1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/src/platform/STM32/dshot_bitbang.c
2025-01-31 06:54:23 +11:00

793 lines
24 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <math.h>
#include <string.h>
#include "platform.h"
#ifdef USE_DSHOT_BITBANG
#include "build/debug.h"
#include "build/debug_pin.h"
#include "drivers/io.h"
#include "drivers/io_impl.h"
#include "drivers/dma.h"
#include "drivers/dma_reqmap.h"
#include "drivers/dshot.h"
#include "drivers/dshot_bitbang.h"
#include "dshot_bitbang_impl.h"
#include "drivers/dshot_command.h"
#include "drivers/motor.h"
#include "drivers/nvic.h"
#include "pwm_output_dshot_shared.h"
#include "drivers/dshot_bitbang_decode.h"
#include "drivers/time.h"
#include "drivers/timer.h"
#include "pg/motor.h"
#include "pg/pinio.h"
// DEBUG_DSHOT_TELEMETRY_COUNTS
// 0 - Count of telemetry packets read
// 1 - Count of missing edge
// 2 - Count of reception not complete in time
// 3 - Number of high bits before telemetry start
// Maximum time to wait for telemetry reception to complete
#define DSHOT_TELEMETRY_TIMEOUT 2000
// For MCUs that use MPU to control DMA coherency, there might be a performance hit
// on manipulating input buffer content especially if it is read multiple times,
// as the buffer region is attributed as not cachable.
// If this is not desirable, we should use manual cache invalidation.
#ifdef USE_DSHOT_CACHE_MGMT
#define BB_OUTPUT_BUFFER_ATTRIBUTE DMA_RW_AXI __attribute__((aligned(32)))
#define BB_INPUT_BUFFER_ATTRIBUTE DMA_RW_AXI __attribute__((aligned(32)))
#else
#if defined(STM32F4)
#define BB_OUTPUT_BUFFER_ATTRIBUTE
#define BB_INPUT_BUFFER_ATTRIBUTE
#elif defined(STM32F7)
#define BB_OUTPUT_BUFFER_ATTRIBUTE FAST_DATA_ZERO_INIT
#define BB_INPUT_BUFFER_ATTRIBUTE FAST_DATA_ZERO_INIT
#elif defined(STM32H7)
#define BB_OUTPUT_BUFFER_ATTRIBUTE DMA_RAM
#define BB_INPUT_BUFFER_ATTRIBUTE DMA_RAM
#elif defined(STM32G4)
#define BB_OUTPUT_BUFFER_ATTRIBUTE FAST_DATA_ZERO_INIT
#define BB_INPUT_BUFFER_ATTRIBUTE FAST_DATA_ZERO_INIT
#endif
#endif // USE_DSHOT_CACHE_MGMT
BB_OUTPUT_BUFFER_ATTRIBUTE uint32_t bbOutputBuffer[MOTOR_DSHOT_BUF_CACHE_ALIGN_LENGTH * MAX_SUPPORTED_MOTOR_PORTS];
BB_INPUT_BUFFER_ATTRIBUTE uint16_t bbInputBuffer[DSHOT_BB_PORT_IP_BUF_CACHE_ALIGN_LENGTH * MAX_SUPPORTED_MOTOR_PORTS];
uint8_t bbPuPdMode;
FAST_DATA_ZERO_INIT timeUs_t dshotFrameUs;
const timerHardware_t bbTimerHardware[] = {
#if defined(STM32F4) || defined(STM32F7)
#if !defined(STM32F411xE)
DEF_TIM(TIM8, CH1, NONE, 0, 1),
DEF_TIM(TIM8, CH2, NONE, 0, 1),
DEF_TIM(TIM8, CH3, NONE, 0, 1),
DEF_TIM(TIM8, CH4, NONE, 0, 0),
#endif
DEF_TIM(TIM1, CH1, NONE, 0, 1),
DEF_TIM(TIM1, CH1, NONE, 0, 2),
DEF_TIM(TIM1, CH2, NONE, 0, 1),
DEF_TIM(TIM1, CH3, NONE, 0, 1),
DEF_TIM(TIM1, CH4, NONE, 0, 0),
#elif defined(STM32G4) || defined(STM32H7)
// XXX TODO: STM32G4 and STM32H7 can use any timer for pacing
// DMA request numbers are duplicated for TIM1 and TIM8:
// - Any pacer can serve a GPIO port.
