1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-23 08:15:30 +03:00
betaflight/src/main/flight/pid.c
2016-02-21 13:11:51 +01:00

554 lines
23 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include <platform.h>
#include "build_config.h"
#include "debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "drivers/sensor.h"
#include "drivers/gyro_sync.h"
#include "drivers/accgyro.h"
#include "sensors/sensors.h"
#include "sensors/gyro.h"
#include "sensors/acceleration.h"
#include "rx/rx.h"
#include "io/rc_controls.h"
#include "io/gps.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/navigation.h"
#include "config/runtime_config.h"
extern uint8_t motorCount;
extern float dT;
extern bool motorLimitReached;
int16_t axisPID[3];
#ifdef BLACKBOX
int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
#endif
#define DELTA_MAX_SAMPLES 12
// PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
uint8_t dynP8[3], dynI8[3], dynD8[3], PIDweight[3];
static int32_t errorGyroI[3], errorGyroILimit[3];
static float errorGyroIf[3], errorGyroIfLimit[3];
static int32_t errorAngleI[2];
static float errorAngleIf[2];
static bool lowThrottlePidReduction;
static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig);
typedef void (*pidControllerFuncPtr)(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig); // pid controller function prototype
pidControllerFuncPtr pid_controller = pidMultiWiiRewrite; // which pid controller are we using, defaultMultiWii
void pidResetErrorAngle(void)
{
errorAngleI[ROLL] = 0;
errorAngleI[PITCH] = 0;
errorAngleIf[ROLL] = 0.0f;
errorAngleIf[PITCH] = 0.0f;
}
void pidResetErrorGyroState(uint8_t resetOption)
{
if (resetOption >= RESET_ITERM) {
int axis;
for (axis = 0; axis < 3; axis++) {
errorGyroI[axis] = 0;
errorGyroIf[axis] = 0.0f;
}
}
if (resetOption == RESET_ITERM_AND_REDUCE_PID) {
lowThrottlePidReduction = true;
} else {
lowThrottlePidReduction = false;
}
}
void scaleItermToRcInput(int axis, pidProfile_t *pidProfile) {
float rcCommandReflection = (float)rcCommand[axis] / 500.0f;
static float iTermScaler[3] = {1.0f, 1.0f, 1.0f};
static float antiWindUpIncrement = 0;
if (!antiWindUpIncrement) antiWindUpIncrement = (0.001 / 500) * targetLooptime; // Calculate increment for 500ms period
if (ABS(rcCommandReflection) > 0.7f && (!flightModeFlags)) { /* scaling should not happen in level modes */
/* Reset Iterm on high stick inputs. No scaling necessary here */
iTermScaler[axis] = 0.0f;
errorGyroI[axis] = 0;
errorGyroIf[axis] = 0.0f;
} else {
/* Prevent rapid windup during acro recoveries. Slowly enable Iterm for period of 500ms */
if (iTermScaler[axis] < 1) {
iTermScaler[axis] = constrainf(iTermScaler[axis] + antiWindUpIncrement, 0.0f, 1.0f);
if (pidProfile->pidController != PID_CONTROLLER_LUX_FLOAT) {
errorGyroI[axis] *= iTermScaler[axis];
} else {
errorGyroIf[axis] *= iTermScaler[axis];
}
}
}
}
const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
static biquad_t deltaBiQuadState[3];
static bool deltaStateIsSet;
static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
float RateError, AngleRate, gyroRate;
float ITerm,PTerm,DTerm;
static float lastErrorForDelta[3];
static float previousDelta[3][DELTA_MAX_SAMPLES];
float delta, deltaSum;
int axis, deltaCount;
float horizonLevelStrength = 1;
float dT = (float)targetLooptime * 0.000001f;
if (!deltaStateIsSet && pidProfile->dterm_lpf_hz) {
for (axis = 0; axis < 3; axis++) BiQuadNewLpf(pidProfile->dterm_lpf_hz, &deltaBiQuadState[axis], targetLooptime);
deltaStateIsSet = true;
}
if (FLIGHT_MODE(HORIZON_MODE)) {
// Figure out the raw stick positions
const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc));
const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc));
const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
// Progressively turn off the horizon self level strength as the stick is banged over
horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection
if(pidProfile->H_sensitivity == 0){
horizonLevelStrength = 0;
} else {
horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->H_sensitivity)) + 1, 0, 1);
}
}
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
uint8_t rate = controlRateConfig->rates[axis];
if (axis == FD_YAW) {
// YAW is always gyro-controlled (MAG correction is applied to rcCommand) 100dps to 1100dps max yaw rate
AngleRate = (float)((rate + 10) * rcCommand[YAW]) / 50.0f;
} else {
// ACRO mode, control is GYRO based, direct sticks control is applied to rate PID
AngleRate = (float)((rate + 20) * rcCommand[axis]) / 50.0f; // 200dps to 1200dps max roll/pitch rate
if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
// calculate error angle and limit the angle to the max inclination
#ifdef GPS
const float errorAngle = (constrain(rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here
#else
const float errorAngle = (constrain(rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here
#endif
if (FLIGHT_MODE(ANGLE_MODE)) {
// ANGLE mode - control is angle based, so control loop is needed
AngleRate = errorAngle * pidProfile->A_level;
} else {
// HORIZON mode - direct sticks control is applied to rate PID
// mix up angle error to desired AngleRate to add a little auto-level feel
AngleRate += errorAngle * pidProfile->H_level * horizonLevelStrength;
}
}
}
gyroRate = gyroADC[axis] * gyro.scale; // gyro output scaled to dps
// --------low-level gyro-based PID. ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// -----calculate scaled error.AngleRates
// multiplication of rcCommand corresponds to changing the sticks scaling here
RateError = AngleRate - gyroRate;
if (lowThrottlePidReduction) RateError /= 4;
// -----calculate P component
PTerm = RateError * pidProfile->P_f[axis] * PIDweight[axis] / 100;
// -----calculate I component.
