1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-25 17:25:20 +03:00
betaflight/src/test/unit/flight_imu_unittest.cc
2024-11-27 07:43:52 +11:00

450 lines
14 KiB
C++

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <limits.h>
#include <cmath>
extern "C" {
#include "platform.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/vector.h"
#include "config/feature.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/rx.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/compass/compass.h"
#include "drivers/sensor.h"
#include "fc/rc_controls.h"
#include "fc/rc_modes.h"
#include "fc/runtime_config.h"
#include "fc/rc.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/position.h"
#include "io/gps.h"
#include "rx/rx.h"
#include "pg/autopilot.h"
#include "sensors/acceleration.h"
#include "sensors/barometer.h"
#include "sensors/compass.h"
#include "sensors/gyro.h"
#include "sensors/sensors.h"
void imuComputeRotationMatrix(void);
void imuUpdateEulerAngles(void);
void imuMahonyAHRSupdate(float dt,
float gx, float gy, float gz,
bool useAcc, float ax, float ay, float az,
float headingErrMag, float headingErrCog,
const float dcmKpGain);
float imuCalcMagErr(void);
float imuCalcCourseErr(float courseOverGround);
extern quaternion_t q;
extern matrix33_t rMat;
extern bool attitudeIsEstablished;
PG_REGISTER(rcControlsConfig_t, rcControlsConfig, PG_RC_CONTROLS_CONFIG, 0);
PG_REGISTER(barometerConfig_t, barometerConfig, PG_BAROMETER_CONFIG, 0);
PG_REGISTER(gpsConfig_t, gpsConfig, PG_GPS_CONFIG, 0);
PG_REGISTER(autopilotConfig_t, autopilotConfig, PG_AUTOPILOT, 0);
PG_RESET_TEMPLATE(featureConfig_t, featureConfig,
.enabledFeatures = 0
);
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
const float sqrt2over2 = sqrtf(2) / 2.0f;
void quaternion_from_axis_angle(quaternion_t* q, float angle, float x, float y, float z) {
vector3_t a = {{x, y, z}};
vector3Normalize(&a, &a);
q->w = cos(angle / 2);
q->x = a.x * sin(angle / 2);
q->y = a.y * sin(angle / 2);
q->z = a.z * sin(angle / 2);
}
TEST(FlightImuTest, TestCalculateRotationMatrix)
{
#define TOL 1e-6
// No rotation
q.w = 1.0f;
q.x = 0.0f;
q.y = 0.0f;
q.z = 0.0f;
imuComputeRotationMatrix();
EXPECT_FLOAT_EQ(1.0f, rMat.m[0][0]);
EXPECT_FLOAT_EQ(0.0f, rMat.m[0][1]);
EXPECT_FLOAT_EQ(0.0f, rMat.m[0][2]);
EXPECT_FLOAT_EQ(0.0f, rMat.m[1][0]);
EXPECT_FLOAT_EQ(1.0f, rMat.m[1][1]);
EXPECT_FLOAT_EQ(0.0f, rMat.m[1][2]);
EXPECT_FLOAT_EQ(0.0f, rMat.m[2][0]);
EXPECT_FLOAT_EQ(0.0f, rMat.m[2][1]);
EXPECT_FLOAT_EQ(1.0f, rMat.m[2][2]);
// 90 degrees around Z axis
q.w = sqrt2over2;
q.x = 0.0f;
q.y = 0.0f;
q.z = sqrt2over2;
imuComputeRotationMatrix();
EXPECT_NEAR(0.0f, rMat.m[0][0], TOL);
EXPECT_NEAR(-1.0f, rMat.m[0][1], TOL);
EXPECT_NEAR(0.0f, rMat.m[0][2], TOL);
EXPECT_NEAR(1.0f, rMat.m[1][0], TOL);
