1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/mw.h
timecop 9b48d45bca trashed old eeprom config struct and retarded eeprom code. replaced with config_t stuff to allow more dynamic changes
implemented cli (press # in serial to enter it). no commands except exit/version yet.
added uartPrint
fixed bug in task switching with missing breaks - was failing baro and perhaps mag readings
dynamic yaw direction, camtilt feature, camtrig feature.

ported some of 2.0-pre1 features:
* gyro smoothing
* baro/althold cleanup


git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@102 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
2012-03-05 02:01:26 +00:00

277 lines
11 KiB
C
Executable file

#pragma once
#define MINCHECK 1100
#define MAXCHECK 1900
/* this is the value for the ESCs when they are not armed
in some cases, this value must be lowered down to 900 for some specific ESCs */
// #define MINCOMMAND 1000
/* This option should be uncommented if ACC Z is accurate enough when motors are running*/
/* should now be ok with BMA020 and BMA180 ACC */
#define TRUSTED_ACCZ
/* Failsave settings - added by MIS
Failsafe check pulse on THROTTLE channel. If the pulse is OFF (on only THROTTLE or on all channels) the failsafe procedure is initiated.
After FAILSAVE_DELAY time of pulse absence, the level mode is on (if ACC or nunchuk is avaliable), PITCH, ROLL and YAW is centered
and THROTTLE is set to FAILSAVE_THR0TTLE value. You must set this value to descending about 1m/s or so for best results.
This value is depended from your configuration, AUW and some other params.
Next, afrer FAILSAVE_OFF_DELAY the copter is disarmed, and motors is stopped.
If RC pulse coming back before reached FAILSAVE_OFF_DELAY time, after the small quard time the RC control is returned to normal.
If you use serial sum PPM, the sum converter must completly turn off the PPM SUM pusles for this FailSafe functionality.*/
// #define FAILSAFE // Alex: comment this line if you want to deactivate the failsafe function
#define FAILSAVE_DELAY 10 // Guard time for failsafe activation after signal lost. 1 step = 0.1sec - 1sec in example
#define FAILSAVE_OFF_DELAY 200 // Time for Landing before motors stop in 0.1sec. 1 step = 0.1sec - 20sec in example
#define FAILSAVE_THR0TTLE (MINTHROTTLE + 200) // Throttle level used for landing - may be relative to MINTHROTTLE - as in this case
/* you can change the tricopter servo travel here */
#define TRI_YAW_CONSTRAINT_MIN 1020
#define TRI_YAW_CONSTRAINT_MAX 2000
/* Flying Wing: you can change change servo orientation and servo min/max values here */
/* valid for all flight modes, even passThrough mode */
/* need to setup servo directions here; no need to swap servos amongst channels at rx */
#define PITCH_DIRECTION_L 1 // left servo - pitch orientation
#define PITCH_DIRECTION_R -1 // right servo - pitch orientation (opposite sign to PITCH_DIRECTION_L, if servos are mounted in mirrored orientation)
#define ROLL_DIRECTION_L 1 // left servo - roll orientation
#define ROLL_DIRECTION_R 1 // right servo - roll orientation (same sign as ROLL_DIRECTION_L, if servos are mounted in mirrored orientation)
#define WING_LEFT_MIN 1020 // limit servo travel range must be inside [1020;2000]
#define WING_LEFT_MAX 2000 // limit servo travel range must be inside [1020;2000]
#define WING_RIGHT_MIN 1020 // limit servo travel range must be inside [1020;2000]
#define WING_RIGHT_MAX 2000 // limit servo travel range must be inside [1020;2000]
/* The following lines apply only for a pitch/roll tilt stabilization system
On promini board, it is not compatible with config with 6 motors or more
Uncomment the first line to activate it */
#define TILT_PITCH_MIN 1020 //servo travel min, don't set it below 1020
#define TILT_PITCH_MAX 2000 //servo travel max, max value=2000
#define TILT_PITCH_MIDDLE 1500 //servo neutral value
#define TILT_ROLL_MIN 1020