errorGyroIf[axis] = constrainf(errorGyroIf[axis] + RateError * dT * pidProfile->I_f[axis] * 10, -250.0f, 250.0f);
if (IS_RC_MODE_ACTIVE(BOXAIRMODE) || IS_RC_MODE_ACTIVE(BOXACROPLUS)) {
scaleItermToRcInput(axis, pidProfile);
if (antiWindupProtection || motorLimitReached) {
errorGyroIf[axis] = constrainf(errorGyroIf[axis], -errorGyroIfLimit[axis], errorGyroIfLimit[axis]);
} else {
errorGyroIfLimit[axis] = ABS(errorGyroIf[axis]);
}
}
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
ITerm = errorGyroIf[axis];
//-----calculate D-term
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
delta = RateError - lastErrorForDelta[axis];
lastErrorForDelta[axis] = RateError;
} else {
delta = -(gyroRate - lastErrorForDelta[axis]); // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
lastErrorForDelta[axis] = gyroRate;
}
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
// would be scaled by different dt each time. Division by dT fixes that.
delta *= (1.0f / dT);
if (deltaStateIsSet) {
delta = applyBiQuadFilter(delta, &deltaBiQuadState[axis]);
} else {
// Apply moving average
deltaSum = 0;
for (deltaCount = pidProfile->dterm_average_count-1; deltaCount > 0; deltaCount--) previousDelta[axis][deltaCount] = previousDelta[axis][deltaCount-1];
previousDelta[axis][0] = delta;
for (deltaCount = 0; deltaCount < pidProfile->dterm_average_count; deltaCount++) deltaSum += previousDelta[axis][deltaCount];
delta = (deltaSum / pidProfile->dterm_average_count);
}
DTerm = constrainf(delta * pidProfile->D_f[axis] * PIDweight[axis] / 100, -300.0f, 300.0f);
// -----calculate total PID output
axisPID[axis] = constrain(lrintf(PTerm + ITerm + DTerm), -1000, 1000);
if (lowThrottlePidReduction) axisPID[axis] /= 4;
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
}
static void pidMultiWii23(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
UNUSED(rxConfig);
int axis, deltaCount, prop = 0;
int32_t rc, error, errorAngle, delta, gyroError;
int32_t PTerm, ITerm, PTermACC, ITermACC, DTerm;
static int16_t lastErrorForDelta[2];
static int32_t previousDelta[2][DELTA_MAX_SAMPLES];
if (!deltaStateIsSet && pidProfile->dterm_lpf_hz) {
for (axis = 0; axis < 2; axis++) BiQuadNewLpf(pidProfile->dterm_lpf_hz, &deltaBiQuadState[axis], targetLooptime);
deltaStateIsSet = true;
}
if (FLIGHT_MODE(HORIZON_MODE)) {
prop = MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 512);
}
// PITCH & ROLL
for (axis = 0; axis < 2; axis++) {
rc = rcCommand[axis] << 1;
if (lowThrottlePidReduction) rc /= 4;
gyroError = gyroADC[axis] / 4;
error = rc - gyroError;
errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp 16 bits is ok here
if (ABS(gyroADC[axis]) > (640 * 4)) {
errorGyroI[axis] = 0;
}
// Anti windup protection
if (IS_RC_MODE_ACTIVE(BOXAIRMODE) || IS_RC_MODE_ACTIVE(BOXACROPLUS)) {
scaleItermToRcInput(axis, pidProfile);
if (antiWindupProtection || motorLimitReached) {
errorGyroI[axis] = constrain(errorGyroI[axis], -errorGyroILimit[axis], errorGyroILimit[axis]);
} else {
errorGyroILimit[axis] = ABS(errorGyroI[axis]);
}
}
ITerm = (errorGyroI[axis] >> 7) * pidProfile->I8[axis] >> 6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000
PTerm = (int32_t)rc * pidProfile->P8[axis] >> 6;
if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // axis relying on ACC
// 50 degrees max inclination
#ifdef GPS
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#else
errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#endif
errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp //16 bits is ok here
PTermACC = ((int32_t)errorAngle * pidProfile->P8[PIDLEVEL]) >> 7; // 32 bits is needed for calculation: errorAngle*P8 could exceed 32768 16 bits is ok for result
