1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00
betaflight/src/main/drivers/pwm_output_dshot_hal.c

281 lines
9.4 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "platform.h"
#ifdef USE_DSHOT
#include "drivers/io.h"
#include "timer.h"
#include "pwm_output.h"
#include "drivers/nvic.h"
#include "drivers/time.h"
#include "dma.h"
#include "rcc.h"
static FAST_RAM_ZERO_INIT uint8_t dmaMotorTimerCount = 0;
static FAST_RAM_ZERO_INIT motorDmaTimer_t dmaMotorTimers[MAX_DMA_TIMERS];
static FAST_RAM_ZERO_INIT motorDmaOutput_t dmaMotors[MAX_SUPPORTED_MOTORS];
motorDmaOutput_t *getMotorDmaOutput(uint8_t index)
{
return &dmaMotors[index];
}
uint8_t getTimerIndex(TIM_TypeDef *timer)
{
for (int i = 0; i < dmaMotorTimerCount; i++) {
if (dmaMotorTimers[i].timer == timer) {
return i;
}
}
dmaMotorTimers[dmaMotorTimerCount++].timer = timer;
return dmaMotorTimerCount - 1;
}
FAST_CODE void pwmWriteDshotInt(uint8_t index, uint16_t value)
{
motorDmaOutput_t *const motor = &dmaMotors[index];
if (!motor->configured) {
return;
}
/*If there is a command ready to go overwrite the value and send that instead*/
if (pwmIsProcessingDshotCommand()) {
value = pwmGetDshotCommand(index);
motor->requestTelemetry = true;
}
uint16_t packet = prepareDshotPacket(motor, value);
uint8_t bufferSize;
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
bufferSize = loadDmaBuffer(&motor->timer->dmaBurstBuffer[timerLookupChannelIndex(motor->timerHardware->channel)], 4, packet);
motor->timer->dmaBurstLength = bufferSize * 4;
} else
#endif
{
bufferSize = loadDmaBuffer(motor->dmaBuffer, 1, packet);
motor->timer->timerDmaSources |= motor->timerDmaSource;
LL_EX_DMA_SetDataLength(motor->timerHardware->dmaRef, bufferSize);
LL_EX_DMA_EnableStream(motor->timerHardware->dmaRef);
}
}
FAST_CODE void pwmCompleteDshotMotorUpdate(uint8_t motorCount)
{
UNUSED(motorCount);
/* If there is a dshot command loaded up, time it correctly with motor update*/
if (pwmIsProcessingDshotCommand()) {
if (!pwmProcessDshotCommand(motorCount)) {
return;
}
}
for (int i = 0; i < dmaMotorTimerCount; i++) {
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
LL_EX_DMA_SetDataLength(dmaMotorTimers[i].dmaBurstRef, dmaMotorTimers[i].dmaBurstLength);
LL_EX_DMA_EnableStream(dmaMotorTimers[i].dmaBurstRef);
/* configure the DMA Burst Mode */
LL_TIM_ConfigDMABurst(dmaMotorTimers[i].timer, LL_TIM_DMABURST_BASEADDR_CCR1, LL_TIM_DMABURST_LENGTH_4TRANSFERS);
/* Enable the TIM DMA Request */
LL_TIM_EnableDMAReq_UPDATE(dmaMotorTimers[i].timer);
} else
#endif
{
/* Reset timer counter */
LL_TIM_SetCounter(dmaMotorTimers[i].timer, 0);
/* Enable channel DMA requests */
LL_EX_TIM_EnableIT(dmaMotorTimers[i].timer, dmaMotorTimers[i].timerDmaSources);
dmaMotorTimers[i].timerDmaSources = 0;
}
}
}
static void motor_DMA_IRQHandler(dmaChannelDescriptor_t* descriptor)
{
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF)) {
motorDmaOutput_t * const motor = &dmaMotors[descriptor->userParam];
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
LL_EX_DMA_DisableStream(motor->timerHardware->dmaTimUPRef);
LL_TIM_DisableDMAReq_UPDATE(motor->timerHardware->tim);
} else
#endif
{
LL_EX_DMA_DisableStream(motor->timerHardware->dmaRef);
LL_EX_TIM_DisableIT(motor->timerHardware->tim, motor->timerDmaSource);
}
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
}
}
void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
{
DMA_Stream_TypeDef *dmaRef;
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
dmaRef = timerHardware->dmaTimUPRef;
} else
#endif
{
dmaRef = timerHardware->dmaRef;
}
if (dmaRef == NULL) {
return;
}
LL_TIM_OC_InitTypeDef oc_init;
LL_DMA_InitTypeDef dma_init;
motorDmaOutput_t * const motor = &dmaMotors[motorIndex];
motor->timerHardware = timerHardware;
TIM_TypeDef *timer = timerHardware->tim;
const IO_t motorIO = IOGetByTag(timerHardware->tag);
const uint8_t timerIndex = getTimerIndex(timer);
