1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/src/platform/APM32/serial_uart_apm32f4xx.c
Jay Blackman 0bb1254ee8
Move RCC from drivers to platform (#14430)
* Move RCC from drivers to platform

* Extra line removed

* Suggestion from code rabbit

* Remove else and require explicit
2025-06-07 09:41:37 +10:00

331 lines
10 KiB
C

/*
* This file is part of Betaflight.
*
* Betaflight is free software. You can redistribute this software
* and/or modify this software under the terms of the GNU General
* Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later
* version.
*
* Betaflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
/*
* jflyper - Refactoring, cleanup and made pin-configurable
*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#ifdef USE_UART
#include "build/debug.h"
#include "drivers/system.h"
#include "drivers/io.h"
#include "drivers/dma.h"
#include "drivers/nvic.h"
#include "platform/rcc.h"
#include "drivers/serial.h"
#include "drivers/serial_uart.h"
#include "drivers/serial_uart_impl.h"
const uartHardware_t uartHardware[UARTDEV_COUNT] = {
#ifdef USE_UART1
{
.identifier = SERIAL_PORT_USART1,
.reg = USART1,
.rxDMAChannel = DMA_CHANNEL_4,
.txDMAChannel = DMA_CHANNEL_4,
#ifdef USE_UART1_RX_DMA
.rxDMAResource = (dmaResource_t *)DMA2_Stream5,
#endif
#ifdef USE_UART1_TX_DMA
.txDMAResource = (dmaResource_t *)DMA2_Stream7,
#endif
.rxPins = { { DEFIO_TAG_E(PA10) }, { DEFIO_TAG_E(PB7) },
},
.txPins = { { DEFIO_TAG_E(PA9) }, { DEFIO_TAG_E(PB6) },
},
.af = GPIO_AF7_USART1,
.rcc = RCC_APB2(USART1),
.irqn = USART1_IRQn,
.txPriority = NVIC_PRIO_SERIALUART1_TXDMA,
.rxPriority = NVIC_PRIO_SERIALUART1,
.txBuffer = uart1TxBuffer,
.rxBuffer = uart1RxBuffer,
.txBufferSize = sizeof(uart1TxBuffer),
.rxBufferSize = sizeof(uart1RxBuffer),
},
#endif
#ifdef USE_UART2
{
.identifier = SERIAL_PORT_USART2,
.reg = USART2,
.rxDMAChannel = DMA_CHANNEL_4,
.txDMAChannel = DMA_CHANNEL_4,
#ifdef USE_UART2_RX_DMA
.rxDMAResource = (dmaResource_t *)DMA1_Stream5,
#endif
#ifdef USE_UART2_TX_DMA
.txDMAResource = (dmaResource_t *)DMA1_Stream6,
#endif
.rxPins = { { DEFIO_TAG_E(PA3) }, { DEFIO_TAG_E(PD6) } },
.txPins = { { DEFIO_TAG_E(PA2) }, { DEFIO_TAG_E(PD5) } },
.af = GPIO_AF7_USART2,
.rcc = RCC_APB1(USART2),
.irqn = USART2_IRQn,
.txPriority = NVIC_PRIO_SERIALUART2_TXDMA,
.rxPriority = NVIC_PRIO_SERIALUART2,
.txBuffer = uart2TxBuffer,
.rxBuffer = uart2RxBuffer,
.txBufferSize = sizeof(uart2TxBuffer),
.rxBufferSize = sizeof(uart2RxBuffer),
},
#endif
#ifdef USE_UART3
{
.identifier = SERIAL_PORT_USART3,
.reg = USART3,
.rxDMAChannel = DMA_CHANNEL_4,
.txDMAChannel = DMA_CHANNEL_4,
#ifdef USE_UART3_RX_DMA
.rxDMAResource = (dmaResource_t *)DMA1_Stream1,
#endif
#ifdef USE_UART3_TX_DMA
.txDMAResource = (dmaResource_t *)DMA1_Stream3,
#endif
.rxPins = { { DEFIO_TAG_E(PB11) }, { DEFIO_TAG_E(PC11) }, { DEFIO_TAG_E(PD9) } },