int16_t limit = pidProfile->D8[PIDLEVEL] * 5;
PTermACC = constrain(PTermACC, -limit, +limit);
ITermACC = ((int32_t)errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result
ITerm = ITermACC + ((ITerm - ITermACC) * prop >> 9);
PTerm = PTermACC + ((PTerm - PTermACC) * prop >> 9);
}
PTerm -= ((int32_t)gyroError * dynP8[axis]) >> 6; // 32 bits is needed for calculation
//-----calculate D-term based on the configured approach (delta from measurement or deltafromError)
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
delta = error - lastErrorForDelta[axis];
lastErrorForDelta[axis] = error;
} else { /* Delta from measurement */
delta = -(gyroError - lastErrorForDelta[axis]);
lastErrorForDelta[axis] = gyroError;
}
if (deltaStateIsSet) {
DTerm = lrintf(applyBiQuadFilter((float) delta, &deltaBiQuadState[axis])) * 3; // Keep same scaling as unfiltered delta
} else {
// Apply moving average
DTerm = 0;
for (deltaCount = pidProfile->dterm_average_count-1; deltaCount > 0; deltaCount--) previousDelta[axis][deltaCount] = previousDelta[axis][deltaCount-1];
previousDelta[axis][0] = delta;
for (deltaCount = 0; deltaCount < pidProfile->dterm_average_count; deltaCount++) DTerm += previousDelta[axis][deltaCount];
delta = (DTerm / pidProfile->dterm_average_count) * 3; // Keep same original scaling
}
DTerm = ((int32_t)DTerm * dynD8[axis]) >> 5; // 32 bits is needed for calculation
axisPID[axis] = PTerm + ITerm + DTerm;
if (lowThrottlePidReduction) axisPID[axis] /= 4;
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
//YAW
rc = (int32_t)rcCommand[FD_YAW] * (2 * controlRateConfig->rates[FD_YAW] + 30) >> 5;
#ifdef ALIENWII32
error = rc - gyroADC[FD_YAW];
#else
error = rc - (gyroADC[FD_YAW] / 4);
#endif
errorGyroI[FD_YAW] += (int32_t)error * pidProfile->I8[FD_YAW];
errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW], 2 - ((int32_t)1 << 28), -2 + ((int32_t)1 << 28));
if (ABS(rc) > 50) errorGyroI[FD_YAW] = 0;
PTerm = (int32_t)error * pidProfile->P8[FD_YAW] >> 6; // TODO: Bitwise shift on a signed integer is not recommended
// Constrain YAW by D value if not servo driven in that case servolimits apply
if(motorCount >= 4 && pidProfile->yaw_p_limit < YAW_P_LIMIT_MAX) {
PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit);
}
ITerm = constrain((int16_t)(errorGyroI[FD_YAW] >> 13), -GYRO_I_MAX, +GYRO_I_MAX);
axisPID[FD_YAW] = PTerm + ITerm;
if (lowThrottlePidReduction) axisPID[FD_YAW] /= 4;
#ifdef BLACKBOX
axisPID_P[FD_YAW] = PTerm;
axisPID_I[FD_YAW] = ITerm;
axisPID_D[FD_YAW] = 0;
#endif
}
static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
UNUSED(rxConfig);
int axis, deltaCount;
int32_t PTerm, ITerm, DTerm, delta, deltaSum;
static int32_t lastErrorForDelta[3] = { 0, 0, 0 };
static int32_t previousDelta[3][DELTA_MAX_SAMPLES];
int32_t AngleRateTmp, RateError, gyroRate;
int8_t horizonLevelStrength = 100;
if (!deltaStateIsSet && pidProfile->dterm_lpf_hz) {
for (axis = 0; axis < 3; axis++) BiQuadNewLpf(pidProfile->dterm_lpf_hz, &deltaBiQuadState[axis], targetLooptime);
deltaStateIsSet = true;
}
if (FLIGHT_MODE(HORIZON_MODE)) {
// Figure out the raw stick positions
const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc));
const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc));
const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
// Progressively turn off the horizon self level strength as the stick is banged over
horizonLevelStrength = (500 - mostDeflectedPos) / 5; // 100 at centre stick, 0 = max stick deflection
// Using Level D as a Sensitivity for Horizon. 0 more level to 255 more rate. Default value of 100 seems to work fine.
