include "common/filter.h"
#include "common/maths.h"
#include "common/utils.h"
#include "config/config.h"
#include "config/feature.h"
#include "drivers/dshot.h"
#include "drivers/dshot_command.h"
#include "drivers/light_led.h"
#include "drivers/motor.h"
#include "drivers/sound_beeper.h"
#include "drivers/system.h"
#include "drivers/time.h"
#include "drivers/transponder_ir.h"
#include "fc/controlrate_profile.h"
#include "fc/rc.h"
#include "fc/rc_adjustments.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "fc/stats.h"
#include "flight/failsafe.h"
#include "flight/gps_rescue.h"
#include "flight/alt_hold.h"
#if defined(USE_DYN_NOTCH_FILTER)
#include "flight/dyn_notch_filter.h"
#endif
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/position.h"
#include "flight/rpm_filter.h"
#include "flight/servos.h"
#include "io/beeper.h"
#include "io/gps.h"
#include "io/pidaudio.h"
#include "io/serial.h"
#include "io/statusindicator.h"
#include "io/transponder_ir.h"
#include "io/vtx_control.h"
#include "io/vtx_rtc6705.h"
#include "msp/msp_serial.h"
#include "osd/osd.h"
#include "pg/motor.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/rx.h"
#include "rx/rc_stats.h"
#include "rx/rx.h"
#include "scheduler/scheduler.h"
#include "sensors/acceleration.h"
#include "sensors/barometer.h"
#include "sensors/battery.h"
#include "sensors/boardalignment.h"
#include "sensors/compass.h"
#include "sensors/gyro.h"
#include "telemetry/telemetry.h"
#include "core.h"
enum {
ALIGN_GYRO = 0,
ALIGN_ACCEL = 1,
ALIGN_MAG = 2
};
enum {
ARMING_DELAYED_DISARMED = 0,
ARMING_DELAYED_NORMAL = 1,
ARMING_DELAYED_CRASHFLIP = 2,
ARMING_DELAYED_LAUNCH_CONTROL = 3,
};
#define GYRO_WATCHDOG_DELAY 80 // delay for gyro sync
#ifdef USE_RUNAWAY_TAKEOFF
#define RUNAWAY_TAKEOFF_PIDSUM_THRESHOLD 600 // The pidSum threshold required to trigger - corresponds to a pidSum value of 60% (raw 600) in the blackbox viewer
#define RUNAWAY_TAKEOFF_ACTIVATE_DELAY 75000 // (75ms) Time in microseconds where pidSum is above threshold to trigger
#define RUNAWAY_TAKEOFF_DEACTIVATE_STICK_PERCENT 15 // 15% - minimum stick deflection during deactivation phase
#define RUNAWAY_TAKEOFF_DEACTIVATE_PIDSUM_LIMIT 100 // 10.0% - pidSum limit during deactivation phase
#define RUNAWAY_TAKEOFF_GYRO_LIMIT_RP 15 // Roll/pitch 15 deg/sec threshold to prevent triggering during bench testing without props
#define RUNAWAY_TAKEOFF_GYRO_LIMIT_YAW 50 // Yaw 50 deg/sec threshold to prevent triggering during bench testing without props
#define RUNAWAY_TAKEOFF_HIGH_THROTTLE_PERCENT 75 // High throttle limit to accelerate deactivation (halves the deactivation delay)
#define DEBUG_RUNAWAY_TAKEOFF_ENABLED_STATE 0
#define DEBUG_RUNAWAY_TAKEOFF_ACTIVATING_DELAY 1
#define DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_DELAY 2
#define DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_TIME 3
#define DEBUG_RUNAWAY_TAKEOFF_TRUE 1
#define DEBUG_RUNAWAY_TAKEOFF_FALSE 0
#endif
#if defined(USE_GPS) || defined(USE_MAG)
int16_t magHold;
#endif
static FAST_DATA_ZERO_INIT uint8_t pidUpdateCounter;
static bool crashFlipModeActive = false;
static timeUs_t disarmAt; // Time of automatic disarm when "Don't spin the motors when armed" is enabled and auto_disarm_delay is nonzero
static int lastArmingDisabledReason = 0;
static timeUs_t lastDisarmTimeUs;
static int tryingToArm = ARMING_DELAYED_DISARMED;
#ifdef USE_RUNAWAY_TAKEOFF
static timeUs_t runawayTakeoffDeactivateUs = 0;
static timeUs_t runawayTakeoffAccumulatedUs = 0;
static bool runawayTakeoffCheckDisabled = false;
static timeUs_t runawayTakeoffTriggerUs = 0;
static bool runawayTakeoffTemporarilyDisabled = false;
#endif
#ifdef USE_LAUNCH_CONTROL
static launchControlState_e launchControlState = LAUNCH_CONTROL_DISABLED;
const char * const osdLaunchControlModeNames[] = {
"NORMAL",
"PITCHONLY",
"FULL"
};
#endif
PG_REGISTER_WITH_RESET_TEMPLATE(throttleCorrectionConfig_t, throttleCorrectionConfig, PG_THROTTLE_CORRECTION_CONFIG, 0);
PG_RESET_TEMPLATE(throttleCorrectionConfig_t, throttleCorrectionConfig,
.throttle_correction_value = 0, // could 10 with althold or 40 for fpv
.throttle_correction_angle = 800 // could be 80.0 deg with atlhold or 45.0 for fpv
);
static bool isCalibrating(void)
{
return (sensors(SENSOR_GYRO) && !gyroIsCalibrationComplete())
#ifdef USE_ACC
|| (sensors(SENSOR_ACC) && !accIsCalibrationComplete())
#endif
#ifdef USE_BARO
|| (sensors(SENSOR_BARO) && !baroIsCalibrated())
#endif
#ifdef USE_MAG
|| (sensors(SENSOR_MAG) && !compassIsCalibrationComplete())
#endif
;
}
#ifdef USE_LAUNCH_CONTROL
bool canUseLaunchControl(void)
{
if (!isFixedWing()
&& !isUsingSticksForArming() // require switch arming for safety
&& IS_RC_MODE_ACTIVE(BOXLAUNCHCONTROL)
&& (!featureIsEnabled(FEATURE_MOTOR_STOP) || airmodeIsEnabled()) // can't use when motors are stopped
&& !featureIsEnabled(FEATURE_3D) // pitch control is not 3D aware
&& (flightModeFlags == 0)) { // don't want to use unless in acro mode
return true;
}
return false;
}
#endif
#ifdef USE_DSHOT
void setMotorSpinDirection(uint8_t spinDirection)
{
if (isMotorProtocolDshot() && !featureIsEnabled(FEATURE_3D)) {
dshotCommandWrite(ALL_MOTORS, getMotorCount(), spinDirection, DSHOT_CMD_TYPE_INLINE);
}
}
#endif
void resetArmingDisabled(void)
{
lastArmingDisabledReason = 0;
}
#ifdef USE_ACC
static bool accNeedsCalibration(void)
{
if (sensors(SENSOR_ACC)) {
// Check to see if the ACC has already been calibrated
if (accHasBeenCalibrated()) {
return false;
}
// We've determined that there's a detected ACC that has not
// yet been calibrated. Check to see if anything is using the
// ACC that would be affected by the lack of calibration.
