1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-21 07:15:18 +03:00
betaflight/src/main/drivers/bus_spi_stdperiph.c
2021-10-05 17:40:21 +01:00

375 lines
12 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#ifdef USE_SPI
// STM32F405 can't DMA to/from FASTRAM (CCM SRAM)
#define IS_CCM(p) (((uint32_t)p & 0xffff0000) == 0x10000000)
#include "common/maths.h"
#include "drivers/bus.h"
#include "drivers/bus_spi.h"
#include "drivers/bus_spi_impl.h"
#include "drivers/exti.h"
#include "drivers/io.h"
#include "drivers/rcc.h"
static SPI_InitTypeDef defaultInit = {
.SPI_Mode = SPI_Mode_Master,
.SPI_Direction = SPI_Direction_2Lines_FullDuplex,
.SPI_DataSize = SPI_DataSize_8b,
.SPI_NSS = SPI_NSS_Soft,
.SPI_FirstBit = SPI_FirstBit_MSB,
.SPI_CRCPolynomial = 7,
.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8,
.SPI_CPOL = SPI_CPOL_High,
.SPI_CPHA = SPI_CPHA_2Edge
};
static uint16_t spiDivisorToBRbits(SPI_TypeDef *instance, uint16_t divisor)
{
// SPI2 and SPI3 are on APB1/AHB1 which PCLK is half that of APB2/AHB2.
#if defined(STM32F410xx) || defined(STM32F411xE)
UNUSED(instance);
#else
if (instance == SPI2 || instance == SPI3) {
divisor /= 2; // Safe for divisor == 0 or 1
}
#endif
divisor = constrain(divisor, 2, 256);
return (ffs(divisor) - 2) << 3; // SPI_CR1_BR_Pos
}
static void spiSetDivisorBRreg(SPI_TypeDef *instance, uint16_t divisor)
{
#define BR_BITS ((BIT(5) | BIT(4) | BIT(3)))
const uint16_t tempRegister = (instance->CR1 & ~BR_BITS);
instance->CR1 = tempRegister | spiDivisorToBRbits(instance, divisor);
#undef BR_BITS
}
void spiInitDevice(SPIDevice device)
{
spiDevice_t *spi = &(spiDevice[device]);
if (!spi->dev) {
return;
}
// Enable SPI clock
RCC_ClockCmd(spi->rcc, ENABLE);
RCC_ResetCmd(spi->rcc, ENABLE);
IOInit(IOGetByTag(spi->sck), OWNER_SPI_SCK, RESOURCE_INDEX(device));
IOInit(IOGetByTag(spi->miso), OWNER_SPI_MISO, RESOURCE_INDEX(device));
IOInit(IOGetByTag(spi->mosi), OWNER_SPI_MOSI, RESOURCE_INDEX(device));
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG, spi->af);
IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG, spi->af);
IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af);
// Init SPI hardware
SPI_I2S_DeInit(spi->dev);
SPI_I2S_DMACmd(spi->dev, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, DISABLE);
SPI_Init(spi->dev, &defaultInit);
SPI_Cmd(spi->dev, ENABLE);
}
void spiInternalResetDescriptors(busDevice_t *bus)
{
DMA_InitTypeDef *initTx = bus->initTx;
DMA_InitTypeDef *initRx = bus->initRx;
DMA_StructInit(initTx);
initTx->DMA_Channel = bus->dmaTx->channel;
initTx->DMA_DIR = DMA_DIR_MemoryToPeripheral;
initTx->DMA_Mode = DMA_Mode_Normal;
initTx->DMA_PeripheralBaseAddr = (uint32_t)&bus->busType_u.spi.instance->DR;
initTx->DMA_Priority = DMA_Priority_Low;
initTx->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
initTx->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
initTx->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_StructInit(initRx);
initRx->DMA_Channel = bus->dmaRx->channel;
initRx->DMA_DIR = DMA_DIR_PeripheralToMemory;
initRx->DMA_Mode = DMA_Mode_Normal;
initRx->DMA_PeripheralBaseAddr = (uint32_t)&bus->busType_u.spi.instance->DR;
initRx->DMA_Priority = DMA_Priority_Low;
initRx->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
initRx->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
}