// - For quads (or less), 4 pacers can cover the worst case scenario of
// 4 motors scattered across 4 different GPIO ports.
// - For hexas (and larger), more channels may become necessary,
// in which case the DMA request numbers should be modified.
DEF_TIM(TIM8, CH1, NONE, 0, 0, 0),
DEF_TIM(TIM8, CH2, NONE, 0, 1, 0),
DEF_TIM(TIM8, CH3, NONE, 0, 2, 0),
DEF_TIM(TIM8, CH4, NONE, 0, 3, 0),
DEF_TIM(TIM1, CH1, NONE, 0, 0, 0),
DEF_TIM(TIM1, CH2, NONE, 0, 1, 0),
DEF_TIM(TIM1, CH3, NONE, 0, 2, 0),
DEF_TIM(TIM1, CH4, NONE, 0, 3, 0),
#else
#error MCU dependent code required
#endif
};
static FAST_DATA_ZERO_INIT timeUs_t lastSendUs;
static motorProtocolTypes_e motorProtocol;
// DMA GPIO output buffer formatting
static void bbOutputDataInit(uint32_t *buffer, uint16_t portMask, bool inverted)
{
uint32_t resetMask;
uint32_t setMask;
if (inverted) {
resetMask = portMask;
setMask = (portMask << 16);
} else {
resetMask = (portMask << 16);
setMask = portMask;
}
int symbol_index;
for (symbol_index = 0; symbol_index < MOTOR_DSHOT_FRAME_BITS; symbol_index++) {
buffer[symbol_index * MOTOR_DSHOT_STATE_PER_SYMBOL + 0] |= setMask ; // Always set all ports
buffer[symbol_index * MOTOR_DSHOT_STATE_PER_SYMBOL + 1] = 0; // Reset bits are port dependent
buffer[symbol_index * MOTOR_DSHOT_STATE_PER_SYMBOL + 2] |= resetMask; // Always reset all ports
}
//
// output one more 'bit' that keeps the line level at idle to allow the ESC to sample the last bit
//
// Avoid CRC errors in the case of bi-directional d-shot. CRC errors can occur if the output is
// transitioned to an input before the signal has been sampled by the ESC as the sampled voltage
// may be somewhere between logic-high and logic-low depending on how the motor output line is
// driven or floating. On some MCUs it's observed that the voltage momentarily drops low on transition
// to input.
int hold_bit_index = MOTOR_DSHOT_FRAME_BITS * MOTOR_DSHOT_STATE_PER_SYMBOL;
buffer[hold_bit_index + 0] |= resetMask; // Always reset all ports
buffer[hold_bit_index + 1] = 0; // Never any change
buffer[hold_bit_index + 2] = 0; // Never any change
}
static void bbOutputDataSet(uint32_t *buffer, int pinNumber, uint16_t value, bool inverted)
{
uint32_t middleBit;
if (inverted) {
middleBit = (1 << (pinNumber + 0));
} else {
middleBit = (1 << (pinNumber + 16));
}
for (int pos = 0; pos < 16; pos++) {
if (!(value & 0x8000)) {
buffer[pos * 3 + 1] |= middleBit;
}
value <<= 1;
}
}
static void bbOutputDataClear(uint32_t *buffer)
{
// Middle position to no change
for (int bitpos = 0; bitpos < 16; bitpos++) {
buffer[bitpos * 3 + 1] = 0;
}
}
// bbPacer management
static bbPacer_t *bbFindMotorPacer(TIM_TypeDef *tim)
{
for (int i = 0; i < MAX_MOTOR_PACERS; i++) {
bbPacer_t *bbPacer = &bbPacers[i];
if (bbPacer->tim == NULL) {
bbPacer->tim = tim;
++usedMotorPacers;
return bbPacer;
}
if (bbPacer->tim == tim) {
return bbPacer;
}
}
return NULL;
}
// bbPort management
static bbPort_t *bbFindMotorPort(int portIndex)
{
for (int i = 0; i < usedMotorPorts; i++) {
if (bbPorts[i].portIndex == portIndex) {
return &bbPorts[i];