// Check for any configured modes that use the ACC
if (isModeActivationConditionPresent(BOXANGLE) ||
isModeActivationConditionPresent(BOXHORIZON) ||
isModeActivationConditionPresent(BOXALTHOLD) ||
isModeActivationConditionPresent(BOXGPSRESCUE) ||
isModeActivationConditionPresent(BOXCAMSTAB) ||
isModeActivationConditionPresent(BOXCALIB) ||
isModeActivationConditionPresent(BOXACROTRAINER)) {
return true;
}
// Launch Control only requires the ACC if a angle limit is set
if (isModeActivationConditionPresent(BOXLAUNCHCONTROL) && currentPidProfile->launchControlAngleLimit) {
return true;
}
#ifdef USE_OSD
// Check for any enabled OSD elements that need the ACC
if (featureIsEnabled(FEATURE_OSD)) {
if (osdNeedsAccelerometer()) {
return true;
}
}
#endif
#ifdef USE_GPS_RESCUE
// Check if failsafe will use GPS Rescue
if (failsafeConfig()->failsafe_procedure == FAILSAFE_PROCEDURE_GPS_RESCUE) {
return true;
}
#endif
}
return false;
}
#endif
void updateArmingStatus(void)
{
if (ARMING_FLAG(ARMED)) {
LED0_ON;
} else {
// Check if the power on arming grace time has elapsed
if ((getArmingDisableFlags() & ARMING_DISABLED_BOOT_GRACE_TIME) && (millis() >= systemConfig()->powerOnArmingGraceTime * 1000)
#ifdef USE_DSHOT
// We also need to prevent arming until it's possible to send DSHOT commands.
// Otherwise if the initial arming is in crash-flip the motor direction commands
// might not be sent.
&& (!isMotorProtocolDshot() || dshotStreamingCommandsAreEnabled())
#endif
) {
// If so, unset the grace time arming disable flag
unsetArmingDisabled(ARMING_DISABLED_BOOT_GRACE_TIME);
}
// If switch is used for arming then check it is not defaulting to on when the RX link recovers from a fault
if (!isUsingSticksForArming()) {
static bool hadRx = false;
const bool haveRx = isRxReceivingSignal();
const bool justGotRxBack = !hadRx && haveRx;
if (justGotRxBack && IS_RC_MODE_ACTIVE(BOXARM)) {
// If the RX has just started to receive a signal again and the arm switch is on, apply arming restriction
setArmingDisabled(ARMING_DISABLED_NOT_DISARMED);
} else if (haveRx && !IS_RC_MODE_ACTIVE(BOXARM)) {
// If RX signal is OK and the arm switch is off, remove arming restriction
unsetArmingDisabled(ARMING_DISABLED_NOT_DISARMED);
}
hadRx = haveRx;
}
if (IS_RC_MODE_ACTIVE(BOXFAILSAFE)) {
setArmingDisabled(ARMING_DISABLED_BOXFAILSAFE);
} else {
unsetArmingDisabled(ARMING_DISABLED_BOXFAILSAFE);
}
if (calculateThrottleStatus() != THROTTLE_LOW) {
setArmingDisabled(ARMING_DISABLED_THROTTLE);
} else {
unsetArmingDisabled(ARMING_DISABLED_THROTTLE);
}
if (!isUpright() && !IS_RC_MODE_ACTIVE(BOXCRASHFLIP)) {
setArmingDisabled(ARMING_DISABLED_ANGLE);
} else {
unsetArmingDisabled(ARMING_DISABLED_ANGLE);
}
// if, while the arm switch is enabled:
// - the user switches off crashflip,
// - and it was active,
// - and the quad did not flip successfully, or we don't have that information
// require an arm-disarm cycle by blocking tryArm()
if (crashFlipModeActive && !IS_RC_MODE_ACTIVE(BOXCRASHFLIP) && !crashFlipSuccessful()) {
crashFlipModeActive = false;
// stay disarmed (motor direction normal), and block arming (require a disarm/rearm cycle)
setArmingDisabled(ARMING_DISABLED_CRASHFLIP);
} else {
// allow arming
unsetArmingDisabled(ARMING_DISABLED_CRASHFLIP);
}
#if defined(USE_LATE_TASK_STATISTICS)
if ((getCpuPercentageLate() > schedulerConfig()->cpuLatePercentageLimit)) {
setArmingDisabled(ARMING_DISABLED_LOAD);
} else {
unsetArmingDisabled(ARMING_DISABLED_LOAD);
}
#endif // USE_LATE_TASK_STATISTICS
if (isCalibrating()) {
setArmingDisabled(ARMING_DISABLED_CALIBRATING);
} else {
unsetArmingDisabled(ARMING_DISABLED_CALIBRATING);
}
if (isModeActivationConditionPresent(BOXPREARM)) {
if (IS_RC_MODE_ACTIVE(BOXPREARM) && !ARMING_FLAG(WAS_ARMED_WITH_PREARM)) {
unsetArmingDisabled(ARMING_DISABLED_NOPREARM);
} else {
setArmingDisabled(ARMING_DISABLED_NOPREARM);
}
}
#ifdef USE_GPS_RESCUE
if (gpsRescueIsConfigured()) {
if (gpsRescueConfig()->allowArmingWithoutFix || (STATE(GPS_FIX) && (gpsSol.numSat >= gpsRescueConfig()->minSats)) ||
ARMING_FLAG(WAS_EVER_ARMED) || IS_RC_MODE_ACTIVE(BOXCRASHFLIP)) {
unsetArmingDisabled(ARMING_DISABLED_GPS);
} else {
setArmingDisabled(ARMING_DISABLED_GPS);
}
if (IS_RC_MODE_ACTIVE(BOXGPSRESCUE)) {
setArmingDisabled(ARMING_DISABLED_RESC);
} else {
unsetArmingDisabled(ARMING_DISABLED_RESC);
}
}
#endif
#ifdef USE_DSHOT_TELEMETRY
// If Dshot Telemetry is enabled and any motor isn't providing telemetry, then disable arming
if (useDshotTelemetry && !isDshotTelemetryActive()) {
setArmingDisabled(ARMING_DISABLED_DSHOT_TELEM);
} else {
unsetArmingDisabled(ARMING_DISABLED_DSHOT_TELEM);
}
#endif
#ifdef USE_DSHOT_BITBANG
if (isDshotBitbangActive(&motorConfig()->dev) && dshotBitbangGetStatus() != DSHOT_BITBANG_STATUS_OK) {
