1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-15 04:15:44 +03:00
betaflight/src/main/drivers/flash.c
2019-05-18 21:39:08 +09:00

363 lines
9.6 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#include "build/debug.h"
#ifdef USE_FLASH_CHIP
#include "flash.h"
#include "flash_impl.h"
#include "flash_m25p16.h"
#include "flash_w25n01g.h"
#include "flash_w25m.h"
#include "drivers/bus_spi.h"
#include "drivers/bus_quadspi.h"
#include "drivers/io.h"
#include "drivers/time.h"
static busDevice_t busInstance;
static busDevice_t *busdev;
static flashDevice_t flashDevice;
static flashPartitionTable_t flashPartitionTable;
static void flashConfigurePartitions(void);
#define FLASH_INSTRUCTION_RDID 0x9F
#ifdef USE_QUADSPI
static bool flashQuadSpiInit(const flashConfig_t *flashConfig)
{
QUADSPI_TypeDef *quadSpiInstance = quadSpiInstanceByDevice(QUADSPI_CFG_TO_DEV(flashConfig->quadSpiDevice));
quadSpiSetDivisor(quadSpiInstance, QUADSPI_CLOCK_INITIALISATION);
uint8_t readIdResponse[4];
bool status = quadSpiReceive1LINE(quadSpiInstance, FLASH_INSTRUCTION_RDID, 8, readIdResponse, sizeof(readIdResponse));
if (!status) {
return false;
}
flashDevice.io.mode = FLASHIO_QUADSPI;
flashDevice.io.handle.quadSpi = quadSpiInstance;
// Manufacturer, memory type, and capacity
uint32_t chipID = (readIdResponse[0] << 16) | (readIdResponse[1] << 8) | (readIdResponse[2]);
#ifdef USE_FLASH_W25N01G
quadSpiSetDivisor(quadSpiInstance, QUADSPI_CLOCK_ULTRAFAST);
if (w25n01g_detect(&flashDevice, chipID)) {
return true;
}
#endif
return false;
}
#endif // USE_QUADSPI
#ifdef USE_SPI
void flashPreInit(const flashConfig_t *flashConfig)
{
spiPreinitRegister(flashConfig->csTag, IOCFG_IPU, 1);
}
static bool flashSpiInit(const flashConfig_t *flashConfig)
{
// Read chip identification and send it to device detect
busdev = &busInstance;
if (flashConfig->csTag) {
busdev->busdev_u.spi.csnPin = IOGetByTag(flashConfig->csTag);
} else {
return false;
}
if (!IOIsFreeOrPreinit(busdev->busdev_u.spi.csnPin)) {
return false;
}
busdev->bustype = BUSTYPE_SPI;
SPI_TypeDef *instance = spiInstanceByDevice(SPI_CFG_TO_DEV(flashConfig->spiDevice));
if (!instance) {
return false;
}
spiBusSetInstance(busdev, instance);
IOInit(busdev->busdev_u.spi.csnPin, OWNER_FLASH_CS, 0);
IOConfigGPIO(busdev->busdev_u.spi.csnPin, SPI_IO_CS_CFG);
IOHi(busdev->busdev_u.spi.csnPin);
#ifdef USE_SPI_TRANSACTION
spiBusTransactionInit(busdev, SPI_MODE3_POL_HIGH_EDGE_2ND, SPI_CLOCK_FAST);
#else
#ifndef FLASH_SPI_SHARED
//Maximum speed for standard READ command is 20mHz, other commands tolerate 25mHz
//spiSetDivisor(busdev->busdev_u.spi.instance, SPI_CLOCK_FAST);
spiSetDivisor(busdev->busdev_u.spi.instance, SPI_CLOCK_STANDARD*2);
#endif
#endif
flashDevice.io.mode = FLASHIO_SPI;
flashDevice.io.handle.busdev = busdev;
const uint8_t out[] = { FLASH_INSTRUCTION_RDID, 0, 0, 0, 0 };
delay(50); // short delay required after initialisation of SPI device instance.
/*
* Some newer chips require one dummy byte to be read; we can read
* 4 bytes for these chips while retaining backward compatibility.