EXPECT_NEAR(0.0f, rMat.m[1][1], TOL);
EXPECT_NEAR(0.0f, rMat.m[1][2], TOL);
EXPECT_NEAR(0.0f, rMat.m[2][0], TOL);
EXPECT_NEAR(0.0f, rMat.m[2][1], TOL);
EXPECT_NEAR(1.0f, rMat.m[2][2], TOL);
// 60 degrees around X axis
q.w = 0.866f;
q.x = 0.5f;
q.y = 0.0f;
q.z = 0.0f;
imuComputeRotationMatrix();
EXPECT_NEAR(1.0f, rMat.m[0][0], TOL);
EXPECT_NEAR(0.0f, rMat.m[0][1], TOL);
EXPECT_NEAR(0.0f, rMat.m[0][2], TOL);
EXPECT_NEAR(0.0f, rMat.m[1][0], TOL);
EXPECT_NEAR(0.5f, rMat.m[1][1], TOL);
EXPECT_NEAR(-0.866f, rMat.m[1][2], TOL);
EXPECT_NEAR(0.0f, rMat.m[2][0], TOL);
EXPECT_NEAR(0.866f, rMat.m[2][1], TOL);
EXPECT_NEAR(0.5f, rMat.m[2][2], TOL);
}
TEST(FlightImuTest, TestUpdateEulerAngles)
{
// No rotation
memset(&rMat, 0.0, sizeof(float) * 9);
imuUpdateEulerAngles();
EXPECT_EQ(0, attitude.values.roll);
EXPECT_EQ(0, attitude.values.pitch);
EXPECT_EQ(0, attitude.values.yaw);
// 45 degree yaw
memset(&rMat, 0.0, sizeof(float) * 9);
rMat.m[0][0] = sqrt2over2;
rMat.m[0][1] = sqrt2over2;
rMat.m[1][0] = -sqrt2over2;
rMat.m[1][1] = sqrt2over2;
imuUpdateEulerAngles();
EXPECT_EQ(0, attitude.values.roll);
EXPECT_EQ(0, attitude.values.pitch);
EXPECT_EQ(450, attitude.values.yaw);
}
TEST(FlightImuTest, TestSmallAngle)
{
const float r1 = 0.898;
const float r2 = 0.438;
// given
imuConfigMutable()->small_angle = 25;
imuConfigure(0, 0);
attitudeIsEstablished = true;
// and
memset(&rMat, 0.0, sizeof(float) * 9);
// when
imuComputeRotationMatrix();
// expect
EXPECT_FALSE(isUpright());
// given
rMat.m[0][0] = r1;
rMat.m[0][2] = r2;
rMat.m[2][0] = -r2;
rMat.m[2][2] = r1;
// when
imuComputeRotationMatrix();
// expect
EXPECT_FALSE(isUpright());
// given
memset(&rMat, 0.0, sizeof(float) * 9);
// when
imuComputeRotationMatrix();
// expect
EXPECT_FALSE(isUpright());
}
testing::AssertionResult DoubleNearWrapPredFormat(const char* expr1, const char* expr2,
const char* abs_error_expr, const char* wrap_expr, double val1,
double val2, double abs_error, double wrap) {
const double diff = remainder(val1 - val2, wrap);
if (fabs(diff) <= abs_error) return testing::AssertionSuccess();
return testing::AssertionFailure()
<< "The difference between " << expr1 << " and " << expr2 << " is "
<< diff << " (wrapped to 0 .. " << wrap_expr << ")"
<< ", which exceeds " << abs_error_expr << ", where\n"
<< expr1 << " evaluates to " << val1 << ",\n"
<< expr2 << " evaluates to " << val2 << ", and\n"
<< abs_error_expr << " evaluates to " << abs_error << ".";
}
#define EXPECT_NEAR_DEG(val1, val2, abs_error) \
EXPECT_PRED_FORMAT4(DoubleNearWrapPredFormat, val1, val2, \
abs_error, 360.0)
#define EXPECT_NEAR_RAD(val1, val2, abs_error) \
EXPECT_PRED_FORMAT4(DoubleNearWrapPredFormat, val1, val2, \
abs_error, 2 * M_PI)
class MahonyFixture : public ::testing::Test {
protected:
vector3_t gyro;
bool useAcc;
vector3_t acc;
bool useMag;
vector3_t magEF;
float cogGain;
float cogDeg;
float dcmKp;
float dt;
void SetUp() override {
vector3Zero(&gyro);
useAcc = false;
vector3Zero(&acc);
cogGain = 0.0; // no cog
cogDeg = 0.0;
dcmKp = .25; // default dcm_kp
dt = 1e-2; // 100Hz update
imuConfigure(0, 0);
// level, poiting north
setOrientationAA(0, {{1,0,0}}); // identity
}
virtual void setOrientationAA(float angleDeg, vector3_t axis) {
quaternion_from_axis_angle(&q, DEGREES_TO_RADIANS(angleDeg), axis.x, axis.y, axis.z);
imuComputeRotationMatrix();
}
float wrap(float angle) {
angle = fmod(angle, 360);
if (angle < 0) angle += 360;
return angle;
}
float angleDiffNorm(vector3_t *a, vector3_t* b, vector3_t weight = {{1,1,1}}) {
vector3_t tmp;
vector3Scale(&tmp, b, -1);
vector3Add(&tmp, &tmp, a);
for (int i = 0; i < 3; i++)
tmp.v[i] *= weight.v[i];
for (int i = 0; i < 3; i++)
tmp.v[i] = std::remainder(tmp.v[i], 360.0);
return vector3Norm(&tmp);
}
// run Mahony for some time
// return time it took to get within 1deg from target
float imuIntegrate(float runTime, vector3_t * target) {
float alignTime = -1;
for (float t = 0; t < runTime; t += dt) {
// if (fmod(t, 1) < dt) printf("MagBF=%.2f %.2f %.2f\n", magBF.x, magBF.y, magBF.z);
float headingErrMag = 0;
if (useMag) { // not implemented yet
headingErrMag = imuCalcMagErr();
}
float headingErrCog = 0;
if (cogGain > 0) {
headingErrCog = imuCalcCourseErr(DEGREES_TO_RADIANS(cogDeg)) * cogGain;
}
imuMahonyAHRSupdate(dt,
gyro.x, gyro.y, gyro.z,
useAcc, acc.x, acc.y, acc.z,
headingErrMag, headingErrCog,
dcmKp);
imuUpdateEulerAngles();
// if (fmod(t, 1) < dt) printf("%3.1fs - %3.1f %3.1f %3.1f\n", t, attitude.values.roll / 10.0f, attitude.values.pitch / 10.0f, attitude.values.yaw / 10.0f);
// remember how long it took
if (alignTime < 0) {
vector3_t rpy = {{attitude.values.roll / 10.0f, attitude.values.pitch / 10.0f, attitude.values.yaw / 10.0f}};
float error = angleDiffNorm(&rpy, target);
if (error < 1)
alignTime = t;
}
}
return alignTime;
}
};
class YawTest: public MahonyFixture, public testing::WithParamInterface<float> {
};
TEST_P(YawTest, TestCogAlign)
{
cogGain = 1.0;
cogDeg = GetParam();
const float rollDeg = 30; // 30deg pitch forward
setOrientationAA(rollDeg, {{0, 1, 0}});
vector3_t expect = {{0, rollDeg, wrap(cogDeg)}};
// integrate IMU. about 25s is enough in worst case
float alignTime = imuIntegrate(80, &expect);
imuUpdateEulerAngles();
// quad stays level
EXPECT_NEAR_DEG(attitude.values.roll / 10.0, expect.x, .1);
EXPECT_NEAR_DEG(attitude.values.pitch / 10.0, expect.y, .1);
// yaw is close to CoG direction
EXPECT_NEAR_DEG(attitude.values.yaw / 10.0, expect.z, 1); // error < 1 deg
if (alignTime >= 0) {
printf("[ ] Aligned to %.f deg in %.2fs\n", cogDeg, alignTime);