setArmingDisabled(ARMING_DISABLED_DSHOT_BITBANG);
} else {
unsetArmingDisabled(ARMING_DISABLED_DSHOT_BITBANG);
}
#endif
if (IS_RC_MODE_ACTIVE(BOXPARALYZE)) {
setArmingDisabled(ARMING_DISABLED_PARALYZE);
}
#ifdef USE_ACC
if (accNeedsCalibration()) {
setArmingDisabled(ARMING_DISABLED_ACC_CALIBRATION);
} else {
unsetArmingDisabled(ARMING_DISABLED_ACC_CALIBRATION);
}
#endif
if (!isMotorProtocolEnabled()) {
setArmingDisabled(ARMING_DISABLED_MOTOR_PROTOCOL);
}
if (!isUsingSticksForArming()) {
if (!IS_RC_MODE_ACTIVE(BOXARM)) {
#ifdef USE_RUNAWAY_TAKEOFF
unsetArmingDisabled(ARMING_DISABLED_RUNAWAY_TAKEOFF);
#endif
unsetArmingDisabled(ARMING_DISABLED_CRASH_DETECTED);
}
/* Ignore ARMING_DISABLED_CALIBRATING if we are going to calibrate gyro on first arm */
bool ignoreGyro = armingConfig()->gyro_cal_on_first_arm
&& !(getArmingDisableFlags() & ~(ARMING_DISABLED_ARM_SWITCH | ARMING_DISABLED_CALIBRATING));
/* Ignore ARMING_DISABLED_THROTTLE (once arm switch is on) if we are in 3D mode */
bool ignoreThrottle = featureIsEnabled(FEATURE_3D)
&& !IS_RC_MODE_ACTIVE(BOX3D)
&& !flight3DConfig()->switched_mode3d
&& !(getArmingDisableFlags() & ~(ARMING_DISABLED_ARM_SWITCH | ARMING_DISABLED_THROTTLE));
// If arming is disabled and the ARM switch is on
if (isArmingDisabled()
&& !ignoreGyro
&& !ignoreThrottle
&& IS_RC_MODE_ACTIVE(BOXARM)) {
setArmingDisabled(ARMING_DISABLED_ARM_SWITCH);
} else if (!IS_RC_MODE_ACTIVE(BOXARM)) {
unsetArmingDisabled(ARMING_DISABLED_ARM_SWITCH);
}
}
if (isArmingDisabled()) {
warningLedFlash();
} else {
warningLedDisable();
}
warningLedUpdate();
}
}
void disarm(flightLogDisarmReason_e reason)
{
if (ARMING_FLAG(ARMED)) {
if (!crashFlipModeActive) {
ENABLE_ARMING_FLAG(WAS_EVER_ARMED);
}
DISABLE_ARMING_FLAG(ARMED);
lastDisarmTimeUs = micros();
#ifdef USE_OSD
if (IS_RC_MODE_ACTIVE(BOXCRASHFLIP) || isLaunchControlActive()) {
osdSuppressStats(true);
}
#endif
#ifdef USE_BLACKBOX
flightLogEvent_disarm_t eventData;
eventData.reason = reason;
blackboxLogEvent(FLIGHT_LOG_EVENT_DISARM, (flightLogEventData_t*)&eventData);
if (blackboxConfig()->device && blackboxConfig()->mode != BLACKBOX_MODE_ALWAYS_ON) { // Close the log upon disarm except when logging mode is ALWAYS ON
blackboxFinish();
}
#else
UNUSED(reason);
#endif
BEEP_OFF;
#ifdef USE_PERSISTENT_STATS
if (!crashFlipModeActive) {
statsOnDisarm();
}
#endif
// always set motor direction to normal on disarming
#ifdef USE_DSHOT
setMotorSpinDirection(DSHOT_CMD_SPIN_DIRECTION_NORMAL);
#endif
// if ARMING_DISABLED_RUNAWAY_TAKEOFF is set then we want to play it's beep pattern instead
if (!(getArmingDisableFlags() & (ARMING_DISABLED_RUNAWAY_TAKEOFF | ARMING_DISABLED_CRASH_DETECTED))) {
beeper(BEEPER_DISARMING); // emit disarm tone
}
}
}
void tryArm(void)
{
if (armingConfig()->gyro_cal_on_first_arm) {
gyroStartCalibration(true);
}
// runs each loop while arming switches are engaged
updateArmingStatus();
if (!isArmingDisabled()) {
if (ARMING_FLAG(ARMED)) {
return;
}
const timeUs_t currentTimeUs = micros();
#ifdef USE_DSHOT
if (cmpTimeUs(currentTimeUs, getLastDshotBeaconCommandTimeUs()) < DSHOT_BEACON_GUARD_DELAY_US) {
if (tryingToArm == ARMING_DELAYED_DISARMED) {
if (IS_RC_MODE_ACTIVE(BOXCRASHFLIP)) {
tryingToArm = ARMING_DELAYED_CRASHFLIP;
#ifdef USE_LAUNCH_CONTROL
} else if (canUseLaunchControl()) {
tryingToArm = ARMING_DELAYED_LAUNCH_CONTROL;
#endif
} else {
tryingToArm = ARMING_DELAYED_NORMAL;
}
}
return;
}
if (isMotorProtocolDshot()) {
#if defined(USE_ESC_SENSOR) && defined(USE_DSHOT_TELEMETRY)
// Try to activate extended DSHOT telemetry only if no esc sensor exists and dshot telemetry is active
if (!featureIsEnabled(FEATURE_ESC_SENSOR) && useDshotTelemetry) {
dshotCleanTelemetryData();
if (motorConfig()->dev.useDshotEdt) {
dshotCommandWrite(ALL_MOTORS, getMotorCount(), DSHOT_CMD_EXTENDED_TELEMETRY_ENABLE, DSHOT_CMD_TYPE_INLINE);
}
}
#endif
// choose crashflip outcome on arming
// disarm can arise in processRx() if the crashflip switch is reversed while in crashflip mode
// if we were unsuccessful, or cannot determin success, arming will be blocked and we can't get here
// hence we only get here with crashFlipModeActive if the switch was reversed and result successful
if (crashFlipModeActive) {
// flip was successful, continue into normal flight without need to disarm/rearm
// note: preceding disarm will have set motors to normal rotation direction
crashFlipModeActive = false;
} else {
// when arming and not in crashflip mode, block entry to crashflip if delayed by the dshot beeper,
// otherwise consider only the switch position
crashFlipModeActive = (tryingToArm == ARMING_DELAYED_CRASHFLIP) ? false : IS_RC_MODE_ACTIVE(BOXCRASHFLIP);
#ifdef USE_DSHOT
// previous disarm will have set direction to normal
