1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-23 08:15:30 +03:00
betaflight/src/main/sensors/gyro.c
2016-06-29 15:17:49 +01:00

168 lines
4.5 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "platform.h"
#include "debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "drivers/sensor.h"
#include "drivers/accgyro.h"
#include "sensors/sensors.h"
#include "io/beeper.h"
#include "io/statusindicator.h"
#include "sensors/boardalignment.h"
#include "sensors/gyro.h"
gyro_t gyro; // gyro access functions
sensor_align_e gyroAlign = 0;
int32_t gyroADC[XYZ_AXIS_COUNT];
float gyroADCf[XYZ_AXIS_COUNT];
static int32_t gyroZero[XYZ_AXIS_COUNT] = { 0, 0, 0 };
static const gyroConfig_t *gyroConfig;
static biquad_t gyroFilterState[XYZ_AXIS_COUNT];
static uint8_t gyroSoftLpfHz;
static uint16_t calibratingG = 0;
void gyroUseConfig(const gyroConfig_t *gyroConfigToUse, uint8_t gyro_soft_lpf_hz)
{
gyroConfig = gyroConfigToUse;
gyroSoftLpfHz = gyro_soft_lpf_hz;
}
void gyroInit(void)
{
if (gyroSoftLpfHz && gyro.targetLooptime) { // Initialisation needs to happen once samplingrate is known
for (int axis = 0; axis < 3; axis++) {
BiQuadNewLpf(gyroSoftLpfHz, &gyroFilterState[axis], gyro.targetLooptime);
}
}
}
bool isGyroCalibrationComplete(void)
{
return calibratingG == 0;
}
static bool isOnFinalGyroCalibrationCycle(void)
{
return calibratingG == 1;
}
static uint16_t gyroCalculateCalibratingCycles(void)
{
return (CALIBRATING_GYRO_CYCLES / gyro.targetLooptime) * CALIBRATING_GYRO_CYCLES;
}
static bool isOnFirstGyroCalibrationCycle(void)
{
return calibratingG == gyroCalculateCalibratingCycles();
}
void gyroSetCalibrationCycles(void)
{
calibratingG = gyroCalculateCalibratingCycles();
}
static void performAcclerationCalibration(uint8_t gyroMovementCalibrationThreshold)
{
static int32_t g[3];
static stdev_t var[3];
for (int axis = 0; axis < 3; axis++) {
// Reset g[axis] at start of calibration
if (isOnFirstGyroCalibrationCycle()) {
g[axis] = 0;
devClear(&var[axis]);
}
// Sum up CALIBRATING_GYRO_CYCLES readings
g[axis] += gyroADC[axis];
devPush(&var[axis], gyroADC[axis]);
// Reset global variables to prevent other code from using un-calibrated data
gyroADC[axis] = 0;
gyroZero[axis] = 0;
if (isOnFinalGyroCalibrationCycle()) {
float dev = devStandardDeviation(&var[axis]);
// check deviation and startover in case the model was moved
if (gyroMovementCalibrationThreshold && dev > gyroMovementCalibrationThreshold) {
gyroSetCalibrationCycles();
return;
}
gyroZero[axis] = (g[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles();
}
}
if (isOnFinalGyroCalibrationCycle()) {
beeper(BEEPER_GYRO_CALIBRATED);
}
calibratingG--;
}
static void applyGyroZero(void)
{
for (int axis = 0; axis < 3; axis++) {
gyroADC[axis] -= gyroZero[axis];
}
}
void gyroUpdate(void)
{
int16_t gyroADCRaw[XYZ_AXIS_COUNT];
// range: +/- 8192; +/- 2000 deg/sec
if (!gyro.read(gyroADCRaw)) {
return;
}
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
if (debugMode == DEBUG_GYRO) debug[axis] = gyroADC[axis];
gyroADC[axis] = gyroADCRaw[axis];
}
alignSensors(gyroADC, gyroADC, gyroAlign);
if (!isGyroCalibrationComplete()) {
performAcclerationCalibration(gyroConfig->gyroMovementCalibrationThreshold);
}
applyGyroZero();
if (gyroSoftLpfHz) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADCf[axis] = applyBiQuadFilter((float)gyroADC[axis], &gyroFilterState[axis]);
gyroADC[axis] = lrintf(gyroADCf[axis]);
}
} else {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADCf[axis] = gyroADC[axis];
}
}
}