1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-19 14:25:20 +03:00
betaflight/src/main/flight/flight.c
2015-01-16 01:00:40 +00:00

395 lines
16 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include <platform.h>
#include "build_config.h"
#include "common/axis.h"
#include "common/maths.h"
#include "config/runtime_config.h"
#include "rx/rx.h"
#include "drivers/sensor.h"
#include "drivers/accgyro.h"
#include "sensors/sensors.h"
#include "sensors/gyro.h"
#include "io/rc_controls.h"
#include "flight/flight.h"
#include "flight/navigation.h"
#include "flight/autotune.h"
#include "io/gps.h"
extern uint16_t cycleTime;
int16_t heading, magHold;
int16_t axisPID[3];
#ifdef BLACKBOX
int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
#endif
uint8_t dynP8[3], dynI8[3], dynD8[3];
static int32_t errorGyroI[3] = { 0, 0, 0 };
static float errorGyroIf[3] = { 0.0f, 0.0f, 0.0f };
static int32_t errorAngleI[2] = { 0, 0 };
static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig);
typedef void (*pidControllerFuncPtr)(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig); // pid controller function prototype
pidControllerFuncPtr pid_controller = pidMultiWii; // which pid controller are we using, defaultMultiWii
void resetRollAndPitchTrims(rollAndPitchTrims_t *rollAndPitchTrims)
{
rollAndPitchTrims->values.roll = 0;
rollAndPitchTrims->values.pitch = 0;
}
void resetErrorAngle(void)
{
errorAngleI[ROLL] = 0;
errorAngleI[PITCH] = 0;
}
void resetErrorGyro(void)
{
errorGyroI[ROLL] = 0;
errorGyroI[PITCH] = 0;
errorGyroI[YAW] = 0;
errorGyroIf[ROLL] = 0;
errorGyroIf[PITCH] = 0;
errorGyroIf[YAW] = 0;
}
const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
#ifdef AUTOTUNE
bool shouldAutotune(void)
{
return ARMING_FLAG(ARMED) && FLIGHT_MODE(AUTOTUNE_MODE);
}
#endif
static void pidBaseflight(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
float RateError, errorAngle, AngleRate, gyroRate;
float ITerm,PTerm,DTerm;
int32_t stickPosAil, stickPosEle, mostDeflectedPos;
static float lastGyroRate[3];
static float delta1[3], delta2[3];
float delta, deltaSum;
float dT;
int axis;
float horizonLevelStrength = 1;
dT = (float)cycleTime * 0.000001f;
if (FLIGHT_MODE(HORIZON_MODE)) {
// Figure out the raw stick positions
stickPosAil = getRcStickDeflection(FD_ROLL, rxConfig->midrc);
stickPosEle = getRcStickDeflection(FD_PITCH, rxConfig->midrc);
if(abs(stickPosAil) > abs(stickPosEle)){
mostDeflectedPos = abs(stickPosAil);
}
else {
mostDeflectedPos = abs(stickPosEle);
}
// Progressively turn off the horizon self level strength as the stick is banged over
horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection
if(pidProfile->H_sensitivity == 0){
horizonLevelStrength = 0;
} else {
horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->H_sensitivity)) + 1, 0, 1);
}
}
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
// -----Get the desired angle rate depending on flight mode
if (axis == FD_YAW) {
// YAW is always gyro-controlled (MAG correction is applied to rcCommand) 100dps to 1100dps max yaw rate
AngleRate = (float)((controlRateConfig->yawRate + 10) * rcCommand[YAW]) / 50.0f;
} else {
// calculate error and limit the angle to the max inclination
#ifdef GPS
errorAngle = (constrain(rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here
#else
errorAngle = (constrain(rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here
#endif
#ifdef AUTOTUNE
if (shouldAutotune()) {
errorAngle = autotune(rcAliasToAngleIndexMap[axis], &inclination, errorAngle);
}
#endif
if (FLIGHT_MODE(ANGLE_MODE)) {
// it's the ANGLE mode - control is angle based, so control loop is needed
AngleRate = errorAngle * pidProfile->A_level;
} else {
//control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
AngleRate = (float)((controlRateConfig->rollPitchRate + 20) * rcCommand[axis]) / 50.0f; // 200dps to 1200dps max yaw rate
if (FLIGHT_MODE(HORIZON_MODE)) {
// mix up angle error to desired AngleRate to add a little auto-level feel
AngleRate += errorAngle * pidProfile->H_level * horizonLevelStrength;
}
}
}
gyroRate = gyroData[axis] * gyro.scale; // gyro output scaled to dps
// --------low-level gyro-based PID. ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// -----calculate scaled error.AngleRates
// multiplication of rcCommand corresponds to changing the sticks scaling here
RateError = AngleRate - gyroRate;
// -----calculate P component
PTerm = RateError * pidProfile->P_f[axis];
// -----calculate I component
errorGyroIf[axis] = constrainf(errorGyroIf[axis] + RateError * dT * pidProfile->I_f[axis], -250.0f, 250.0f);
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
ITerm = errorGyroIf[axis];
//-----calculate D-term
delta = gyroRate - lastGyroRate[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
lastGyroRate[axis] = gyroRate;
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
// would be scaled by different dt each time. Division by dT fixes that.