// at this point we only need to reverse the motors if crashflipMode is active
if (crashFlipModeActive) {
setMotorSpinDirection(DSHOT_CMD_SPIN_DIRECTION_REVERSED);
}
#endif
}
}
#endif // USE_DSHOT
#ifdef USE_LAUNCH_CONTROL
if (!crashFlipModeActive && (canUseLaunchControl() || (tryingToArm == ARMING_DELAYED_LAUNCH_CONTROL))) {
if (launchControlState == LAUNCH_CONTROL_DISABLED) { // only activate if it hasn't already been triggered
launchControlState = LAUNCH_CONTROL_ACTIVE;
}
}
#endif
#ifdef USE_OSD
osdSuppressStats(false);
#endif
#ifdef USE_RPM_LIMIT
mixerResetRpmLimiter();
#endif
ENABLE_ARMING_FLAG(ARMED);
#ifdef USE_RC_STATS
NotifyRcStatsArming();
#endif
resetTryingToArm();
#ifdef USE_ACRO_TRAINER
pidAcroTrainerInit();
#endif // USE_ACRO_TRAINER
if (isModeActivationConditionPresent(BOXPREARM)) {
ENABLE_ARMING_FLAG(WAS_ARMED_WITH_PREARM);
}
imuQuaternionHeadfreeOffsetSet();
#if defined(USE_DYN_NOTCH_FILTER)
resetMaxFFT();
#endif
disarmAt = currentTimeUs + armingConfig()->auto_disarm_delay * 1e6; // start disarm timeout, will be extended when throttle is nonzero
lastArmingDisabledReason = 0;
#ifdef USE_GPS
//beep to indicate arming
if (featureIsEnabled(FEATURE_GPS)) {
GPS_reset_home_position();
if (STATE(GPS_FIX) && gpsSol.numSat >= gpsRescueConfig()->minSats) {
beeper(BEEPER_ARMING_GPS_FIX);
} else {
beeper(BEEPER_ARMING_GPS_NO_FIX);
}
} else {
beeper(BEEPER_ARMING);
}
#else
beeper(BEEPER_ARMING);
#endif
#ifdef USE_PERSISTENT_STATS
statsOnArm();
#endif
#ifdef USE_RUNAWAY_TAKEOFF
runawayTakeoffDeactivateUs = 0;
runawayTakeoffAccumulatedUs = 0;
runawayTakeoffTriggerUs = 0;
#endif
} else {
resetTryingToArm();
if (!isFirstArmingGyroCalibrationRunning()) {
int armingDisabledReason = ffs(getArmingDisableFlags());
if (lastArmingDisabledReason != armingDisabledReason) {
lastArmingDisabledReason = armingDisabledReason;
beeperWarningBeeps(armingDisabledReason);
}
}
}
}
// Automatic ACC Offset Calibration
bool AccInflightCalibrationArmed = false;
bool AccInflightCalibrationMeasurementDone = false;
bool AccInflightCalibrationSavetoEEProm = false;
bool AccInflightCalibrationActive = false;
uint16_t InflightcalibratingA = 0;
void handleInflightCalibrationStickPosition(void)
{
if (AccInflightCalibrationMeasurementDone) {
// trigger saving into eeprom after landing
AccInflightCalibrationMeasurementDone = false;
AccInflightCalibrationSavetoEEProm = true;
} else {
AccInflightCalibrationArmed = !AccInflightCalibrationArmed;
if (AccInflightCalibrationArmed) {
beeper(BEEPER_ACC_CALIBRATION);
} else {
beeper(BEEPER_ACC_CALIBRATION_FAIL);
}
}
}
static void updateInflightCalibrationState(void)
{
if (AccInflightCalibrationArmed && ARMING_FLAG(ARMED) && rcData[THROTTLE] > rxConfig()->mincheck && !IS_RC_MODE_ACTIVE(BOXARM)) { // Copter is airborne and you are turning it off via boxarm : start measurement
InflightcalibratingA = 50;
AccInflightCalibrationArmed = false;
}
if (IS_RC_MODE_ACTIVE(BOXCALIB)) { // Use the Calib Option to activate : Calib = TRUE measurement started, Land and Calib = 0 measurement stored
if (!AccInflightCalibrationActive && !AccInflightCalibrationMeasurementDone)
InflightcalibratingA = 50;
AccInflightCalibrationActive = true;
} else if (AccInflightCalibrationMeasurementDone && !ARMING_FLAG(ARMED)) {
AccInflightCalibrationMeasurementDone = false;
AccInflightCalibrationSavetoEEProm = true;
}
}
#if defined(USE_GPS) || defined(USE_MAG)
static void updateMagHold(void)
{
if (fabsf(rcCommand[YAW]) < 15 && FLIGHT_MODE(MAG_MODE)) {
int16_t dif = DECIDEGREES_TO_DEGREES(attitude.values.yaw) - magHold;
if (dif <= -180)
dif += 360;
if (dif >= +180)
dif -= 360;
dif *= -GET_DIRECTION(rcControlsConfig()->yaw_control_reversed);
if (isUpright()) {
rcCommand[YAW] -= dif * currentPidProfile->pid[PID_MAG].P / 30; // 18 deg
}
} else
magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
}
#endif
#ifdef USE_VTX_CONTROL
static bool canUpdateVTX(void)
{
#ifdef USE_VTX_RTC6705
return vtxRTC6705CanUpdate();
#endif
return true;
}
#endif
#if defined(USE_RUNAWAY_TAKEOFF) || defined(USE_GPS_RESCUE)
// determine if the R/P/Y stick deflection exceeds the specified limit - integer math is good enough here.
bool areSticksActive(uint8_t stickPercentLimit)
{
for (int axis = FD_ROLL; axis <= FD_YAW; axis ++) {
if (getRcDeflectionAbs(axis) * 100.f >= stickPercentLimit) {
return true;
}
}
return false;
}
#endif
#ifdef USE_RUNAWAY_TAKEOFF
// allow temporarily disabling runaway takeoff prevention if we are connected
// to the configurator and the ARMING_DISABLED_MSP flag is cleared.
void runawayTakeoffTemporaryDisable(uint8_t disableFlag)
{
runawayTakeoffTemporarilyDisabled = disableFlag;
}
#endif
// calculate the throttle stick percent - integer math is good enough here.