}
}
return NULL;
}
static bbPort_t *bbAllocateMotorPort(int portIndex)
{
if (usedMotorPorts >= MAX_SUPPORTED_MOTOR_PORTS) {
bbStatus = DSHOT_BITBANG_STATUS_TOO_MANY_PORTS;
return NULL;
}
bbPort_t *bbPort = &bbPorts[usedMotorPorts];
if (!bbPort->timhw) {
// No more pacer channel available
bbStatus = DSHOT_BITBANG_STATUS_NO_PACER;
return NULL;
}
bbPort->portIndex = portIndex;
bbPort->owner.owner = OWNER_DSHOT_BITBANG;
bbPort->owner.resourceIndex = RESOURCE_INDEX(portIndex);
++usedMotorPorts;
return bbPort;
}
const timerHardware_t *dshotBitbangTimerGetAllocatedByNumberAndChannel(int8_t timerNumber, uint16_t timerChannel)
{
for (int index = 0; index < usedMotorPorts; index++) {
const timerHardware_t *bitbangTimer = bbPorts[index].timhw;
if (bitbangTimer && timerGetTIMNumber(bitbangTimer->tim) == timerNumber && bitbangTimer->channel == timerChannel && bbPorts[index].owner.owner) {
return bitbangTimer;
}
}
return NULL;
}
const resourceOwner_t *dshotBitbangTimerGetOwner(const timerHardware_t *timer)
{
for (int index = 0; index < usedMotorPorts; index++) {
const timerHardware_t *bitbangTimer = bbPorts[index].timhw;
if (bitbangTimer && bitbangTimer == timer) {
return &bbPorts[index].owner;
}
}
return &freeOwner;
}
// Return frequency of smallest change [state/sec]
static uint32_t getDshotBaseFrequency(motorProtocolTypes_e pwmProtocolType)
{
switch (pwmProtocolType) {
case(MOTOR_PROTOCOL_DSHOT600):
return MOTOR_DSHOT600_SYMBOL_RATE * MOTOR_DSHOT_STATE_PER_SYMBOL;
case(MOTOR_PROTOCOL_DSHOT300):
return MOTOR_DSHOT300_SYMBOL_RATE * MOTOR_DSHOT_STATE_PER_SYMBOL;
default:
case(MOTOR_PROTOCOL_DSHOT150):
return MOTOR_DSHOT150_SYMBOL_RATE * MOTOR_DSHOT_STATE_PER_SYMBOL;
}
}
static void bbSetupDma(bbPort_t *bbPort)
{
const dmaIdentifier_e dmaIdentifier = dmaGetIdentifier(bbPort->dmaResource);
dmaEnable(dmaIdentifier);
bbPort->dmaSource = timerDmaSource(bbPort->timhw->channel);
bbPacer_t *bbPacer = bbFindMotorPacer(bbPort->timhw->tim);
bbPacer->dmaSources |= bbPort->dmaSource;
dmaSetHandler(dmaIdentifier, bbDMAIrqHandler, NVIC_BUILD_PRIORITY(2, 1), (uint32_t)bbPort);
bbDMA_ITConfig(bbPort);
}
FAST_IRQ_HANDLER void bbDMAIrqHandler(dmaChannelDescriptor_t *descriptor)
{
dbgPinHi(0);
bbPort_t *bbPort = (bbPort_t *)descriptor->userParam;
bbDMA_Cmd(bbPort, DISABLE);
bbTIM_DMACmd(bbPort->timhw->tim, bbPort->dmaSource, DISABLE);
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TEIF)) {
while (1) {};
}
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
if (bbPort->direction == DSHOT_BITBANG_DIRECTION_INPUT) {
bbPort->telemetryPending = false;
#ifdef DEBUG_COUNT_INTERRUPT
bbPort->inputIrq++;
#endif
// Disable DMA as telemetry reception is complete
bbDMA_Cmd(bbPort, DISABLE);
} else {
#ifdef DEBUG_COUNT_INTERRUPT
bbPort->outputIrq++;
#endif
// Switch to input
bbSwitchToInput(bbPort);
bbPort->telemetryPending = true;
bbTIM_DMACmd(bbPort->timhw->tim, bbPort->dmaSource, ENABLE);
}
}
#endif
dbgPinLo(0);
}
// Setup bbPorts array elements so that they each have a TIM1 or TIM8 channel
// in timerHardware array for BB-DShot.
