1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 12:55:19 +03:00
betaflight/src/main/drivers/serial_uart.c
Dominic Clifton 916aa60254 STM32F3 - Support hardware serial inversion.
Tested on the Sparky board with an FrSky X4RSB without external hardware
inverter.
2014-12-26 12:16:24 +00:00

295 lines
9.6 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Authors:
* Dominic Clifton - Serial port abstraction, Separation of common STM32 code for cleanflight, various cleanups.
* Hamasaki/Timecop - Initial baseflight code
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "platform.h"
#include "build_config.h"
#include "common/utils.h"
#include "gpio.h"
#include "inverter.h"
#include "serial.h"
#include "serial_uart.h"
uartPort_t *serialUSART1(uint32_t baudRate, portMode_t mode);
uartPort_t *serialUSART2(uint32_t baudRate, portMode_t mode);
uartPort_t *serialUSART3(uint32_t baudRate, portMode_t mode);
static void usartConfigurePinInversion(uartPort_t *uartPort) {
#ifdef INVERTER
if (uartPort->port.inversion == SERIAL_INVERTED && uartPort->USARTx == INVERTER_USART) {
// Enable hardware inverter if available.
INVERTER_ON;
}
#endif
#ifdef STM32F303xC
uint32_t inversionPins = 0;
if (uartPort->port.mode & MODE_TX) {
inversionPins |= USART_InvPin_Tx;
}
if (uartPort->port.mode & MODE_RX) {
inversionPins |= USART_InvPin_Rx;
}
// Note: inversion when using MODE_BIDIR not supported yet.
USART_InvPinCmd(uartPort->USARTx, inversionPins, uartPort->port.inversion == SERIAL_INVERTED ? ENABLE : DISABLE);
#endif
}
static void uartReconfigure(uartPort_t *uartPort)
{
USART_InitTypeDef USART_InitStructure;
USART_Cmd(uartPort->USARTx, DISABLE);
USART_InitStructure.USART_BaudRate = uartPort->port.baudRate;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
if (uartPort->port.mode & MODE_SBUS) {
USART_InitStructure.USART_StopBits = USART_StopBits_2;
USART_InitStructure.USART_Parity = USART_Parity_Even;
} else {
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
}
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = 0;
if (uartPort->port.mode & MODE_RX)
USART_InitStructure.USART_Mode |= USART_Mode_Rx;
if (uartPort->port.mode & MODE_TX)
USART_InitStructure.USART_Mode |= USART_Mode_Tx;
if (uartPort->port.mode & MODE_BIDIR)
USART_InitStructure.USART_Mode |= USART_Mode_Tx | USART_Mode_Rx;
USART_Init(uartPort->USARTx, &USART_InitStructure);
usartConfigurePinInversion(uartPort);
USART_Cmd(uartPort->USARTx, ENABLE);
}
serialPort_t *uartOpen(USART_TypeDef *USARTx, serialReceiveCallbackPtr callback, uint32_t baudRate, portMode_t mode, serialInversion_e inversion)
{
uartPort_t *s = NULL;
if (USARTx == USART1) {
s = serialUSART1(baudRate, mode);
#ifdef USE_USART2
} else if (USARTx == USART2) {
s = serialUSART2(baudRate, mode);
#endif
#ifdef USE_USART3
} else if (USARTx == USART3) {
s = serialUSART3(baudRate, mode);
#endif
} else {
return (serialPort_t *)s;
}
s->txDMAEmpty = true;
// common serial initialisation code should move to serialPort::init()
s->port.rxBufferHead = s->port.rxBufferTail = 0;
s->port.txBufferHead = s->port.txBufferTail = 0;
// callback works for IRQ-based RX ONLY
s->port.callback = callback;
s->port.mode = mode;
s->port.baudRate = baudRate;
s->port.inversion = inversion;
uartReconfigure(s);
// Receive DMA or IRQ
DMA_InitTypeDef DMA_InitStructure;
if ((mode & MODE_RX) || (mode & MODE_BIDIR)) {
if (s->rxDMAChannel) {
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = s->rxDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_BufferSize = s->port.rxBufferSize;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)s->port.rxBuffer;