// returns negative values for reversed thrust in 3D mode
int8_t calculateThrottlePercent(void)
{
uint8_t ret = 0;
int channelData = constrain(rcData[THROTTLE], PWM_RANGE_MIN, PWM_RANGE_MAX);
if (featureIsEnabled(FEATURE_3D)
&& !IS_RC_MODE_ACTIVE(BOX3D)
&& !flight3DConfig()->switched_mode3d) {
if (channelData > (rxConfig()->midrc + flight3DConfig()->deadband3d_throttle)) {
ret = ((channelData - rxConfig()->midrc - flight3DConfig()->deadband3d_throttle) * 100) / (PWM_RANGE_MAX - rxConfig()->midrc - flight3DConfig()->deadband3d_throttle);
} else if (channelData < (rxConfig()->midrc - flight3DConfig()->deadband3d_throttle)) {
ret = -((rxConfig()->midrc - flight3DConfig()->deadband3d_throttle - channelData) * 100) / (rxConfig()->midrc - flight3DConfig()->deadband3d_throttle - PWM_RANGE_MIN);
}
} else {
ret = constrain(((channelData - rxConfig()->mincheck) * 100) / (PWM_RANGE_MAX - rxConfig()->mincheck), 0, 100);
if (featureIsEnabled(FEATURE_3D)
&& IS_RC_MODE_ACTIVE(BOX3D)
&& flight3DConfig()->switched_mode3d) {
ret = -ret; // 3D on a switch is active
}
}
return ret;
}
uint8_t calculateThrottlePercentAbs(void)
{
return abs(calculateThrottlePercent());
}
static bool airmodeIsActivated;
bool isAirmodeActivated(void)
{
return airmodeIsActivated;
}
/*
* processRx called from taskUpdateRxMain
*/
bool processRx(timeUs_t currentTimeUs)
{
if (!calculateRxChannelsAndUpdateFailsafe(currentTimeUs)) {
return false;
}
updateRcRefreshRate(currentTimeUs, isRxReceivingSignal());
// in 3D mode, we need to be able to disarm by switch at any time
if (featureIsEnabled(FEATURE_3D)) {
if (!IS_RC_MODE_ACTIVE(BOXARM))
disarm(DISARM_REASON_SWITCH);
}
updateRSSI(currentTimeUs);
if (currentTimeUs > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) {
failsafeStartMonitoring();
}
const bool throttleActive = calculateThrottleStatus() != THROTTLE_LOW;
const uint8_t throttlePercent = calculateThrottlePercentAbs();
const bool launchControlActive = isLaunchControlActive();
if (airmodeIsEnabled() && ARMING_FLAG(ARMED) && !launchControlActive) {
// once throttle exceeds activate threshold, airmode latches active until disarm
if (throttlePercent >= rxConfig()->airModeActivateThreshold) {
airmodeIsActivated = true;
}
} else {
airmodeIsActivated = false;
}
if (ARMING_FLAG(ARMED) && (airmodeIsActivated || throttleActive || launchControlActive || isFixedWing())) {
pidSetItermReset(false);
pidStabilisationState(PID_STABILISATION_ON);
} else {
pidSetItermReset(true);
pidStabilisationState(currentPidProfile->pidAtMinThrottle ? PID_STABILISATION_ON : PID_STABILISATION_OFF);
}
#ifdef USE_RUNAWAY_TAKEOFF
// If runaway_takeoff_prevention is enabled, accumulate the amount of time that throttle
// is above runaway_takeoff_deactivate_throttle with the any of the R/P/Y sticks deflected
// to at least runaway_takeoff_stick_percent percent while the pidSum on all axis is kept low.
// Once the amount of accumulated time exceeds runaway_takeoff_deactivate_delay then disable
// prevention for the remainder of the battery.
if (ARMING_FLAG(ARMED)
&& pidConfig()->runaway_takeoff_prevention
&& !runawayTakeoffCheckDisabled
&& !crashFlipModeActive
&& !runawayTakeoffTemporarilyDisabled
&& !isFixedWing()) {
// Determine if we're in "flight"
// - motors running
// - throttle over runaway_takeoff_deactivate_throttle_percent
// - sticks are active and have deflection greater than runaway_takeoff_deactivate_stick_percent
// - pidSum on all axis is less then runaway_takeoff_deactivate_pidlimit
bool inStableFlight = false;
if (!featureIsEnabled(FEATURE_MOTOR_STOP) || airmodeIsEnabled() || throttleActive) { // are motors running?
const uint8_t lowThrottleLimit = pidConfig()->runaway_takeoff_deactivate_throttle;
const uint8_t midThrottleLimit = constrain(lowThrottleLimit * 2, lowThrottleLimit * 2, RUNAWAY_TAKEOFF_HIGH_THROTTLE_PERCENT);
if ((((throttlePercent >= lowThrottleLimit) && areSticksActive(RUNAWAY_TAKEOFF_DEACTIVATE_STICK_PERCENT)) || (throttlePercent >= midThrottleLimit))
&& (fabsf(pidData[FD_PITCH].Sum) < RUNAWAY_TAKEOFF_DEACTIVATE_PIDSUM_LIMIT)
&& (fabsf(pidData[FD_ROLL].Sum) < RUNAWAY_TAKEOFF_DEACTIVATE_PIDSUM_LIMIT)
&& (fabsf(pidData[FD_YAW].Sum) < RUNAWAY_TAKEOFF_DEACTIVATE_PIDSUM_LIMIT)) {
inStableFlight = true;
if (runawayTakeoffDeactivateUs == 0) {
runawayTakeoffDeactivateUs = currentTimeUs;
}
}
}
// If we're in flight, then accumulate the time and deactivate once it exceeds runaway_takeoff_deactivate_delay milliseconds
if (inStableFlight) {
if (runawayTakeoffDeactivateUs == 0) {
runawayTakeoffDeactivateUs = currentTimeUs;
}
uint16_t deactivateDelay = pidConfig()->runaway_takeoff_deactivate_delay;
// at high throttle levels reduce deactivation delay by 50%
if (throttlePercent >= RUNAWAY_TAKEOFF_HIGH_THROTTLE_PERCENT) {
deactivateDelay = deactivateDelay / 2;
}
if ((cmpTimeUs(currentTimeUs, runawayTakeoffDeactivateUs) + runawayTakeoffAccumulatedUs) > deactivateDelay * 1000) {
runawayTakeoffCheckDisabled = true;
}
} else {
if (runawayTakeoffDeactivateUs != 0) {
runawayTakeoffAccumulatedUs += cmpTimeUs(currentTimeUs, runawayTakeoffDeactivateUs);
}
runawayTakeoffDeactivateUs = 0;
}
if (runawayTakeoffDeactivateUs == 0) {
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_DELAY, DEBUG_RUNAWAY_TAKEOFF_FALSE);
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_TIME, runawayTakeoffAccumulatedUs / 1000);
} else {
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_DELAY, DEBUG_RUNAWAY_TAKEOFF_TRUE);
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_TIME, (cmpTimeUs(currentTimeUs, runawayTakeoffDeactivateUs) + runawayTakeoffAccumulatedUs) / 1000);
}
} else {
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_DELAY, DEBUG_RUNAWAY_TAKEOFF_FALSE);
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_TIME, DEBUG_RUNAWAY_TAKEOFF_FALSE);
}
#endif
#ifdef USE_LAUNCH_CONTROL
if (ARMING_FLAG(ARMED)) {
if (launchControlActive && (throttlePercent > currentPidProfile->launchControlThrottlePercent)) {
// throttle limit trigger reached, launch triggered
// reset the iterms as they may be at high values from holding the launch position
launchControlState = LAUNCH_CONTROL_TRIGGERED;
pidResetIterm();
}
} else {
if (launchControlState == LAUNCH_CONTROL_TRIGGERED) {
// If trigger mode is MULTIPLE then reset the state when disarmed
// and the mode switch is turned off.