static void bbFindPacerTimer(void)
{
for (int bbPortIndex = 0; bbPortIndex < MAX_SUPPORTED_MOTOR_PORTS; bbPortIndex++) {
for (unsigned timerIndex = 0; timerIndex < ARRAYLEN(bbTimerHardware); timerIndex++) {
const timerHardware_t *timer = &bbTimerHardware[timerIndex];
int timNumber = timerGetTIMNumber(timer->tim);
if ((motorConfig()->dev.useDshotBitbangedTimer == DSHOT_BITBANGED_TIMER_TIM1 && timNumber != 1)
|| (motorConfig()->dev.useDshotBitbangedTimer == DSHOT_BITBANGED_TIMER_TIM8 && timNumber != 8)) {
continue;
}
bool timerConflict = false;
for (int channel = 0; channel < CC_CHANNELS_PER_TIMER; channel++) {
const timerHardware_t *timer = timerGetAllocatedByNumberAndChannel(timNumber, CC_CHANNEL_FROM_INDEX(channel));
const resourceOwner_e timerOwner = timerGetOwner(timer)->owner;
if (timerOwner != OWNER_FREE && timerOwner != OWNER_DSHOT_BITBANG) {
timerConflict = true;
break;
}
}
for (int index = 0; index < bbPortIndex; index++) {
const timerHardware_t* t = bbPorts[index].timhw;
if (timerGetTIMNumber(t->tim) == timNumber && timer->channel == t->channel) {
timerConflict = true;
break;
}
}
if (timerConflict) {
continue;
}
#ifdef USE_DMA_SPEC
dmaoptValue_t dmaopt = dmaGetOptionByTimer(timer);
const dmaChannelSpec_t *dmaChannelSpec = dmaGetChannelSpecByTimerValue(timer->tim, timer->channel, dmaopt);
dmaResource_t *dma = dmaChannelSpec->ref;
#else
dmaResource_t *dma = timer->dmaRef;
#endif
dmaIdentifier_e dmaIdentifier = dmaGetIdentifier(dma);
if (dmaGetOwner(dmaIdentifier)->owner == OWNER_FREE) {
bbPorts[bbPortIndex].timhw = timer;
break;
}
}
}
}
static void bbTimebaseSetup(bbPort_t *bbPort, motorProtocolTypes_e dshotProtocolType)
{
uint32_t timerclock = timerClock(bbPort->timhw->tim);
uint32_t outputFreq = getDshotBaseFrequency(dshotProtocolType);
dshotFrameUs = 1000000 * 17 * 3 / outputFreq;
bbPort->outputARR = timerclock / outputFreq - 1;
// XXX Explain this formula
uint32_t inputFreq = outputFreq * 5 * 2 * DSHOT_BITBANG_TELEMETRY_OVER_SAMPLE / 24;
bbPort->inputARR = timerclock / inputFreq - 1;
}
//
// bb only use pin info associated with timerHardware entry designated as TIM_USE_MOTOR;
// it does not use the timer channel associated with the pin.
