1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-14 11:59:58 +03:00
betaflight/src/main/drivers/adc_stm32f4xx.c
2018-12-30 09:40:37 +09:00

353 lines
12 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#ifdef USE_ADC
#include "build/debug.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/dma_reqmap.h"
#include "drivers/system.h"
#include "drivers/io.h"
#include "io_impl.h"
#include "rcc.h"
#include "dma.h"
#include "drivers/sensor.h"
#include "adc.h"
#include "adc_impl.h"
#include "pg/adc.h"
// These are missing from STM32F4xx_StdPeriph_Driver/inc/stm32f4xx_adc.h
#ifdef STM32F446xx
#define ADC_Channel_TempSensor ADC_Channel_18
#endif
const adcDevice_t adcHardware[] = {
{
.ADCx = ADC1,
.rccADC = RCC_APB2(ADC1),
#if !defined(USE_DMA_SPEC)
.DMAy_Streamx = ADC1_DMA_STREAM,
.channel = DMA_Channel_0
#endif
},
#if !defined(STM32F411xE)
{
.ADCx = ADC2,
.rccADC = RCC_APB2(ADC2),
#if !defined(USE_DMA_SPEC)
.DMAy_Streamx = ADC2_DMA_STREAM,
.channel = DMA_Channel_1
#endif
},
{
.ADCx = ADC3,
.rccADC = RCC_APB2(ADC3),
#if !defined(USE_DMA_SPEC)
.DMAy_Streamx = ADC3_DMA_STREAM,
.channel = DMA_Channel_2
#endif
}
#endif
};
/* note these could be packed up for saving space */
const adcTagMap_t adcTagMap[] = {
/*
{ DEFIO_TAG_E__PF3, ADC_DEVICES_3, ADC_Channel_9 },
{ DEFIO_TAG_E__PF4, ADC_DEVICES_3, ADC_Channel_14 },
{ DEFIO_TAG_E__PF5, ADC_DEVICES_3, ADC_Channel_15 },
{ DEFIO_TAG_E__PF6, ADC_DEVICES_3, ADC_Channel_4 },
{ DEFIO_TAG_E__PF7, ADC_DEVICES_3, ADC_Channel_5 },
{ DEFIO_TAG_E__PF8, ADC_DEVICES_3, ADC_Channel_6 },
{ DEFIO_TAG_E__PF9, ADC_DEVICES_3, ADC_Channel_7 },
{ DEFIO_TAG_E__PF10,ADC_DEVICES_3, ADC_Channel_8 },
*/
#if defined(STM32F411xE)
{ DEFIO_TAG_E__PC0, ADC_DEVICES_1, ADC_Channel_10 },
{ DEFIO_TAG_E__PC1, ADC_DEVICES_1, ADC_Channel_11 },
{ DEFIO_TAG_E__PC2, ADC_DEVICES_1, ADC_Channel_12 },
{ DEFIO_TAG_E__PC3, ADC_DEVICES_1, ADC_Channel_13 },
{ DEFIO_TAG_E__PC4, ADC_DEVICES_1, ADC_Channel_14 },
{ DEFIO_TAG_E__PC5, ADC_DEVICES_1, ADC_Channel_15 },
{ DEFIO_TAG_E__PB0, ADC_DEVICES_1, ADC_Channel_8 },
{ DEFIO_TAG_E__PB1, ADC_DEVICES_1, ADC_Channel_9 },
{ DEFIO_TAG_E__PA0, ADC_DEVICES_1, ADC_Channel_0 },
{ DEFIO_TAG_E__PA1, ADC_DEVICES_1, ADC_Channel_1 },
{ DEFIO_TAG_E__PA2, ADC_DEVICES_1, ADC_Channel_2 },
{ DEFIO_TAG_E__PA3, ADC_DEVICES_1, ADC_Channel_3 },
{ DEFIO_TAG_E__PA4, ADC_DEVICES_1, ADC_Channel_4 },
{ DEFIO_TAG_E__PA5, ADC_DEVICES_1, ADC_Channel_5 },