delta *= (1.0f / dT);
// add moving average here to reduce noise
deltaSum = delta1[axis] + delta2[axis] + delta;
delta2[axis] = delta1[axis];
delta1[axis] = delta;
DTerm = constrainf((deltaSum / 3.0f) * pidProfile->D_f[axis], -300.0f, 300.0f);
// -----calculate total PID output
axisPID[axis] = constrain(lrintf(PTerm + ITerm - DTerm), -1000, 1000);
}
}
static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
UNUSED(rxConfig);
int axis, prop;
int32_t error, errorAngle;
int32_t PTerm, ITerm, PTermACC = 0, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm;
static int16_t lastGyro[3] = { 0, 0, 0 };
static int32_t delta1[3], delta2[3];
int32_t deltaSum;
int32_t delta;
UNUSED(controlRateConfig);
// **** PITCH & ROLL & YAW PID ****
prop = min(max(abs(rcCommand[PITCH]), abs(rcCommand[ROLL])), 500); // range [0;500]
for (axis = 0; axis < 3; axis++) {
if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && (axis == FD_ROLL || axis == FD_PITCH)) { // MODE relying on ACC
// observe max inclination
#ifdef GPS
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis];
#else
errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis];
#endif
#ifdef AUTOTUNE
if (shouldAutotune()) {
errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle)));
}
#endif
PTermACC = errorAngle * pidProfile->P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result
PTermACC = constrain(PTermACC, -pidProfile->D8[PIDLEVEL] * 5, +pidProfile->D8[PIDLEVEL] * 5);
errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp
ITermACC = (errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12;
}
if (!FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE) || axis == FD_YAW) { // MODE relying on GYRO or YAW axis
error = (int32_t) rcCommand[axis] * 10 * 8 / pidProfile->P8[axis];
error -= gyroData[axis] / 4;
PTermGYRO = rcCommand[axis];
errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp
if ((abs(gyroData[axis]) > (640 * 4)) || (axis == FD_YAW && abs(rcCommand[axis]) > 100))
errorGyroI[axis] = 0;
ITermGYRO = (errorGyroI[axis] / 125 * pidProfile->I8[axis]) / 64;
}
if (FLIGHT_MODE(HORIZON_MODE) && (axis == FD_ROLL || axis == FD_PITCH)) {
PTerm = (PTermACC * (500 - prop) + PTermGYRO * prop) / 500;
ITerm = (ITermACC * (500 - prop) + ITermGYRO * prop) / 500;
} else {
if (FLIGHT_MODE(ANGLE_MODE) && (axis == FD_ROLL || axis == FD_PITCH)) {
PTerm = PTermACC;
ITerm = ITermACC;
} else {
PTerm = PTermGYRO;
ITerm = ITermGYRO;
}
}
PTerm -= ((int32_t)gyroData[axis] / 4) * dynP8[axis] / 10 / 8; // 32 bits is needed for calculation
delta = (gyroData[axis] - lastGyro[axis]) / 4;
lastGyro[axis] = gyroData[axis];
deltaSum = delta1[axis] + delta2[axis] + delta;
delta2[axis] = delta1[axis];
delta1[axis] = delta;
DTerm = (deltaSum * dynD8[axis]) / 32;
axisPID[axis] = PTerm + ITerm - DTerm;
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = -DTerm;
#endif
}
}
#define GYRO_I_MAX 256
static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
UNUSED(rxConfig);
int32_t errorAngle;
int axis;
int32_t delta, deltaSum;
static int32_t delta1[3], delta2[3];
int32_t PTerm, ITerm, DTerm;
static int32_t lastError[3] = { 0, 0, 0 };
int32_t AngleRateTmp, RateError;
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
// -----Get the desired angle rate depending on flight mode
if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand)
AngleRateTmp = (((int32_t)(controlRateConfig->yawRate + 27) * rcCommand[YAW]) >> 5);
} else {
// calculate error and limit the angle to max configured inclination
#ifdef GPS
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; // 16 bits is ok here
#else
errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; // 16 bits is ok here
#endif
#ifdef AUTOTUNE
if (shouldAutotune()) {
errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle)));
}
#endif
if (!FLIGHT_MODE(ANGLE_MODE)) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
AngleRateTmp = ((int32_t)(controlRateConfig->rollPitchRate + 27) * rcCommand[axis]) >> 4;
if (FLIGHT_MODE(HORIZON_MODE)) {
// mix up angle error to desired AngleRateTmp to add a little auto-level feel
AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL]) >> 8;
}
} else { // it's the ANGLE mode - control is angle based, so control loop is needed
AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4;
}
}
// --------low-level gyro-based PID. ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// -----calculate scaled error.AngleRates
// multiplication of rcCommand corresponds to changing the sticks scaling here
RateError = AngleRateTmp - (gyroData[axis] / 4);
// -----calculate P component
PTerm = (RateError * pidProfile->P8[axis]) >> 7;
// -----calculate I component
// there should be no division before accumulating the error to integrator, because the precision would be reduced.
// Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
// Time correction (to avoid different I scaling for different builds based on average cycle time)
// is normalized to cycle time = 2048.
errorGyroI[axis] = errorGyroI[axis] + ((RateError * cycleTime) >> 11) * pidProfile->I8[axis];
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13);
ITerm = errorGyroI[axis] >> 13;
//-----calculate D-term
delta = RateError - lastError[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
lastError[axis] = RateError;
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
// would be scaled by different dt each time. Division by dT fixes that.
delta = (delta * ((uint16_t) 0xFFFF / (cycleTime >> 4))) >> 6;
// add moving average here to reduce noise
deltaSum = delta1[axis] + delta2[axis] + delta;
delta2[axis] = delta1[axis];
delta1[axis] = delta;
DTerm = (deltaSum * pidProfile->D8[axis]) >> 8;
// -----calculate total PID output
axisPID[axis] = PTerm + ITerm + DTerm;
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
}
void setPIDController(int type)
{
switch (type) {
case 0:
default:
pid_controller = pidMultiWii;
break;
case 1:
pid_controller = pidRewrite;
break;
case 2:
pid_controller = pidBaseflight;
}
}