*/
uint8_t readIdResponse[5];
readIdResponse[1] = readIdResponse[2] = 0;
// Clearing the CS bit terminates the command early so we don't have to read the chip UID:
#ifdef USE_SPI_TRANSACTION
spiBusTransactionTransfer(busdev, out, readIdResponse, sizeof(out));
#else
spiBusTransfer(busdev, out, readIdResponse, sizeof(out));
#endif
// Manufacturer, memory type, and capacity
uint32_t chipID = (readIdResponse[1] << 16) | (readIdResponse[2] << 8) | (readIdResponse[3]);
#ifdef USE_FLASH_M25P16
if (m25p16_detect(&flashDevice, chipID)) {
return true;
}
#endif
#ifdef USE_FLASH_W25M512
if (w25m_detect(&flashDevice, chipID)) {
return true;
}
#endif
// Newer chips
chipID = (readIdResponse[2] << 16) | (readIdResponse[3] << 8) | (readIdResponse[4]);
#ifdef USE_FLASH_W25N01G
if (w25n01g_detect(&flashDevice, chipID)) {
return true;
}
#endif
#ifdef USE_FLASH_W25M02G
if (w25m_detect(&flashDevice, chipID)) {
return true;
}
#endif
spiPreinitByTag(flashConfig->csTag);
return false;
}
#endif // USE_SPI
bool flashDeviceInit(const flashConfig_t *flashConfig)
{
#ifdef USE_SPI
bool useSpi = (SPI_CFG_TO_DEV(flashConfig->spiDevice) != SPIINVALID);
if (useSpi) {
return flashSpiInit(flashConfig);
}
#endif
#ifdef USE_QUADSPI
bool useQuadSpi = (QUADSPI_CFG_TO_DEV(flashConfig->quadSpiDevice) != QUADSPIINVALID);
if (useQuadSpi) {
return flashQuadSpiInit(flashConfig);
}
#endif
return false;
}
bool flashInit(const flashConfig_t *flashConfig)
{
memset(&flashPartitionTable, 0x00, sizeof(flashPartitionTable));
bool haveFlash = flashDeviceInit(flashConfig);
flashConfigurePartitions();
return haveFlash;
}
bool flashIsReady(void)
{
return flashDevice.vTable->isReady(&flashDevice);
}
bool flashWaitForReady(uint32_t timeoutMillis)
{
return flashDevice.vTable->waitForReady(&flashDevice, timeoutMillis);
}
void flashEraseSector(uint32_t address)
{
flashDevice.vTable->eraseSector(&flashDevice, address);
}
void flashEraseCompletely(void)
{
flashDevice.vTable->eraseCompletely(&flashDevice);
}
void flashPageProgramBegin(uint32_t address)
{
flashDevice.vTable->pageProgramBegin(&flashDevice, address);
}
void flashPageProgramContinue(const uint8_t *data, int length)
{
flashDevice.vTable->pageProgramContinue(&flashDevice, data, length);
}
void flashPageProgramFinish(void)
{
flashDevice.vTable->pageProgramFinish(&flashDevice);
}
void flashPageProgram(uint32_t address, const uint8_t *data, int length)
{
flashDevice.vTable->pageProgram(&flashDevice, address, data, length);
}
int flashReadBytes(uint32_t address, uint8_t *buffer, int length)
{
return flashDevice.vTable->readBytes(&flashDevice, address, buffer, length);
}
void flashFlush(void)
{
flashDevice.vTable->flush(&flashDevice);
}
static const flashGeometry_t noFlashGeometry = {
.totalSize = 0,
};
const flashGeometry_t *flashGetGeometry(void)
{
if (flashDevice.vTable && flashDevice.vTable->getGeometry) {
return flashDevice.vTable->getGeometry(&flashDevice);
}
return &noFlashGeometry;
}
/*
* Flash partitioning
*
* Partition table is not currently stored on the flash, in-memory only.
*
* Partitions are required so that Badblock management (inc spare blocks), FlashFS (Blackbox Logging), Configuration and Firmware can be kept separate and tracked.
*
* Currently, to keep things simple (and working), the following rules apply:
*
* 1) order of partitions in the paritions table strictly defined as follows
*
* BAD BLOCK MANAGEMENT
* FIRMWARE
* FLASH FS
*
* 2) If firmware or bootloader doesn't use or care about a particular type partition the corresponding entry should be empty, i.e. partition table entry memset to 0x00.
*
* 3) flash FS must start at sector 0. IMPORTANT: There is existing blackbox/flash FS code the relies on this!!!
*/
static void flashConfigurePartitions(void)
{
const flashGeometry_t *flashGeometry = flashGetGeometry();
if (flashGeometry->totalSize == 0) {
return;
}
flashSector_t startSector = 0;
flashSector_t endSector = flashGeometry->sectors - 1; // 0 based index
const flashPartition_t *badBlockPartition = flashFindPartitionByUsage(FLASH_PARTITION_BADBLOCK_MANAGEMENT);
if (badBlockPartition) {
endSector = badBlockPartition->startSector - 1;
}
#if defined(FIRMWARE_SIZE)
const uint32_t firmwareSize = (FIRMWARE_SIZE * 1024);
flashSector_t firmwareSectors = (firmwareSize / flashGeometry->sectorSize);
if (firmwareSize % flashGeometry->sectorSize > 0) {
firmwareSectors++; // needs a portion of a sector.
}
startSector = (endSector + 1) - firmwareSectors; // + 1 for inclusive
const flashPartition_t firmwarePartition = {
.usage = FLASH_PARTITION_FIRMWARE,
.startSector = startSector,
.endSector = endSector
};
endSector = startSector - 1;
startSector = 0;
flashSetPartition(1, &firmwarePartition);
#endif
#ifdef USE_FLASHFS
const flashPartition_t flashFsPartition = {
.usage = FLASH_PARTITION_FLASHFS,
.startSector = startSector,
.endSector = endSector
};
flashSetPartition(2, &flashFsPartition);
#endif
}
void flashSetPartition(uint8_t index, const flashPartition_t *partition)
{
memcpy(&flashPartitionTable.partitions[index], partition, sizeof(*partition));
}
const flashPartition_t *flashFindPartitionByUsage(uint8_t usage)
{
for (int index = 0; index < FLASH_MAX_PARTITIONS; index++) {
flashPartition_t *candidate = &flashPartitionTable.partitions[index];
if (candidate->usage == usage) {
return candidate;
}
}
return NULL;
}
#endif // USE_FLASH_CHIP