//
static bool bbMotorConfig(IO_t io, uint8_t motorIndex, motorProtocolTypes_e pwmProtocolType, uint8_t output)
{
// Return if no GPIO is specified
if (!io) {
return false;
}
int pinIndex = IO_GPIOPinIdx(io);
int portIndex = IO_GPIOPortIdx(io);
bbPort_t *bbPort = bbFindMotorPort(portIndex);
if (!bbPort) {
// New port group
bbPort = bbAllocateMotorPort(portIndex);
if (bbPort) {
const timerHardware_t *timhw = bbPort->timhw;
#ifdef USE_DMA_SPEC
const dmaChannelSpec_t *dmaChannelSpec = dmaGetChannelSpecByTimerValue(timhw->tim, timhw->channel, dmaGetOptionByTimer(timhw));
bbPort->dmaResource = dmaChannelSpec->ref;
bbPort->dmaChannel = dmaChannelSpec->channel;
#else
bbPort->dmaResource = timhw->dmaRef;
bbPort->dmaChannel = timhw->dmaChannel;
#endif
}
if (!bbPort || !dmaAllocate(dmaGetIdentifier(bbPort->dmaResource), bbPort->owner.owner, bbPort->owner.resourceIndex)) {
return false;
}
bbPort->gpio = IO_GPIO(io);
bbPort->portOutputCount = MOTOR_DSHOT_BUF_LENGTH;
bbPort->portOutputBuffer = &bbOutputBuffer[(bbPort - bbPorts) * MOTOR_DSHOT_BUF_CACHE_ALIGN_LENGTH];
bbPort->portInputCount = DSHOT_BB_PORT_IP_BUF_LENGTH;
bbPort->portInputBuffer = &bbInputBuffer[(bbPort - bbPorts) * DSHOT_BB_PORT_IP_BUF_CACHE_ALIGN_LENGTH];
bbTimebaseSetup(bbPort, pwmProtocolType);
bbTIM_TimeBaseInit(bbPort, bbPort->outputARR);
bbTimerChannelInit(bbPort);
bbSetupDma(bbPort);
bbDMAPreconfigure(bbPort, DSHOT_BITBANG_DIRECTION_OUTPUT);
bbDMAPreconfigure(bbPort, DSHOT_BITBANG_DIRECTION_INPUT);
bbDMA_ITConfig(bbPort);
}
bbMotors[motorIndex].pinIndex = pinIndex;
bbMotors[motorIndex].io = io;
bbMotors[motorIndex].output = output;
bbMotors[motorIndex].bbPort = bbPort;
IOInit(io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
// Setup GPIO_MODER and GPIO_ODR register manipulation values
bbGpioSetup(&bbMotors[motorIndex]);
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
bbOutputDataInit(bbPort->portOutputBuffer, (1 << pinIndex), DSHOT_BITBANG_INVERTED);
} else
#endif
{
bbOutputDataInit(bbPort->portOutputBuffer, (1 << pinIndex), DSHOT_BITBANG_NONINVERTED);
}
bbSwitchToOutput(bbPort);
bbMotors[motorIndex].configured = true;
return true;
}
static bool bbTelemetryWait(void)
{
// Wait for telemetry reception to complete
bool telemetryPending;
bool telemetryWait = false;
const timeUs_t startTimeUs = micros();
do {
telemetryPending = false;
for (int i = 0; i < usedMotorPorts; i++) {
telemetryPending |= bbPorts[i].telemetryPending;
}
telemetryWait |= telemetryPending;
if (cmpTimeUs(micros(), startTimeUs) > DSHOT_TELEMETRY_TIMEOUT) {
break;
}
} while (telemetryPending);
if (telemetryWait) {
DEBUG_SET(DEBUG_DSHOT_TELEMETRY_COUNTS, 2, debug[2] + 1);
}
return telemetryWait;
}
static void bbUpdateInit(void)
{
for (int i = 0; i < usedMotorPorts; i++) {
bbOutputDataClear(bbPorts[i].portOutputBuffer);
}
}
static bool bbDecodeTelemetry(void)
{
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
#ifdef USE_DSHOT_TELEMETRY_STATS
const timeMs_t currentTimeMs = millis();
#endif
#ifdef USE_DSHOT_CACHE_MGMT
for (int i = 0; i < usedMotorPorts; i++) {
bbPort_t *bbPort = &bbPorts[i];
SCB_InvalidateDCache_by_Addr((uint32_t *)bbPort->portInputBuffer, DSHOT_BB_PORT_IP_BUF_CACHE_ALIGN_BYTES);
