1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-15 04:15:44 +03:00
betaflight/src/main/drivers/adc_stm32f30x.c

224 lines
8.8 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/io.h"
#include "drivers/sensor.h"
#include "drivers/time.h"
#include "adc.h"
#include "adc_impl.h"
#include "rcc.h"
#include "dma.h"
#include "common/utils.h"
#include "pg/adc.h"
const adcDevice_t adcHardware[] = {
{ .ADCx = ADC1, .rccADC = RCC_AHB(ADC12), .DMAy_Channelx = DMA1_Channel1 },
#ifdef ADC24_DMA_REMAP
{ .ADCx = ADC2, .rccADC = RCC_AHB(ADC12), .DMAy_Channelx = DMA2_Channel3 },
#else
{ .ADCx = ADC2, .rccADC = RCC_AHB(ADC12), .DMAy_Channelx = DMA2_Channel1 },
#endif
{ .ADCx = ADC3, .rccADC = RCC_AHB(ADC34), .DMAy_Channelx = DMA2_Channel5 }
};
const adcTagMap_t adcTagMap[] = {
{ DEFIO_TAG_E__PA0, ADC_DEVICES_1, ADC_Channel_1 }, // ADC1
{ DEFIO_TAG_E__PA1, ADC_DEVICES_1, ADC_Channel_2 }, // ADC1
{ DEFIO_TAG_E__PA2, ADC_DEVICES_1, ADC_Channel_3 }, // ADC1
{ DEFIO_TAG_E__PA3, ADC_DEVICES_1, ADC_Channel_4 }, // ADC1
{ DEFIO_TAG_E__PA4, ADC_DEVICES_2, ADC_Channel_1 }, // ADC2
{ DEFIO_TAG_E__PA5, ADC_DEVICES_2, ADC_Channel_2 }, // ADC2
{ DEFIO_TAG_E__PA6, ADC_DEVICES_2, ADC_Channel_3 }, // ADC2
{ DEFIO_TAG_E__PA7, ADC_DEVICES_4, ADC_Channel_4 }, // ADC2
{ DEFIO_TAG_E__PB0, ADC_DEVICES_3, ADC_Channel_12 }, // ADC3
{ DEFIO_TAG_E__PB1, ADC_DEVICES_3, ADC_Channel_1 }, // ADC3
{ DEFIO_TAG_E__PB2, ADC_DEVICES_2, ADC_Channel_12 }, // ADC2
{ DEFIO_TAG_E__PB12, ADC_DEVICES_4, ADC_Channel_3 }, // ADC4
{ DEFIO_TAG_E__PB13, ADC_DEVICES_3, ADC_Channel_5 }, // ADC3
{ DEFIO_TAG_E__PB14, ADC_DEVICES_4, ADC_Channel_4 }, // ADC4
{ DEFIO_TAG_E__PB15, ADC_DEVICES_4, ADC_Channel_5 }, // ADC4
{ DEFIO_TAG_E__PC0, ADC_DEVICES_12, ADC_Channel_6 }, // ADC12
{ DEFIO_TAG_E__PC1, ADC_DEVICES_12, ADC_Channel_7 }, // ADC12
{ DEFIO_TAG_E__PC2, ADC_DEVICES_12, ADC_Channel_8 }, // ADC12
{ DEFIO_TAG_E__PC3, ADC_DEVICES_12, ADC_Channel_9 }, // ADC12
{ DEFIO_TAG_E__PC4, ADC_DEVICES_2, ADC_Channel_5 }, // ADC2
{ DEFIO_TAG_E__PC5, ADC_DEVICES_2, ADC_Channel_11 }, // ADC2
{ DEFIO_TAG_E__PD8, ADC_DEVICES_4, ADC_Channel_12 }, // ADC4
{ DEFIO_TAG_E__PD9, ADC_DEVICES_4, ADC_Channel_13 }, // ADC4
{ DEFIO_TAG_E__PD10, ADC_DEVICES_34, ADC_Channel_7 }, // ADC34
{ DEFIO_TAG_E__PD11, ADC_DEVICES_34, ADC_Channel_8 }, // ADC34
{ DEFIO_TAG_E__PD12, ADC_DEVICES_34, ADC_Channel_9 }, // ADC34
{ DEFIO_TAG_E__PD13, ADC_DEVICES_34, ADC_Channel_10 }, // ADC34
{ DEFIO_TAG_E__PD14, ADC_DEVICES_34, ADC_Channel_11 }, // ADC34
{ DEFIO_TAG_E__PE7, ADC_DEVICES_3, ADC_Channel_13 }, // ADC3
{ DEFIO_TAG_E__PE8, ADC_DEVICES_34, ADC_Channel_6 }, // ADC34
{ DEFIO_TAG_E__PE9, ADC_DEVICES_3, ADC_Channel_2 }, // ADC3
{ DEFIO_TAG_E__PE10, ADC_DEVICES_3, ADC_Channel_14 }, // ADC3
{ DEFIO_TAG_E__PE11, ADC_DEVICES_3, ADC_Channel_15 }, // ADC3
{ DEFIO_TAG_E__PE12, ADC_DEVICES_3, ADC_Channel_16 }, // ADC3
{ DEFIO_TAG_E__PE13, ADC_DEVICES_3, ADC_Channel_3 }, // ADC3
{ DEFIO_TAG_E__PE14, ADC_DEVICES_4, ADC_Channel_1 }, // ADC4
{ DEFIO_TAG_E__PE15, ADC_DEVICES_4, ADC_Channel_2 }, // ADC4
{ DEFIO_TAG_E__PF2, ADC_DEVICES_12, ADC_Channel_10 }, // ADC12
{ DEFIO_TAG_E__PF4, ADC_DEVICES_1, ADC_Channel_5 }, // ADC1