// For more rate mode increase D and slower flips and rolls will be possible
horizonLevelStrength = constrain((10 * (horizonLevelStrength - 100) * (10 * pidProfile->D8[PIDLEVEL] / 80) / 100) + 100, 0, 100);
}
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
uint8_t rate = controlRateConfig->rates[axis];
// -----Get the desired angle rate depending on flight mode
if (axis == FD_YAW) {
// YAW is always gyro-controlled (MAG correction is applied to rcCommand)
AngleRateTmp = ((int32_t)(rate + 27) * rcCommand[YAW]) >> 5;
} else {
AngleRateTmp = ((int32_t)(rate + 27) * rcCommand[axis]) >> 4;
if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
// calculate error angle and limit the angle to max configured inclination
#ifdef GPS
const int32_t errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#else
const int32_t errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#endif
if (FLIGHT_MODE(ANGLE_MODE)) {
// ANGLE mode - control is angle based, so control loop is needed
AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4;
} else {
// HORIZON mode - mix up angle error to desired AngleRateTmp to add a little auto-level feel,
// horizonLevelStrength is scaled to the stick input
AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 100) >> 4;
}
}
}
// --------low-level gyro-based PID. ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// -----calculate scaled error.AngleRates
// multiplication of rcCommand corresponds to changing the sticks scaling here
gyroRate = gyroADC[axis] / 4;
RateError = AngleRateTmp - gyroRate;
if (lowThrottlePidReduction) RateError /= 4;
// -----calculate P component
PTerm = (RateError * pidProfile->P8[axis] * PIDweight[axis] / 100) >> 7;
// -----calculate I component
// there should be no division before accumulating the error to integrator, because the precision would be reduced.
// Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
// Time correction (to avoid different I scaling for different builds based on average cycle time)
// is normalized to cycle time = 2048.
errorGyroI[axis] = errorGyroI[axis] + ((RateError * (uint16_t)targetLooptime) >> 11) * pidProfile->I8[axis];
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13);
if (IS_RC_MODE_ACTIVE(BOXAIRMODE) || IS_RC_MODE_ACTIVE(BOXACROPLUS)) {
scaleItermToRcInput(axis, pidProfile);
if (antiWindupProtection || motorLimitReached) {
errorGyroI[axis] = constrain(errorGyroI[axis], -errorGyroILimit[axis], errorGyroILimit[axis]);
} else {
errorGyroILimit[axis] = ABS(errorGyroI[axis]);
}
}
ITerm = errorGyroI[axis] >> 13;
//-----calculate D-term
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
delta = RateError - lastErrorForDelta[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
lastErrorForDelta[axis] = RateError;
} else {
delta = -(gyroRate - lastErrorForDelta[axis]); // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
lastErrorForDelta[axis] = gyroRate;
}
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
// would be scaled by different dt each time. Division by dT fixes that.
delta = (delta * ((uint16_t) 0xFFFF / ((uint16_t)targetLooptime >> 4))) >> 6;
if (deltaStateIsSet) {
delta = lrintf(applyBiQuadFilter((float) delta, &deltaBiQuadState[axis])) * 3; // Keep same scaling as unfiltered delta
} else {
// Apply moving average
deltaSum = 0;
for (deltaCount = pidProfile->dterm_average_count -1; deltaCount > 0; deltaCount--) previousDelta[axis][deltaCount] = previousDelta[axis][deltaCount-1];
previousDelta[axis][0] = delta;
for (deltaCount = 0; deltaCount < pidProfile->dterm_average_count; deltaCount++) deltaSum += previousDelta[axis][deltaCount];
delta = (deltaSum / pidProfile->dterm_average_count) * 3; // Keep same original scaling
}
DTerm = (delta * pidProfile->D8[axis] * PIDweight[axis] / 100) >> 8;
// -----calculate total PID output
axisPID[axis] = PTerm + ITerm + DTerm;
if (lowThrottlePidReduction) axisPID[axis] /= 4;
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
}
void pidSetController(pidControllerType_e type)
{
switch (type) {
default:
case PID_CONTROLLER_MWREWRITE:
pid_controller = pidMultiWiiRewrite;
break;
case PID_CONTROLLER_LUX_FLOAT:
pid_controller = pidLuxFloat;
break;
case PID_CONTROLLER_MW23:
pid_controller = pidMultiWii23;
}
}