{ DEFIO_TAG_E__PA6, ADC_DEVICES_1, ADC_Channel_6 },
{ DEFIO_TAG_E__PA7, ADC_DEVICES_1, ADC_Channel_7 },
#else
{ DEFIO_TAG_E__PC0, ADC_DEVICES_123, ADC_Channel_10 },
{ DEFIO_TAG_E__PC1, ADC_DEVICES_123, ADC_Channel_11 },
{ DEFIO_TAG_E__PC2, ADC_DEVICES_123, ADC_Channel_12 },
{ DEFIO_TAG_E__PC3, ADC_DEVICES_123, ADC_Channel_13 },
{ DEFIO_TAG_E__PC4, ADC_DEVICES_12, ADC_Channel_14 },
{ DEFIO_TAG_E__PC5, ADC_DEVICES_12, ADC_Channel_15 },
{ DEFIO_TAG_E__PB0, ADC_DEVICES_12, ADC_Channel_8 },
{ DEFIO_TAG_E__PB1, ADC_DEVICES_12, ADC_Channel_9 },
{ DEFIO_TAG_E__PA0, ADC_DEVICES_123, ADC_Channel_0 },
{ DEFIO_TAG_E__PA1, ADC_DEVICES_123, ADC_Channel_1 },
{ DEFIO_TAG_E__PA2, ADC_DEVICES_123, ADC_Channel_2 },
{ DEFIO_TAG_E__PA3, ADC_DEVICES_123, ADC_Channel_3 },
{ DEFIO_TAG_E__PA4, ADC_DEVICES_12, ADC_Channel_4 },
{ DEFIO_TAG_E__PA5, ADC_DEVICES_12, ADC_Channel_5 },
{ DEFIO_TAG_E__PA6, ADC_DEVICES_12, ADC_Channel_6 },
{ DEFIO_TAG_E__PA7, ADC_DEVICES_12, ADC_Channel_7 },
#endif
};
#define VREFINT_CAL_ADDR 0x1FFF7A2A
#define TS_CAL1_ADDR 0x1FFF7A2C
#define TS_CAL2_ADDR 0x1FFF7A2E
void adcInitDevice(ADC_TypeDef *adcdev, int channelCount)
{
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = channelCount;
// Multiple injected channel seems to require scan conversion mode to be
// enabled even if main (non-injected) channel count is 1.
#ifdef USE_ADC_INTERNAL
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
#else
ADC_InitStructure.ADC_ScanConvMode = channelCount > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group
#endif
ADC_Init(adcdev, &ADC_InitStructure);
}
#ifdef USE_ADC_INTERNAL
void adcInitInternalInjected(const adcConfig_t *config)
{
ADC_TempSensorVrefintCmd(ENABLE);
ADC_InjectedDiscModeCmd(ADC1, DISABLE);
ADC_InjectedSequencerLengthConfig(ADC1, 2);
ADC_InjectedChannelConfig(ADC1, ADC_Channel_Vrefint, 1, ADC_SampleTime_480Cycles);
ADC_InjectedChannelConfig(ADC1, ADC_Channel_TempSensor, 2, ADC_SampleTime_480Cycles);
adcVREFINTCAL = config->vrefIntCalibration ? config->vrefIntCalibration : *(uint16_t *)VREFINT_CAL_ADDR;
adcTSCAL1 = config->tempSensorCalibration1 ? config->tempSensorCalibration1 : *(uint16_t *)TS_CAL1_ADDR;
adcTSCAL2 = config->tempSensorCalibration2 ? config->tempSensorCalibration2 : *(uint16_t *)TS_CAL2_ADDR;
adcTSSlopeK = (110 - 30) * 1000 / (adcTSCAL2 - adcTSCAL1);
}
// Note on sampling time for temperature sensor and vrefint:
// Both sources have minimum sample time of 10us.