}
#endif
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < dshotMotorCount; motorIndex++) {
#ifdef STM32F4
uint32_t rawValue = decode_bb_bitband(
bbMotors[motorIndex].bbPort->portInputBuffer,
bbMotors[motorIndex].bbPort->portInputCount,
bbMotors[motorIndex].pinIndex);
#else
uint32_t rawValue = decode_bb(
bbMotors[motorIndex].bbPort->portInputBuffer,
bbMotors[motorIndex].bbPort->portInputCount,
bbMotors[motorIndex].pinIndex);
#endif
if (rawValue == DSHOT_TELEMETRY_NOEDGE) {
DEBUG_SET(DEBUG_DSHOT_TELEMETRY_COUNTS, 1, debug[1] + 1);
continue;
}
DEBUG_SET(DEBUG_DSHOT_TELEMETRY_COUNTS, 0, debug[0] + 1);
dshotTelemetryState.readCount++;
if (rawValue != DSHOT_TELEMETRY_INVALID) {
// Check EDT enable or store raw value
if ((rawValue == 0x0E00) && (dshotCommandGetCurrent(motorIndex) == DSHOT_CMD_EXTENDED_TELEMETRY_ENABLE)) {
dshotTelemetryState.motorState[motorIndex].telemetryTypes = 1 << DSHOT_TELEMETRY_TYPE_STATE_EVENTS;
} else {
dshotTelemetryState.motorState[motorIndex].rawValue = rawValue;
}
} else {
dshotTelemetryState.invalidPacketCount++;
}
#ifdef USE_DSHOT_TELEMETRY_STATS
updateDshotTelemetryQuality(&dshotTelemetryQuality[motorIndex], rawValue != DSHOT_TELEMETRY_INVALID, currentTimeMs);
#endif
}
dshotTelemetryState.rawValueState = DSHOT_RAW_VALUE_STATE_NOT_PROCESSED;
}
#endif
return true;
}
static void bbWriteInt(uint8_t motorIndex, uint16_t value)
{
bbMotor_t *const bbmotor = &bbMotors[motorIndex];
if (!bbmotor->configured) {
return;
}
// If there is a command ready to go overwrite the value and send that instead
if (dshotCommandIsProcessing()) {
value = dshotCommandGetCurrent(motorIndex);
if (value) {
bbmotor->protocolControl.requestTelemetry = true;
}
}
bbmotor->protocolControl.value = value;
uint16_t packet = prepareDshotPacket(&bbmotor->protocolControl);
bbPort_t *bbPort = bbmotor->bbPort;
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
bbOutputDataSet(bbPort->portOutputBuffer, bbmotor->pinIndex, packet, DSHOT_BITBANG_INVERTED);
} else
#endif
{
bbOutputDataSet(bbPort->portOutputBuffer, bbmotor->pinIndex, packet, DSHOT_BITBANG_NONINVERTED);
}
}
static void bbWrite(uint8_t motorIndex, float value)
{
bbWriteInt(motorIndex, lrintf(value));
}
static void bbUpdateComplete(void)
{
// If there is a dshot command loaded up, time it correctly with motor update
if (!dshotCommandQueueEmpty()) {
if (!dshotCommandOutputIsEnabled(dshotMotorCount)) {
return;
}
}
for (int i = 0; i < usedMotorPorts; i++) {
bbPort_t *bbPort = &bbPorts[i];
#ifdef USE_DSHOT_CACHE_MGMT
SCB_CleanDCache_by_Addr(bbPort->portOutputBuffer, MOTOR_DSHOT_BUF_CACHE_ALIGN_BYTES);
#endif
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
if (bbPort->direction == DSHOT_BITBANG_DIRECTION_INPUT) {
bbPort->inputActive = false;
bbSwitchToOutput(bbPort);
}
} else
#endif
{
#if defined(STM32G4)
// Using circular mode resets the counter one short, so explicitly reload
bbSwitchToOutput(bbPort);
#endif
}
bbDMA_Cmd(bbPort, ENABLE);
}
lastSendUs = micros();
for (int i = 0; i < usedMotorPacers; i++) {
bbPacer_t *bbPacer = &bbPacers[i];
bbTIM_DMACmd(bbPacer->tim, bbPacer->dmaSources, ENABLE);
}
}
static bool bbEnableMotors(void)
{