#define TILT_ROLL_MAX 2000
#define TILT_ROLL_MIDDLE 1500
/* experimental
camera trigger function : activated via Rc Options in the GUI, servo output=A2 on promini */
#define CAM_SERVO_HIGH 2000 // the position of HIGH state servo
#define CAM_SERVO_LOW 1020 // the position of LOW state servo
#define CAM_TIME_HIGH 1000 // the duration of HIGH state servo expressed in ms
#define CAM_TIME_LOW 1000 // the duration of LOW state servo expressed in ms
/* for V BAT monitoring
after the resistor divisor we should get [0V;5V]->[0;1023] on analog V_BATPIN
with R1=33k and R2=51k
vbat = [0;1023]*16/VBATSCALE */
#define VBATFREQ 6 // to read battery voltage - keep equal to PSENSORFREQ (6) unless you know what you are doing
#define VBATSCALE 151 // change this value if readed Battery voltage is different than real voltage
#define VBATLEVEL1_3S 107 // 10,7V
#define VBATLEVEL2_3S 103 // 10,3V
#define VBATLEVEL3_3S 99 // 9.9V
#define NO_VBAT 16 // Avoid beeping without any battery
// Moving Average Gyros by Magnetron1 (Michele Ardito) ########## beta
//#define MMGYRO // Active Moving Average Function for Gyros
//#define MMGYROVECTORLENGHT 10 // Lenght of Moving Average Vector
// Moving Average ServoGimbal Signal Output
//#define MMSERVOGIMBAL // Active Output Moving Average Function for Servos Gimbal
//#define MMSERVOGIMBALVECTORLENGHT 32 // Lenght of Moving Average Vector
#define VERSION 201
// Syncronized with GUI. Only exception is mixer > 11, which is always returned as 11 during serialization.
typedef enum MultiType
{
MULTITYPE_TRI = 1, // XA
MULTITYPE_QUADP = 2, // XB
MULTITYPE_QUADX = 3, // XC
MULTITYPE_BI = 4, // XD
MULTITYPE_GIMBAL = 5, // XE
MULTITYPE_Y6 = 6, // XF
MULTITYPE_HEX6 = 7, // XG
MULTITYPE_FLYING_WING = 8, // XH
MULTITYPE_Y4 = 9, // XI
MULTITYPE_HEX6X = 10, // XJ
MULTITYPE_OCTOX8 = 11, // XK
MULTITYPE_OCTOFLATP = 12, // XL the GUI is the same for all 8 motor configs
MULTITYPE_OCTOFLATX = 13, // XM the GUI is the same for all 8 motor configs
MULTITYPE_AIRPLANE = 14, // XN
MULTITYPE_HELI_120_CCPM = 15, // XO simple model
MULTITYPE_HELI_90_DEG = 16, // XP simple model
MULTITYPE_VTAIL4 = 17, // XO
MULTITYPE_LAST = 18
} MultiType;
/*********** RC alias *****************/
#define ROLL 0
#define PITCH 1
#define YAW 2
#define THROTTLE 3
#define AUX1 4
#define AUX2 5
#define AUX3 6
#define AUX4 7
#define PIDALT 3
#define PIDVEL 4
#define PIDGPS 5
#define PIDLEVEL 6
#define PIDMAG 7
#define BOXACC 0
#define BOXBARO 1
#define BOXMAG 2
#define BOXCAMSTAB 3
#define BOXCAMTRIG 4
#define BOXARM 5
#define BOXGPSHOME 6
#define BOXGPSHOLD 7
#define BOXPASSTHRU 8
#define BOXHEADFREE 9
#define BOXBEEPERON 10
#define CHECKBOXITEMS 11
#define PIDITEMS 8
#define ACC_ORIENTATION(X, Y, Z) { accADC[ROLL] = Y; accADC[PITCH] = -X; accADC[YAW] = Z; }
#define GYRO_ORIENTATION(X, Y, Z) { gyroADC[ROLL] = -Y; gyroADC[PITCH] = X; gyroADC[YAW] = Z; }
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(x) ((x)>0?(x):-(x))
#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
typedef struct config_t {
uint8_t version;
uint8_t mixerConfiguration;
uint32_t enabledFeatures;
uint8_t P8[8];
uint8_t I8[8];
uint8_t D8[8];
uint8_t rcRate8;
uint8_t rcExpo8;
uint8_t rollPitchRate;
uint8_t yawRate;
uint8_t dynThrPID;
int16_t accZero[3];
int16_t magZero[3];
int16_t accTrim[2];
uint32_t gyro_smoothing_factor; // How much to smoothen with per axis (32bit value with Roll, Pitch, Yaw in bits 24, 16, 8 respectively
uint8_t activate1[CHECKBOXITEMS];
uint8_t activate2[CHECKBOXITEMS];
uint8_t powerTrigger1; // trigger for alarm based on power consumption
// Radio/ESC-related configuration
uint16_t midrc; // Some radios have not a neutral point centered on 1500. can be changed here
uint16_t minthrottle; // Set the minimum throttle command sent to the ESC (Electronic Speed Controller). This is the minimum value that allow motors to run at a idle speed.