void spiInternalResetStream(dmaChannelDescriptor_t *descriptor)
{
DMA_Stream_TypeDef *streamRegs = (DMA_Stream_TypeDef *)descriptor->ref;
// Disable the stream
streamRegs->CR = 0U;
// Clear any pending interrupt flags
DMA_CLEAR_FLAG(descriptor, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
}
static bool spiInternalReadWriteBufPolled(SPI_TypeDef *instance, const uint8_t *txData, uint8_t *rxData, int len)
{
uint8_t b;
while (len--) {
b = txData ? *(txData++) : 0xFF;
while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET);
SPI_I2S_SendData(instance, b);
while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_RXNE) == RESET);
b = SPI_I2S_ReceiveData(instance);
if (rxData) {
*(rxData++) = b;
}
}
return true;
}
void spiInternalInitStream(const extDevice_t *dev, bool preInit)
{
static uint8_t dummyTxByte = 0xff;
static uint8_t dummyRxByte;
busDevice_t *bus = dev->bus;
volatile busSegment_t *segment = bus->curSegment;
if (preInit) {
// Prepare the init structure for the next segment to reduce inter-segment interval
segment++;
if(segment->len == 0) {
// There's no following segment
return;
}
}
uint8_t *txData = segment->txData;
uint8_t *rxData = segment->rxData;
int len = segment->len;
DMA_InitTypeDef *initTx = bus->initTx;
DMA_InitTypeDef *initRx = bus->initRx;
if (txData) {
initTx->DMA_Memory0BaseAddr = (uint32_t)txData;
initTx->DMA_MemoryInc = DMA_MemoryInc_Enable;
} else {
dummyTxByte = 0xff;
initTx->DMA_Memory0BaseAddr = (uint32_t)&dummyTxByte;
initTx->DMA_MemoryInc = DMA_MemoryInc_Disable;
}
initTx->DMA_BufferSize = len;
if (rxData) {
initRx->DMA_Memory0BaseAddr = (uint32_t)rxData;
initRx->DMA_MemoryInc = DMA_MemoryInc_Enable;
} else {
initRx->DMA_Memory0BaseAddr = (uint32_t)&dummyRxByte;
initRx->DMA_MemoryInc = DMA_MemoryInc_Disable;
}
// If possible use 16 bit memory writes to prevent atomic access issues on gyro data
if ((initRx->DMA_Memory0BaseAddr & 0x1) || (len & 0x1))
{
initRx->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
} else {
initRx->DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
}
initRx->DMA_BufferSize = len;
}
void spiInternalStartDMA(const extDevice_t *dev)
{
// Assert Chip Select
IOLo(dev->busType_u.spi.csnPin);
dmaChannelDescriptor_t *dmaTx = dev->bus->dmaTx;
dmaChannelDescriptor_t *dmaRx = dev->bus->dmaRx;
DMA_Stream_TypeDef *streamRegsTx = (DMA_Stream_TypeDef *)dmaTx->ref;
DMA_Stream_TypeDef *streamRegsRx = (DMA_Stream_TypeDef *)dmaRx->ref;
// Use the correct callback argument
dmaRx->userParam = (uint32_t)dev;
// Clear transfer flags
DMA_CLEAR_FLAG(dmaTx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
DMA_CLEAR_FLAG(dmaRx, DMA_IT_HTIF | DMA_IT_TEIF | DMA_IT_TCIF);
// Disable streams to enable update
streamRegsTx->CR = 0U;
streamRegsRx->CR = 0U;
/* Use the Rx interrupt as this occurs once the SPI operation is complete whereas the Tx interrupt
* occurs earlier when the Tx FIFO is empty, but the SPI operation is still in progress
*/
DMA_ITConfig(streamRegsRx, DMA_IT_TC, ENABLE);
// Update streams
DMA_Init(streamRegsTx, dev->bus->initTx);
DMA_Init(streamRegsRx, dev->bus->initRx);
/* Note from AN4031
*
* If the user enables the used peripheral before the corresponding DMA stream, a “FEIF”
* (FIFO Error Interrupt Flag) may be set due to the fact the DMA is not ready to provide
* the first required data to the peripheral (in case of memory-to-peripheral transfer).