// For trigger mode SINGLE we never reset the state and only a single
// launch is allowed until a reboot.
if (currentPidProfile->launchControlAllowTriggerReset && !IS_RC_MODE_ACTIVE(BOXLAUNCHCONTROL)) {
launchControlState = LAUNCH_CONTROL_DISABLED;
}
} else {
launchControlState = LAUNCH_CONTROL_DISABLED;
}
}
#endif
return true;
}
void processRxModes(timeUs_t currentTimeUs)
{
static bool armedBeeperOn = false;
#ifdef USE_TELEMETRY
static bool sharedPortTelemetryEnabled = false;
#endif
const throttleStatus_e throttleStatus = calculateThrottleStatus();
// When armed and motors aren't spinning, do beeps and then disarm
// board after delay so users without buzzer won't lose fingers.
// mixTable constrains motor commands, so checking throttleStatus is enough
const timeUs_t autoDisarmDelayUs = armingConfig()->auto_disarm_delay * 1e6;
if (ARMING_FLAG(ARMED)
&& featureIsEnabled(FEATURE_MOTOR_STOP)
&& !isFixedWing()
&& !featureIsEnabled(FEATURE_3D)
&& !airmodeIsEnabled()
&& !FLIGHT_MODE(GPS_RESCUE_MODE) // disable auto-disarm when GPS Rescue is active
) {
if (isUsingSticksForArming()) {
if (throttleStatus == THROTTLE_LOW) {
if ((autoDisarmDelayUs > 0) && (currentTimeUs > disarmAt)) {
// auto-disarm configured and delay is over
disarm(DISARM_REASON_THROTTLE_TIMEOUT);
armedBeeperOn = false;
} else {
// still armed; do warning beeps while armed
beeper(BEEPER_ARMED);
armedBeeperOn = true;
}
} else {
// throttle is not low - extend disarm time
disarmAt = currentTimeUs + autoDisarmDelayUs;
if (armedBeeperOn) {
beeperSilence();
armedBeeperOn = false;
}
}
} else {
// arming is via AUX switch; beep while throttle low
if (throttleStatus == THROTTLE_LOW) {
beeper(BEEPER_ARMED);
armedBeeperOn = true;
} else if (armedBeeperOn) {
beeperSilence();
armedBeeperOn = false;
}
}
} else {
disarmAt = currentTimeUs + autoDisarmDelayUs; // extend auto-disarm timer
}
if (!(IS_RC_MODE_ACTIVE(BOXPARALYZE) && !ARMING_FLAG(ARMED))
#ifdef USE_CMS
&& !cmsInMenu
#endif
) {
processRcStickPositions();
}
if (featureIsEnabled(FEATURE_INFLIGHT_ACC_CAL)) {
updateInflightCalibrationState();
}
updateActivatedModes();
#ifdef USE_DSHOT
if (crashFlipModeActive) {
// Enable beep warning when the crashflip mode is active
beeper(BEEPER_CRASHFLIP_MODE);
if (!IS_RC_MODE_ACTIVE(BOXCRASHFLIP)) {
// permit the option of staying disarmed if the crashflip switch is set to off while armed
disarm(DISARM_REASON_SWITCH);
}
}
#endif
if (!cliMode && !(IS_RC_MODE_ACTIVE(BOXPARALYZE) && !ARMING_FLAG(ARMED))) {
processRcAdjustments(currentControlRateProfile);
}
bool canUseHorizonMode = true;
if ((IS_RC_MODE_ACTIVE(BOXANGLE)
|| failsafeIsActive()
#ifdef USE_ALT_HOLD_MODE
|| FLIGHT_MODE(ALT_HOLD_MODE)
#endif
) && (sensors(SENSOR_ACC))) {
// bumpless transfer to Level mode
canUseHorizonMode = false;
if (!FLIGHT_MODE(ANGLE_MODE)) {
ENABLE_FLIGHT_MODE(ANGLE_MODE);
}
} else {
DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support
}
#ifdef USE_ALT_HOLD_MODE
// only if armed
if (ARMING_FLAG(ARMED)
// and either the alt_hold switch is activated, or are in failsafe
&& (IS_RC_MODE_ACTIVE(BOXALTHOLD) || failsafeIsActive())
// but not in GPS_RESCUE_MODE, ie if failsafe is active, must be in Landing Mode
&& !FLIGHT_MODE(GPS_RESCUE_MODE)
// and we have Acc for self-levelling
&& sensors(SENSOR_ACC)
// and we have altitude data
&& isAltitudeAvailable()
// and we have already taken off (to prevent activation on the ground), then enable althold
&& isAirmodeActivated()) {
if (!FLIGHT_MODE(ALT_HOLD_MODE)) {
ENABLE_FLIGHT_MODE(ALT_HOLD_MODE);
}
} else {
DISABLE_FLIGHT_MODE(ALT_HOLD_MODE);
}
#endif
if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode && sensors(SENSOR_ACC)) {