const bool configureTimer = (timerIndex == dmaMotorTimerCount - 1);
IOConfigGPIOAF(motorIO, IO_CONFIG(GPIO_MODE_AF_PP, GPIO_SPEED_FREQ_VERY_HIGH, GPIO_PULLDOWN), timerHardware->alternateFunction);
if (configureTimer) {
LL_TIM_InitTypeDef init;
LL_TIM_StructInit(&init);
RCC_ClockCmd(timerRCC(timer), ENABLE);
LL_TIM_DisableCounter(timer);
init.Prescaler = (uint16_t)(lrintf((float) timerClock(timer) / getDshotHz(pwmProtocolType) + 0.01f) - 1);
init.Autoreload = pwmProtocolType == PWM_TYPE_PROSHOT1000 ? MOTOR_NIBBLE_LENGTH_PROSHOT : MOTOR_BITLENGTH;
init.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
init.RepetitionCounter = 0;
init.CounterMode = LL_TIM_COUNTERMODE_UP;
LL_TIM_Init(timer, &init);
}
LL_TIM_OC_StructInit(&oc_init);
oc_init.OCMode = LL_TIM_OCMODE_PWM1;
if (output & TIMER_OUTPUT_N_CHANNEL) {
oc_init.OCNState = LL_TIM_OCSTATE_ENABLE;
oc_init.OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
oc_init.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? LL_TIM_OCPOLARITY_LOW : LL_TIM_OCPOLARITY_HIGH;
} else {
oc_init.OCState = LL_TIM_OCSTATE_ENABLE;
oc_init.OCIdleState = LL_TIM_OCIDLESTATE_HIGH;
oc_init.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? LL_TIM_OCPOLARITY_LOW : LL_TIM_OCPOLARITY_HIGH;
}
oc_init.CompareValue = 0;
uint32_t channel;
switch (timerHardware->channel) {
case TIM_CHANNEL_1: channel = LL_TIM_CHANNEL_CH1; break;
case TIM_CHANNEL_2: channel = LL_TIM_CHANNEL_CH2; break;
case TIM_CHANNEL_3: channel = LL_TIM_CHANNEL_CH3; break;
case TIM_CHANNEL_4: channel = LL_TIM_CHANNEL_CH4; break;
}
LL_TIM_OC_Init(timer, channel, &oc_init);
LL_TIM_OC_EnablePreload(timer, channel);
LL_TIM_OC_DisableFast(timer, channel);
if (output & TIMER_OUTPUT_N_CHANNEL) {
LL_EX_TIM_CC_EnableNChannel(timer, channel);
} else {
LL_TIM_CC_EnableChannel(timer, channel);
}
if (configureTimer) {
LL_TIM_EnableAllOutputs(timer);
LL_TIM_EnableARRPreload(timer);
LL_TIM_EnableCounter(timer);
}
motor->timer = &dmaMotorTimers[timerIndex];
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
motor->timer->dmaBurstRef = dmaRef;
if (!configureTimer) {
motor->configured = true;
return;
}
} else
#endif
{
motor->timerDmaSource = timerDmaSource(timerHardware->channel);
motor->timer->timerDmaSources &= ~motor->timerDmaSource;
}
LL_EX_DMA_DeInit(dmaRef);
LL_DMA_StructInit(&dma_init);
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
dmaInit(timerHardware->dmaTimUPIrqHandler, OWNER_TIMUP, timerGetTIMNumber(timerHardware->tim));
dmaSetHandler(timerHardware->dmaTimUPIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex);
dma_init.Channel = timerHardware->dmaTimUPChannel;
dma_init.MemoryOrM2MDstAddress = (uint32_t)motor->timer->dmaBurstBuffer;
dma_init.FIFOThreshold = LL_DMA_FIFOTHRESHOLD_FULL;
dma_init.PeriphOrM2MSrcAddress = (uint32_t)&timerHardware->tim->DMAR;
} else
#endif
{
dmaInit(timerHardware->dmaIrqHandler, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
dmaSetHandler(timerHardware->dmaIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex);
dma_init.Channel = timerHardware->dmaChannel;
dma_init.MemoryOrM2MDstAddress = (uint32_t)motor->dmaBuffer;
dma_init.FIFOThreshold = LL_DMA_FIFOTHRESHOLD_1_4;
dma_init.PeriphOrM2MSrcAddress = (uint32_t)timerChCCR(timerHardware);
}
dma_init.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_init.FIFOMode = LL_DMA_FIFOMODE_ENABLE;
dma_init.MemBurst = LL_DMA_MBURST_SINGLE;
dma_init.PeriphBurst = LL_DMA_PBURST_SINGLE;
dma_init.NbData = pwmProtocolType == PWM_TYPE_PROSHOT1000 ? PROSHOT_DMA_BUFFER_SIZE : DSHOT_DMA_BUFFER_SIZE;
dma_init.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_init.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_init.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_init.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_init.Mode = LL_DMA_MODE_NORMAL;
dma_init.Priority = LL_DMA_PRIORITY_HIGH;
LL_EX_DMA_Init(dmaRef, &dma_init);
LL_EX_DMA_EnableIT_TC(dmaRef);
motor->configured = true;
}
#endif