uint16_t maxthrottle; // This is the maximum value for the ESCs at full power this value can be increased up to 2000
uint16_t mincommand; // This is the value for the ESCs when they are not armed. In some cases, this value must be lowered down to 900 for some specific ESCs
// mixer-related configuration
int8_t yaw_direction;
uint16_t wing_left_mid; // left servo center pos. - use this for initial trim
uint16_t wing_right_mid; // right servo center pos. - use this for initial trim
uint16_t tri_yaw_middle; // tail servo center pos. - use this for initial trim
// gimbal-related configuration
int8_t tilt_pitch_prop; // servo proportional (tied to angle) ; can be negative to invert movement
int8_t tilt_roll_prop; // servo proportional (tied to angle) ; can be negative to invert movement
} config_t;
extern int16_t gyroZero[3];
extern int16_t gyroData[3];
extern int16_t angle[2];
extern int16_t axisPID[3];
extern int16_t rcCommand[4];
extern uint8_t rcOptions[CHECKBOXITEMS];
extern int16_t debug1, debug2, debug3, debug4;
extern uint8_t armed;
extern int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3];
extern uint16_t acc_1G;
extern uint32_t currentTime;
extern uint32_t previousTime;
extern uint16_t cycleTime;
extern uint8_t calibratedACC;
extern uint16_t calibratingA;
extern uint8_t calibratingM;
extern uint16_t calibratingG;
extern int16_t heading;
extern int16_t annex650_overrun_count;
extern int32_t pressure;
extern int32_t BaroAlt;
extern int32_t EstAlt;
extern int32_t AltHold;
extern int16_t errorAltitudeI;
extern int16_t BaroPID;
extern uint8_t headFreeMode;
extern int16_t headFreeModeHold;
extern uint8_t passThruMode;
extern int8_t smallAngle25;
extern int16_t zVelocity;
extern int16_t heading, magHold;
extern int16_t motor[8];
extern int16_t servo[8];
extern int16_t rcData[8];
extern uint8_t accMode;
extern uint8_t magMode;
extern uint8_t baroMode;
extern uint16_t intPowerMeterSum, intPowerTrigger1;
extern int32_t GPS_latitude, GPS_longitude;
extern int32_t GPS_latitude_home, GPS_longitude_home;
extern uint8_t GPS_fix, GPS_fix_home;
extern uint8_t GPS_numSat;
extern uint16_t GPS_distanceToHome;
extern int16_t GPS_directionToHome;
extern uint8_t GPS_update;
extern uint8_t GPSModeHome;
extern uint8_t GPSModeHold;
extern uint8_t vbat;
extern int16_t lookupRX[7]; // lookup table for expo & RC rate
extern config_t cfg;
// main
void loop(void);
// IMU
void imuInit(void);
void annexCode(void);
void computeIMU(void);
void blinkLED(uint8_t num, uint8_t wait, uint8_t repeat);
void getEstimatedAltitude(void);
// Sensors
void sensorsAutodetect(void);
void ACC_getADC(void);
void Baro_update(void);
void Gyro_getADC(void);
void Mag_init(void);
void Mag_getADC(void);
// Output
void mixerInit(void);
void writeServos(void);
void writeMotors(void);
void mixTable(void);
// Serial
void serialCom(void);
// Config
void readEEPROM(void);
void writeParams(void);
void checkFirstTime(void);
bool sensors(uint32_t mask);
void sensorsSet(uint32_t mask);
void sensorsClear(uint32_t mask);
bool feature(uint32_t mask);
void featureSet(uint32_t mask);
void featureClear(uint32_t mask);
void featureClearAll(void);
// cli
void cliProcess(void);