DISABLE_FLIGHT_MODE(ANGLE_MODE);
if (!FLIGHT_MODE(HORIZON_MODE)) {
ENABLE_FLIGHT_MODE(HORIZON_MODE);
}
} else {
DISABLE_FLIGHT_MODE(HORIZON_MODE);
}
#ifdef USE_GPS_RESCUE
if (ARMING_FLAG(ARMED) && (IS_RC_MODE_ACTIVE(BOXGPSRESCUE) || (failsafeIsActive() && failsafeConfig()->failsafe_procedure == FAILSAFE_PROCEDURE_GPS_RESCUE))) {
if (!FLIGHT_MODE(GPS_RESCUE_MODE)) {
ENABLE_FLIGHT_MODE(GPS_RESCUE_MODE);
}
} else {
DISABLE_FLIGHT_MODE(GPS_RESCUE_MODE);
}
#endif
if (FLIGHT_MODE(ANGLE_MODE | ALT_HOLD_MODE | HORIZON_MODE)) {
LED1_ON;
// increase frequency of attitude task to reduce drift when in angle or horizon mode
rescheduleTask(TASK_ATTITUDE, TASK_PERIOD_HZ(acc.sampleRateHz / (float)imuConfig()->imu_process_denom));
} else {
LED1_OFF;
rescheduleTask(TASK_ATTITUDE, TASK_PERIOD_HZ(100));
}
if (!IS_RC_MODE_ACTIVE(BOXPREARM) && ARMING_FLAG(WAS_ARMED_WITH_PREARM)) {
DISABLE_ARMING_FLAG(WAS_ARMED_WITH_PREARM);
}
#if defined(USE_ACC) || defined(USE_MAG)
if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
#if defined(USE_GPS) || defined(USE_MAG)
if (IS_RC_MODE_ACTIVE(BOXMAG)) {
if (!FLIGHT_MODE(MAG_MODE)) {
ENABLE_FLIGHT_MODE(MAG_MODE);
magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
}
} else {
DISABLE_FLIGHT_MODE(MAG_MODE);
}
#endif
if (IS_RC_MODE_ACTIVE(BOXHEADFREE) && !FLIGHT_MODE(GPS_RESCUE_MODE)) {
if (!FLIGHT_MODE(HEADFREE_MODE)) {
ENABLE_FLIGHT_MODE(HEADFREE_MODE);
}
} else {
DISABLE_FLIGHT_MODE(HEADFREE_MODE);
}
if (IS_RC_MODE_ACTIVE(BOXHEADADJ) && !FLIGHT_MODE(GPS_RESCUE_MODE)) {
if (imuQuaternionHeadfreeOffsetSet()) {
beeper(BEEPER_RX_SET);
}
}
}
#endif
if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) {
ENABLE_FLIGHT_MODE(PASSTHRU_MODE);
} else {
DISABLE_FLIGHT_MODE(PASSTHRU_MODE);
}
if (mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_AIRPLANE) {
DISABLE_FLIGHT_MODE(HEADFREE_MODE);
}
#ifdef USE_TELEMETRY
if (featureIsEnabled(FEATURE_TELEMETRY)) {
bool enableSharedPortTelemetry = (!isModeActivationConditionPresent(BOXTELEMETRY) && ARMING_FLAG(ARMED)) || (isModeActivationConditionPresent(BOXTELEMETRY) && IS_RC_MODE_ACTIVE(BOXTELEMETRY));
if (enableSharedPortTelemetry && !sharedPortTelemetryEnabled) {
mspSerialReleaseSharedTelemetryPorts();
telemetryCheckState();
sharedPortTelemetryEnabled = true;
} else if (!enableSharedPortTelemetry && sharedPortTelemetryEnabled) {
// the telemetry state must be checked immediately so that shared serial ports are released.
telemetryCheckState();
mspSerialAllocatePorts();
sharedPortTelemetryEnabled = false;
}
}
#endif
#ifdef USE_VTX_CONTROL
vtxUpdateActivatedChannel();
if (canUpdateVTX()) {
handleVTXControlButton();
}
#endif
#ifdef USE_ACRO_TRAINER
pidSetAcroTrainerState(IS_RC_MODE_ACTIVE(BOXACROTRAINER) && sensors(SENSOR_ACC));
#endif // USE_ACRO_TRAINER
#ifdef USE_RC_SMOOTHING_FILTER
if (ARMING_FLAG(ARMED) && !rcSmoothingInitializationComplete() && rxConfig()->rc_smoothing_mode) {
beeper(BEEPER_RC_SMOOTHING_INIT_FAIL);
}
#endif
pidSetAntiGravityState(IS_RC_MODE_ACTIVE(BOXANTIGRAVITY) || featureIsEnabled(FEATURE_ANTI_GRAVITY));
}
static FAST_CODE_NOINLINE void subTaskPidController(timeUs_t currentTimeUs)
{
uint32_t startTime = 0;
if (debugMode == DEBUG_PIDLOOP) {startTime = micros();}
// PID - note this is function pointer set by setPIDController()
pidController(currentPidProfile, currentTimeUs);
DEBUG_SET(DEBUG_PIDLOOP, 1, micros() - startTime);
#ifdef USE_RUNAWAY_TAKEOFF
// Check to see if runaway takeoff detection is active (anti-taz), the pidSum is over the threshold,
// and gyro rate for any axis is above the limit for at least the activate delay period.