.txPins = { { DEFIO_TAG_E(PB10) }, { DEFIO_TAG_E(PC10) }, { DEFIO_TAG_E(PD8) } },
.af = GPIO_AF7_USART3,
.rcc = RCC_APB1(USART3),
.irqn = USART3_IRQn,
.txPriority = NVIC_PRIO_SERIALUART3_TXDMA,
.rxPriority = NVIC_PRIO_SERIALUART3,
.txBuffer = uart3TxBuffer,
.rxBuffer = uart3RxBuffer,
.txBufferSize = sizeof(uart3TxBuffer),
.rxBufferSize = sizeof(uart3RxBuffer),
},
#endif
#ifdef USE_UART4
{
.identifier = SERIAL_PORT_UART4,
.reg = UART4,
.rxDMAChannel = DMA_CHANNEL_4,
.txDMAChannel = DMA_CHANNEL_4,
#ifdef USE_UART4_RX_DMA
.rxDMAResource = (dmaResource_t *)DMA1_Stream2,
#endif
#ifdef USE_UART4_TX_DMA
.txDMAResource = (dmaResource_t *)DMA1_Stream4,
#endif
.rxPins = { { DEFIO_TAG_E(PA1) }, { DEFIO_TAG_E(PC11) } },
.txPins = { { DEFIO_TAG_E(PA0) }, { DEFIO_TAG_E(PC10) } },
.af = GPIO_AF8_UART4,
.rcc = RCC_APB1(UART4),
.irqn = UART4_IRQn,
.txPriority = NVIC_PRIO_SERIALUART4_TXDMA,
.rxPriority = NVIC_PRIO_SERIALUART4,
.txBuffer = uart4TxBuffer,
.rxBuffer = uart4RxBuffer,
.txBufferSize = sizeof(uart4TxBuffer),
.rxBufferSize = sizeof(uart4RxBuffer),
},
#endif
#ifdef USE_UART5
{
.identifier = SERIAL_PORT_UART5,
.reg = UART5,
.rxDMAChannel = DMA_CHANNEL_4,
.txDMAChannel = DMA_CHANNEL_4,
#ifdef USE_UART5_RX_DMA
.rxDMAResource = (dmaResource_t *)DMA1_Stream0,
#endif
#ifdef USE_UART5_TX_DMA
.txDMAResource = (dmaResource_t *)DMA1_Stream7,
#endif
.rxPins = { { DEFIO_TAG_E(PD2) } },
.txPins = { { DEFIO_TAG_E(PC12) } },
.af = GPIO_AF8_UART5,
.rcc = RCC_APB1(UART5),
.irqn = UART5_IRQn,
.txPriority = NVIC_PRIO_SERIALUART5_TXDMA,
.rxPriority = NVIC_PRIO_SERIALUART5,
.txBuffer = uart5TxBuffer,
.rxBuffer = uart5RxBuffer,
.txBufferSize = sizeof(uart5TxBuffer),
.rxBufferSize = sizeof(uart5RxBuffer),
},
#endif
#ifdef USE_UART6
{
.identifier = SERIAL_PORT_USART6,
.reg = USART6,
.rxDMAChannel = DMA_CHANNEL_5,
.txDMAChannel = DMA_CHANNEL_5,
#ifdef USE_UART6_RX_DMA
.rxDMAResource = (dmaResource_t *)DMA2_Stream1,
#endif
#ifdef USE_UART6_TX_DMA
.txDMAResource = (dmaResource_t *)DMA2_Stream6,
#endif
.rxPins = { { DEFIO_TAG_E(PC7) }, { DEFIO_TAG_E(PG9) } },
.txPins = { { DEFIO_TAG_E(PC6) }, { DEFIO_TAG_E(PG14) } },
.af = GPIO_AF8_USART6,
.rcc = RCC_APB2(USART6),
.irqn = USART6_IRQn,
.txPriority = NVIC_PRIO_SERIALUART6_TXDMA,
.rxPriority = NVIC_PRIO_SERIALUART6,
.txBuffer = uart6TxBuffer,
.rxBuffer = uart6RxBuffer,
.txBufferSize = sizeof(uart6TxBuffer),
.rxBufferSize = sizeof(uart6RxBuffer),
},
#endif
};
bool checkUsartTxOutput(uartPort_t *s)
{
uartDevice_t *uart = container_of(s, uartDevice_t, port);
IO_t txIO = IOGetByTag(uart->tx.pin);
if ((uart->txPinState == TX_PIN_MONITOR) && txIO) {
if (IORead(txIO)) {
// TX is high so we're good to transmit
// Enable USART TX output
uart->txPinState = TX_PIN_ACTIVE;
IOConfigGPIOAF(txIO, IOCFG_AF_PP, uart->hardware->af);
// Enable the UART transmitter