DMA_DeInit(s->rxDMAChannel);
DMA_Init(s->rxDMAChannel, &DMA_InitStructure);
DMA_Cmd(s->rxDMAChannel, ENABLE);
USART_DMACmd(s->USARTx, USART_DMAReq_Rx, ENABLE);
s->rxDMAPos = DMA_GetCurrDataCounter(s->rxDMAChannel);
} else {
USART_ClearITPendingBit(s->USARTx, USART_IT_RXNE);
USART_ITConfig(s->USARTx, USART_IT_RXNE, ENABLE);
}
}
// Transmit DMA or IRQ
if ((mode & MODE_TX) || (mode & MODE_BIDIR)) {
if (s->txDMAChannel) {
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = s->txDMAPeripheralBaseAddr;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_BufferSize = s->port.txBufferSize;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_DeInit(s->txDMAChannel);
DMA_Init(s->txDMAChannel, &DMA_InitStructure);
DMA_ITConfig(s->txDMAChannel, DMA_IT_TC, ENABLE);
DMA_SetCurrDataCounter(s->txDMAChannel, 0);
s->txDMAChannel->CNDTR = 0;
USART_DMACmd(s->USARTx, USART_DMAReq_Tx, ENABLE);
} else {
USART_ITConfig(s->USARTx, USART_IT_TXE, ENABLE);
}
}
USART_Cmd(s->USARTx, ENABLE);
if (mode & MODE_BIDIR)
USART_HalfDuplexCmd(s->USARTx, ENABLE);
else
USART_HalfDuplexCmd(s->USARTx, DISABLE);
return (serialPort_t *)s;
}
void uartSetBaudRate(serialPort_t *instance, uint32_t baudRate)
{
uartPort_t *uartPort = (uartPort_t *)instance;
uartPort->port.baudRate = baudRate;
uartReconfigure(uartPort);
}
void uartSetMode(serialPort_t *instance, portMode_t mode)
{
uartPort_t *uartPort = (uartPort_t *)instance;
uartPort->port.mode = mode;
uartReconfigure(uartPort);
}
void uartStartTxDMA(uartPort_t *s)
{
s->txDMAChannel->CMAR = (uint32_t)&s->port.txBuffer[s->port.txBufferTail];
if (s->port.txBufferHead > s->port.txBufferTail) {
s->txDMAChannel->CNDTR = s->port.txBufferHead - s->port.txBufferTail;
s->port.txBufferTail = s->port.txBufferHead;
} else {
s->txDMAChannel->CNDTR = s->port.txBufferSize - s->port.txBufferTail;
s->port.txBufferTail = 0;
}
s->txDMAEmpty = false;
DMA_Cmd(s->txDMAChannel, ENABLE);
}
uint8_t uartTotalBytesWaiting(serialPort_t *instance)
{
uartPort_t *s = (uartPort_t*)instance;
if (s->rxDMAChannel) {
uint32_t rxDMAHead = s->rxDMAChannel->CNDTR;
if (rxDMAHead >= s->rxDMAPos) {
return rxDMAHead - s->rxDMAPos;
} else {
return s->port.rxBufferSize + rxDMAHead - s->rxDMAPos;
}
}
if (s->port.rxBufferHead >= s->port.rxBufferTail) {
return s->port.rxBufferHead - s->port.rxBufferTail;
} else {
return s->port.rxBufferSize + s->port.rxBufferHead - s->port.rxBufferTail;
}
}
bool isUartTransmitBufferEmpty(serialPort_t *instance)
{
uartPort_t *s = (uartPort_t *)instance;
if (s->txDMAChannel)
return s->txDMAEmpty;
else
return s->port.txBufferTail == s->port.txBufferHead;
}
uint8_t uartRead(serialPort_t *instance)
{
uint8_t ch;
uartPort_t *s = (uartPort_t *)instance;
if (s->rxDMAChannel) {
ch = s->port.rxBuffer[s->port.rxBufferSize - s->rxDMAPos];
if (--s->rxDMAPos == 0)
s->rxDMAPos = s->port.rxBufferSize;
} else {
ch = s->port.rxBuffer[s->port.rxBufferTail];
if (s->port.rxBufferTail + 1 >= s->port.rxBufferSize) {
s->port.rxBufferTail = 0;
} else {
s->port.rxBufferTail++;
}
}
return ch;
}
void uartWrite(serialPort_t *instance, uint8_t ch)
{
uartPort_t *s = (uartPort_t *)instance;
s->port.txBuffer[s->port.txBufferHead] = ch;
if (s->port.txBufferHead + 1 >= s->port.txBufferSize) {
s->port.txBufferHead = 0;
} else {
s->port.txBufferHead++;
}
if (s->txDMAChannel) {
if (!(s->txDMAChannel->CCR & 1))
uartStartTxDMA(s);
} else {
USART_ITConfig(s->USARTx, USART_IT_TXE, ENABLE);
}
}
const struct serialPortVTable uartVTable[] = {
{
uartWrite,
uartTotalBytesWaiting,
uartRead,
uartSetBaudRate,
isUartTransmitBufferEmpty,
uartSetMode,
}
};