// With prescaler = 8:
// 168MHz : fAPB2 = 84MHz, fADC = 10.5MHz, tcycle = 0.090us, 10us = 105cycle < 144cycle
// 240MHz : fAPB2 = 120MHz, fADC = 15.0MHz, tcycle = 0.067usk 10us = 150cycle < 480cycle
//
// 480cycles@15.0MHz = 32us
static bool adcInternalConversionInProgress = false;
bool adcInternalIsBusy(void)
{
if (adcInternalConversionInProgress) {
if (ADC_GetFlagStatus(ADC1, ADC_FLAG_JEOC) != RESET) {
adcInternalConversionInProgress = false;
}
}
return adcInternalConversionInProgress;
}
void adcInternalStartConversion(void)
{
ADC_ClearFlag(ADC1, ADC_FLAG_JEOC);
ADC_SoftwareStartInjectedConv(ADC1);
adcInternalConversionInProgress = true;
}
uint16_t adcInternalReadVrefint(void)
{
return ADC_GetInjectedConversionValue(ADC1, ADC_InjectedChannel_1);
}
uint16_t adcInternalReadTempsensor(void)
{
return ADC_GetInjectedConversionValue(ADC1, ADC_InjectedChannel_2);
}
#endif
void adcInit(const adcConfig_t *config)
{
uint8_t i;
uint8_t configuredAdcChannels = 0;
memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));
if (config->vbat.enabled) {
adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
}
if (config->rssi.enabled) {
adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL;
}
if (config->external1.enabled) {
adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
}
if (config->current.enabled) {
adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL;
}
ADCDevice device = ADC_CFG_TO_DEV(config->device);
if (device == ADCINVALID) {
return;
}
adcDevice_t adc = adcHardware[device];
bool adcActive = false;
for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcVerifyPin(adcOperatingConfig[i].tag, device)) {
continue;
}
adcActive = true;
IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
adcOperatingConfig[i].dmaIndex = configuredAdcChannels++;
adcOperatingConfig[i].sampleTime = ADC_SampleTime_480Cycles;
adcOperatingConfig[i].enabled = true;
}
#ifndef USE_ADC_INTERNAL
if (!adcActive) {
return;
}
#endif
RCC_ClockCmd(adc.rccADC, ENABLE);
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_CommonStructInit(&ADC_CommonInitStructure);
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div8;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
#ifdef USE_ADC_INTERNAL
// If device is not ADC1 or there's no active channel, then initialize ADC1 separately
if (device != ADCDEV_1 || !adcActive) {
RCC_ClockCmd(adcHardware[ADCDEV_1].rccADC, ENABLE);
adcInitDevice(ADC1, 2);
ADC_Cmd(ADC1, ENABLE);
}
// Initialize for injected conversion
adcInitInternalInjected(config);
if (!adcActive) {
return;
}
#endif
adcInitDevice(adc.ADCx, configuredAdcChannels);
uint8_t rank = 1;
for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcOperatingConfig[i].enabled) {
continue;
}
ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime);
}
ADC_DMARequestAfterLastTransferCmd(adc.ADCx, ENABLE);
ADC_DMACmd(adc.ADCx, ENABLE);
ADC_Cmd(adc.ADCx, ENABLE);
#ifdef USE_DMA_SPEC
const dmaChannelSpec_t *dmaSpec = dmaGetChannelSpec(DMA_PERIPH_ADC, device, config->dmaopt[device]);
if (!dmaSpec) {
return;
}
dmaInit(dmaGetIdentifier(dmaSpec->ref), OWNER_ADC, RESOURCE_INDEX(device));
DMA_DeInit(dmaSpec->ref);
#else
dmaInit(dmaGetIdentifier(adc.DMAy_Streamx), OWNER_ADC, 0);
DMA_DeInit(adc.DMAy_Streamx);
#endif
DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
#ifdef USE_DMA_SPEC
DMA_InitStructure.DMA_Channel = dmaSpec->channel;
#else
DMA_InitStructure.DMA_Channel = adc.channel;
#endif
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
#ifdef USE_DMA_SPEC
DMA_Init(dmaSpec->ref, &DMA_InitStructure);
DMA_Cmd(dmaSpec->ref, ENABLE);
#else
DMA_Init(adc.DMAy_Streamx, &DMA_InitStructure);
DMA_Cmd(adc.DMAy_Streamx, ENABLE);
#endif
ADC_SoftwareStartConv(adc.ADCx);
}
#endif