for (int i = 0; i < dshotMotorCount; i++) {
if (bbMotors[i].configured) {
IOConfigGPIO(bbMotors[i].io, bbMotors[i].iocfg);
}
}
return true;
}
static void bbDisableMotors(void)
{
return;
}
static void bbShutdown(void)
{
return;
}
static bool bbIsMotorEnabled(unsigned index)
{
return bbMotors[index].enabled;
}
static void bbPostInit(void)
{
bbFindPacerTimer();
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < dshotMotorCount; motorIndex++) {
if (!bbMotorConfig(bbMotors[motorIndex].io, motorIndex, motorProtocol, bbMotors[motorIndex].output)) {
return;
}
bbMotors[motorIndex].enabled = true;
}
}
static const motorVTable_t bbVTable = {
.postInit = bbPostInit,
.enable = bbEnableMotors,
.disable = bbDisableMotors,
.isMotorEnabled = bbIsMotorEnabled,
.telemetryWait = bbTelemetryWait,
.decodeTelemetry = bbDecodeTelemetry,
.updateInit = bbUpdateInit,
.write = bbWrite,
.writeInt = bbWriteInt,
.updateComplete = bbUpdateComplete,
.convertExternalToMotor = dshotConvertFromExternal,
.convertMotorToExternal = dshotConvertToExternal,
.shutdown = bbShutdown,
.isMotorIdle = bbDshotIsMotorIdle,
.requestTelemetry = bbDshotRequestTelemetry,
.getMotorIO = bbGetMotorIO,
};
dshotBitbangStatus_e dshotBitbangGetStatus(void)
{
return bbStatus;
}
bool dshotBitbangDevInit(motorDevice_t *device, const motorDevConfig_t *motorConfig)
{
dbgPinLo(0);
dbgPinLo(1);
if (!device || !motorConfig) {
return false;
}
motorProtocol = motorConfig->motorProtocol;
device->vTable = &bbVTable;
dshotMotorCount = device->count;
bbStatus = DSHOT_BITBANG_STATUS_OK;
#ifdef USE_DSHOT_TELEMETRY
useDshotTelemetry = motorConfig->useDshotTelemetry;
#endif
memset(bbOutputBuffer, 0, sizeof(bbOutputBuffer));
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < dshotMotorCount; motorIndex++) {
const unsigned reorderedMotorIndex = motorConfig->motorOutputReordering[motorIndex];
const timerHardware_t *timerHardware = timerGetConfiguredByTag(motorConfig->ioTags[reorderedMotorIndex]);
const IO_t io = IOGetByTag(motorConfig->ioTags[reorderedMotorIndex]);
uint8_t output = motorConfig->motorInversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output;
bbPuPdMode = (output & TIMER_OUTPUT_INVERTED) ? BB_GPIO_PULLDOWN : BB_GPIO_PULLUP;
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
output ^= TIMER_OUTPUT_INVERTED;
}
#endif
if (!IOIsFreeOrPreinit(io)) {
/* not enough motors initialised for the mixer or a break in the motors */
device->vTable = NULL;
dshotMotorCount = 0;
bbStatus = DSHOT_BITBANG_STATUS_MOTOR_PIN_CONFLICT;
return false;
}
int pinIndex = IO_GPIOPinIdx(io);
bbMotors[motorIndex].pinIndex = pinIndex;
bbMotors[motorIndex].io = io;
bbMotors[motorIndex].output = output;
#if defined(STM32F4)
bbMotors[motorIndex].iocfg = IO_CONFIG(GPIO_Mode_OUT, GPIO_Speed_50MHz, GPIO_OType_PP, bbPuPdMode);
#elif defined(STM32F7) || defined(STM32G4) || defined(STM32H7)
bbMotors[motorIndex].iocfg = IO_CONFIG(GPIO_MODE_OUTPUT_PP, GPIO_SPEED_FREQ_LOW, bbPuPdMode);
#endif
IOInit(io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
IOConfigGPIO(io, bbMotors[motorIndex].iocfg);
if (output & TIMER_OUTPUT_INVERTED) {
IOLo(io);
} else {
IOHi(io);
}
}
return true;
}
#endif // USE_DSHOT_BB