};
void adcInit(const adcConfig_t *config)
{
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
uint8_t adcChannelCount = 0;
memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));
if (config->vbat.enabled) {
adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
}
if (config->rssi.enabled) {
adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL;
}
if (config->external1.enabled) {
adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
}
if (config->current.enabled) {
adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL;
}
ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
if (device == ADCINVALID)
return;
#ifdef ADC24_DMA_REMAP
SYSCFG_DMAChannelRemapConfig(SYSCFG_DMARemap_ADC2ADC4, ENABLE);
#endif
adcDevice_t adc = adcHardware[device];
bool adcActive = false;
for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcVerifyPin(adcOperatingConfig[i].tag, device)) {
continue;
}
adcActive = true;
IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
adcOperatingConfig[i].dmaIndex = adcChannelCount++;
adcOperatingConfig[i].sampleTime = ADC_SampleTime_601Cycles5;
adcOperatingConfig[i].enabled = true;
}
if (!adcActive) {
return;
}
if ((device == ADCDEV_1) || (device == ADCDEV_2)) {
// enable clock for ADC1+2
RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
} else {
// enable clock for ADC3+4
RCC_ADCCLKConfig(RCC_ADC34PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
}
RCC_ClockCmd(adc.rccADC, ENABLE);
dmaInit(dmaGetIdentifier(adc.DMAy_Channelx), OWNER_ADC, 0);
DMA_DeInit(adc.DMAy_Channelx);
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = adcChannelCount;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = adcChannelCount > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure);
DMA_Cmd(adc.DMAy_Channelx, ENABLE);
// calibrate
ADC_VoltageRegulatorCmd(adc.ADCx, ENABLE);
delay(10);
ADC_SelectCalibrationMode(adc.ADCx, ADC_CalibrationMode_Single);
ADC_StartCalibration(adc.ADCx);
while (ADC_GetCalibrationStatus(adc.ADCx) != RESET);
ADC_VoltageRegulatorCmd(adc.ADCx, DISABLE);
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_CommonStructInit(&ADC_CommonInitStructure);
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Clock = ADC_Clock_SynClkModeDiv4;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0;
ADC_CommonInit(adc.ADCx, &ADC_CommonInitStructure);
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_ContinuousConvMode = ADC_ContinuousConvMode_Enable;
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0;
ADC_InitStructure.ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_OverrunMode = ADC_OverrunMode_Disable;
ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable;
ADC_InitStructure.ADC_NbrOfRegChannel = adcChannelCount;
ADC_Init(adc.ADCx, &ADC_InitStructure);
uint8_t rank = 1;
for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcOperatingConfig[i].enabled) {
continue;
}
ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime);
}
ADC_Cmd(adc.ADCx, ENABLE);
while (!ADC_GetFlagStatus(adc.ADCx, ADC_FLAG_RDY));
ADC_DMAConfig(adc.ADCx, ADC_DMAMode_Circular);
ADC_DMACmd(adc.ADCx, ENABLE);
ADC_StartConversion(adc.ADCx);
}