}
}
TEST_P(YawTest, TestMagAlign)
{
float initialAngle = GetParam();
// level, rotate to param heading
quaternion_from_axis_angle(&q, -DEGREES_TO_RADIANS(initialAngle), 0, 0, 1);
imuComputeRotationMatrix();
vector3_t expect = {{0, 0, 0}}; // expect zero yaw
vector3_t magBF = {{1, 0, .5}}; // use arbitrary Z component, point north
mag.magADC = magBF;
useMag = true;
// integrate IMU. about 25s is enough in worst case
float alignTime = imuIntegrate(30, &expect);
imuUpdateEulerAngles();
// quad stays level
EXPECT_NEAR_DEG(attitude.values.roll / 10.0, expect.x, .1);
EXPECT_NEAR_DEG(attitude.values.pitch / 10.0, expect.y, .1);
// yaw is close to north (0 deg)
EXPECT_NEAR_DEG(attitude.values.yaw / 10.0, expect.z, 1.0); // error < 1 deg
if (alignTime >= 0) {
printf("[ ] Aligned from %.f deg in %.2fs\n", initialAngle, alignTime);
}
}
INSTANTIATE_TEST_SUITE_P(
TestAngles, YawTest,
::testing::Values(
0, 45, -45, 90, 180, 270, 720+45
));
// STUBS
extern "C" {
extern boxBitmask_t rcModeActivationMask;
float rcCommand[4];
float rcData[MAX_SUPPORTED_RC_CHANNEL_COUNT];
gyro_t gyro;
acc_t acc;
mag_t mag;
gpsSolutionData_t gpsSol;
uint8_t debugMode;
int16_t debug[DEBUG16_VALUE_COUNT];
uint8_t stateFlags;
uint16_t flightModeFlags;
uint8_t armingFlags;
pidProfile_t *currentPidProfile;
uint16_t enableFlightMode(flightModeFlags_e mask) {
return flightModeFlags |= (mask);
}
uint16_t disableFlightMode(flightModeFlags_e mask) {
return flightModeFlags &= ~(mask);
}
bool sensors(uint32_t mask) {
return mask & SENSOR_ACC;
};
uint32_t millis(void) { return 0; }
uint32_t micros(void) { return 0; }
bool compassIsHealthy(void) { return true; }
bool baroIsCalibrated(void) { return true; }
void performBaroCalibrationCycle(void) {}
float baroCalculateAltitude(void) { return 0; }
bool gyroGetAccumulationAverage(float *) { return false; }
bool accGetAccumulationAverage(float *) { return false; }
void mixerSetThrottleAngleCorrection(int) {};
bool gpsRescueIsRunning(void) { return false; }
bool isFixedWing(void) { return false; }
void pinioBoxTaskControl(void) {}
void schedulerIgnoreTaskExecTime(void) {}
void schedulerIgnoreTaskStateTime(void) {}
void schedulerSetNextStateTime(timeDelta_t) {}
bool schedulerGetIgnoreTaskExecTime() { return false; }
float gyroGetFilteredDownsampled(int) { return 0.0f; }
float baroUpsampleAltitude() { return 0.0f; }
float pt2FilterGain(float, float) { return 0.0f; }
float getBaroAltitude(void) { return 3000.0f; }
float gpsRescueGetImuYawCogGain(void) { return 1.0f; }
float getRcDeflectionAbs(int) { return 0.0f; }
void pt2FilterInit(pt2Filter_t *baroDerivativeLpf, float) {
UNUSED(baroDerivativeLpf);
}
float pt2FilterApply(pt2Filter_t *baroDerivativeLpf, float) {
UNUSED(baroDerivativeLpf);
return 0.0f;
}
}