// If so, disarm for safety
if (ARMING_FLAG(ARMED)
&& !isFixedWing()
&& pidConfig()->runaway_takeoff_prevention
&& !runawayTakeoffCheckDisabled
&& !crashFlipModeActive
&& !runawayTakeoffTemporarilyDisabled
&& !FLIGHT_MODE(GPS_RESCUE_MODE) // disable Runaway Takeoff triggering if GPS Rescue is active
&& (!featureIsEnabled(FEATURE_MOTOR_STOP) || airmodeIsEnabled() || (calculateThrottleStatus() != THROTTLE_LOW))) {
if (((fabsf(pidData[FD_PITCH].Sum) >= RUNAWAY_TAKEOFF_PIDSUM_THRESHOLD)
|| (fabsf(pidData[FD_ROLL].Sum) >= RUNAWAY_TAKEOFF_PIDSUM_THRESHOLD)
|| (fabsf(pidData[FD_YAW].Sum) >= RUNAWAY_TAKEOFF_PIDSUM_THRESHOLD))
&& ((gyroAbsRateDps(FD_PITCH) > RUNAWAY_TAKEOFF_GYRO_LIMIT_RP)
|| (gyroAbsRateDps(FD_ROLL) > RUNAWAY_TAKEOFF_GYRO_LIMIT_RP)
|| (gyroAbsRateDps(FD_YAW) > RUNAWAY_TAKEOFF_GYRO_LIMIT_YAW))) {
if (runawayTakeoffTriggerUs == 0) {
runawayTakeoffTriggerUs = currentTimeUs + RUNAWAY_TAKEOFF_ACTIVATE_DELAY;
} else if (currentTimeUs > runawayTakeoffTriggerUs) {
setArmingDisabled(ARMING_DISABLED_RUNAWAY_TAKEOFF);
disarm(DISARM_REASON_RUNAWAY_TAKEOFF);
}
} else {
runawayTakeoffTriggerUs = 0;
}
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_ENABLED_STATE, DEBUG_RUNAWAY_TAKEOFF_TRUE);
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_ACTIVATING_DELAY, runawayTakeoffTriggerUs == 0 ? DEBUG_RUNAWAY_TAKEOFF_FALSE : DEBUG_RUNAWAY_TAKEOFF_TRUE);
} else {
runawayTakeoffTriggerUs = 0;
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_ENABLED_STATE, DEBUG_RUNAWAY_TAKEOFF_FALSE);
DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_ACTIVATING_DELAY, DEBUG_RUNAWAY_TAKEOFF_FALSE);
}
#endif
#ifdef USE_PID_AUDIO
if (isModeActivationConditionPresent(BOXPIDAUDIO)) {
pidAudioUpdate();
}
#endif
}
static FAST_CODE_NOINLINE void subTaskPidSubprocesses(timeUs_t currentTimeUs)
{
uint32_t startTime = 0;
if (debugMode == DEBUG_PIDLOOP) {
startTime = micros();
}
#if defined(USE_GPS) || defined(USE_MAG)
if (sensors(SENSOR_GPS) || sensors(SENSOR_MAG)) {
updateMagHold();
}
#endif
#ifdef USE_BLACKBOX
if (!cliMode && blackboxConfig()->device) {
blackboxUpdate(currentTimeUs);
}
#else
UNUSED(currentTimeUs);
#endif
DEBUG_SET(DEBUG_PIDLOOP, 3, micros() - startTime);
}
#ifdef USE_TELEMETRY
#define GYRO_TEMP_READ_DELAY_US 3e6 // Only read the gyro temp every 3 seconds
void subTaskTelemetryPollSensors(timeUs_t currentTimeUs)
{
static timeUs_t lastGyroTempTimeUs = 0;
if (cmpTimeUs(currentTimeUs, lastGyroTempTimeUs) >= GYRO_TEMP_READ_DELAY_US) {
// Read out gyro temperature if used for telemmetry
gyroReadTemperature();
lastGyroTempTimeUs = currentTimeUs;
}
}
#endif
static FAST_CODE void subTaskMotorUpdate(timeUs_t currentTimeUs)
{
uint32_t startTime = 0;
if (debugMode == DEBUG_CYCLETIME) {
startTime = micros();
static uint32_t previousMotorUpdateTime;
const uint32_t currentDeltaTime = startTime - previousMotorUpdateTime;
debug[2] = currentDeltaTime;
debug[3] = currentDeltaTime - targetPidLooptime;
previousMotorUpdateTime = startTime;
} else if (debugMode == DEBUG_PIDLOOP) {
startTime = micros();
}
mixTable(currentTimeUs);
#ifdef USE_SERVOS
// motor outputs are used as sources for servo mixing, so motors must be calculated using mixTable() before servos.
if (isMixerUsingServos()) {
writeServos();
}
#endif
writeMotors();
#ifdef USE_DSHOT_TELEMETRY_STATS
if (debugMode == DEBUG_DSHOT_RPM_ERRORS && useDshotTelemetry) {
const uint8_t motorCount = MIN(getMotorCount(), 4);
for (uint8_t i = 0; i < motorCount; i++) {
debug[i] = getDshotTelemetryMotorInvalidPercent(i);
}
}
#endif
DEBUG_SET(DEBUG_PIDLOOP, 2, micros() - startTime);
}
static FAST_CODE_NOINLINE void subTaskRcCommand(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
// If we're armed, at minimum throttle, and we do arming via the
// sticks, do not process yaw input from the rx. We do this so the
// motors do not spin up while we are trying to arm or disarm.
// Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
if (isUsingSticksForArming() && rcData[THROTTLE] <= rxConfig()->mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
&& !((mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && servoConfig()->tri_unarmed_servo)
#endif
&& mixerConfig()->mixerMode != MIXER_AIRPLANE
&& mixerConfig()->mixerMode != MIXER_FLYING_WING
#endif
) {
resetYawAxis();
}
processRcCommand();
}
FAST_CODE void taskGyroSample(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
gyroUpdate();
if (pidUpdateCounter % activePidLoopDenom == 0) {
pidUpdateCounter = 0;
}
pidUpdateCounter++;
}
FAST_CODE bool gyroFilterReady(void)
{
if (pidUpdateCounter % activePidLoopDenom == 0) {
return true;
} else {
return false;
}
}
FAST_CODE bool pidLoopReady(void)
{
if ((pidUpdateCounter % activePidLoopDenom) == (activePidLoopDenom / 2)) {
return true;
}
return false;
}
FAST_CODE void taskFiltering(timeUs_t currentTimeUs)
{
#ifdef USE_DSHOT_TELEMETRY
updateDshotTelemetry(); // decode and update Dshot telemetry
#endif
gyroFiltering(currentTimeUs);
}
// Function for loop trigger
FAST_CODE void taskMainPidLoop(timeUs_t currentTimeUs)
{
#if defined(SIMULATOR_BUILD) && defined(SIMULATOR_GYROPID_SYNC)
if (lockMainPID() != 0) return;
#endif
// DEBUG_PIDLOOP, timings for:
// 0 - gyroUpdate()
// 1 - subTaskPidController()
// 2 - subTaskMotorUpdate()
// 3 - subTaskPidSubprocesses()
DEBUG_SET(DEBUG_PIDLOOP, 0, micros() - currentTimeUs);
subTaskRcCommand(currentTimeUs);
subTaskPidController(currentTimeUs);
subTaskMotorUpdate(currentTimeUs);
subTaskPidSubprocesses(currentTimeUs);
DEBUG_SET(DEBUG_CYCLETIME, 0, getTaskDeltaTimeUs(TASK_SELF));
DEBUG_SET(DEBUG_CYCLETIME, 1, getAverageSystemLoadPercent());
}
bool isCrashFlipModeActive(void)
{
return crashFlipModeActive;
}
timeUs_t getLastDisarmTimeUs(void)
{
return lastDisarmTimeUs;
}
bool isTryingToArm(void)
{
return (tryingToArm != ARMING_DELAYED_DISARMED);
}
void resetTryingToArm(void)
{
tryingToArm = ARMING_DELAYED_DISARMED;
}
bool isLaunchControlActive(void)
{
#ifdef USE_LAUNCH_CONTROL
return launchControlState == LAUNCH_CONTROL_ACTIVE;
#else
return false;
#endif
}