*/
// Enable streams
DMA_Cmd(streamRegsTx, ENABLE);
DMA_Cmd(streamRegsRx, ENABLE);
/* Enable the SPI DMA Tx & Rx requests */
SPI_I2S_DMACmd(dev->bus->busType_u.spi.instance, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, ENABLE);
}
void spiInternalStopDMA (const extDevice_t *dev)
{
dmaChannelDescriptor_t *dmaTx = dev->bus->dmaTx;
dmaChannelDescriptor_t *dmaRx = dev->bus->dmaRx;
DMA_Stream_TypeDef *streamRegsTx = (DMA_Stream_TypeDef *)dmaTx->ref;
DMA_Stream_TypeDef *streamRegsRx = (DMA_Stream_TypeDef *)dmaRx->ref;
SPI_TypeDef *instance = dev->bus->busType_u.spi.instance;
// Disable streams
streamRegsTx->CR = 0U;
streamRegsRx->CR = 0U;
SPI_I2S_DMACmd(instance, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, DISABLE);
}
// DMA transfer setup and start
void spiSequenceStart(const extDevice_t *dev, busSegment_t *segments)
{
busDevice_t *bus = dev->bus;
SPI_TypeDef *instance = bus->busType_u.spi.instance;
bool dmaSafe = dev->useDMA;
uint32_t xferLen = 0;
uint32_t segmentCount = 0;
dev->bus->initSegment = true;
dev->bus->curSegment = segments;
SPI_Cmd(instance, DISABLE);
// Switch bus speed
if (dev->busType_u.spi.speed != bus->busType_u.spi.speed) {
spiSetDivisorBRreg(bus->busType_u.spi.instance, dev->busType_u.spi.speed);
bus->busType_u.spi.speed = dev->busType_u.spi.speed;
}
if (dev->busType_u.spi.leadingEdge != bus->busType_u.spi.leadingEdge) {
// Switch SPI clock polarity/phase
instance->CR1 &= ~(SPI_CPOL_High | SPI_CPHA_2Edge);
// Apply setting
if (dev->busType_u.spi.leadingEdge) {
instance->CR1 |= SPI_CPOL_Low | SPI_CPHA_1Edge;
} else
{
instance->CR1 |= SPI_CPOL_High | SPI_CPHA_2Edge;
}
bus->busType_u.spi.leadingEdge = dev->busType_u.spi.leadingEdge;
}
SPI_Cmd(instance, ENABLE);
// Check that any there are no attempts to DMA to/from CCD SRAM
for (busSegment_t *checkSegment = bus->curSegment; checkSegment->len; checkSegment++) {
if (((checkSegment->rxData) && IS_CCM(checkSegment->rxData)) ||
((checkSegment->txData) && IS_CCM(checkSegment->txData))) {
dmaSafe = false;
break;
}
// Note that these counts are only valid if dmaSafe is true
segmentCount++;
xferLen += checkSegment->len;
}
// Use DMA if possible
if (bus->useDMA && dmaSafe && ((segmentCount > 1) || (xferLen > 8))) {
// Intialise the init structures for the first transfer
spiInternalInitStream(dev, false);
// Start the transfers
spiInternalStartDMA(dev);
} else {
// Manually work through the segment list performing a transfer for each
while (bus->curSegment->len) {
// Assert Chip Select
IOLo(dev->busType_u.spi.csnPin);
spiInternalReadWriteBufPolled(
bus->busType_u.spi.instance,
bus->curSegment->txData,
bus->curSegment->rxData,
bus->curSegment->len);
if (bus->curSegment->negateCS) {
// Negate Chip Select
IOHi(dev->busType_u.spi.csnPin);
}
if (bus->curSegment->callback) {
switch(bus->curSegment->callback(dev->callbackArg)) {
case BUS_BUSY:
// Repeat the last DMA segment
bus->curSegment--;
break;
case BUS_ABORT:
bus->curSegment = (busSegment_t *)NULL;
return;
case BUS_READY:
default:
// Advance to the next DMA segment
break;
}
}
bus->curSegment++;
}
// If a following transaction has been linked, start it
if (bus->curSegment->txData) {
const extDevice_t *nextDev = (const extDevice_t *)bus->curSegment->txData;
busSegment_t *nextSegments = (busSegment_t *)bus->curSegment->rxData;
bus->curSegment->txData = NULL;
spiSequenceStart(nextDev, nextSegments);
} else {
// The end of the segment list has been reached, so mark transactions as complete
bus->curSegment = (busSegment_t *)NULL;
}
}
}
#endif