SET_BIT(s->Handle.Instance->CTRL1, USART_CTRL1_TXEN);
return true;
} else {
// TX line is pulled low so don't enable USART TX
return false;
}
}
return true;
}
void uartTxMonitor(uartPort_t *s)
{
uartDevice_t *uart = container_of(s, uartDevice_t, port);
if (uart->txPinState == TX_PIN_ACTIVE) {
IO_t txIO = IOGetByTag(uart->tx.pin);
// Disable the UART transmitter
CLEAR_BIT(s->Handle.Instance->CTRL1, USART_CTRL1_TXEN);
// Switch TX to an input with pullup so it's state can be monitored
uart->txPinState = TX_PIN_MONITOR;
IOConfigGPIO(txIO, IOCFG_IPU);
}
}
static void handleUsartTxDma(uartPort_t *s)
{
uartDevice_t *uart = container_of(s, uartDevice_t, port);
uartTryStartTxDMA(s);
if (s->txDMAEmpty && (uart->txPinState != TX_PIN_IGNORE)) {
// Switch TX to an input with pullup so it's state can be monitored
uartTxMonitor(s);
}
}
void uartDmaIrqHandler(dmaChannelDescriptor_t* descriptor)
{
uartPort_t *s = &(((uartDevice_t*)(descriptor->userParam))->port);
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF))
{
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
DMA_CLEAR_FLAG(descriptor, DMA_IT_HTIF);
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_FEIF))
{
DMA_CLEAR_FLAG(descriptor, DMA_IT_FEIF);
}
handleUsartTxDma(s);
}
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TEIF))
{
DMA_CLEAR_FLAG(descriptor, DMA_IT_TEIF);
}
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_DMEIF))
{
DMA_CLEAR_FLAG(descriptor, DMA_IT_DMEIF);
}
}
FAST_IRQ_HANDLER void uartIrqHandler(uartPort_t *s)
{
UART_HandleTypeDef *huart = &s->Handle;
uint32_t isrflags = READ_REG(huart->Instance->STS);
uint32_t cr1its = READ_REG(huart->Instance->CTRL1);
uint32_t cr3its = READ_REG(huart->Instance->CTRL3);
/* UART in mode Receiver ---------------------------------------------------*/
if (!s->rxDMAResource && (((isrflags & USART_STS_RXBNEFLG) != RESET) && ((cr1its & USART_CTRL1_RXBNEIEN) != RESET))) {
if (s->port.rxCallback) {
s->port.rxCallback(huart->Instance->DATA, s->port.rxCallbackData);
} else {
s->port.rxBuffer[s->port.rxBufferHead] = huart->Instance->DATA;
s->port.rxBufferHead = (s->port.rxBufferHead + 1) % s->port.rxBufferSize;
}
}
// Detect completion of transmission
if (((isrflags & USART_STS_TXCFLG) != RESET) && ((cr1its & USART_CTRL1_TXCIEN) != RESET)) {
// Switch TX to an input with pullup so it's state can be monitored
uartTxMonitor(s);
__DAL_UART_CLEAR_FLAG(huart, UART_IT_TC);
}
if (!s->txDMAResource && (((isrflags & USART_STS_TXBEFLG) != RESET) && ((cr1its & USART_CTRL1_TXBEIEN) != RESET))) {
if (s->port.txBufferTail != s->port.txBufferHead) {
huart->Instance->DATA = (((uint16_t) s->port.txBuffer[s->port.txBufferTail]) & (uint16_t) 0x01FFU);
s->port.txBufferTail = (s->port.txBufferTail + 1) % s->port.txBufferSize;
} else {
__DAL_UART_DISABLE_IT(huart, UART_IT_TXE);
}
}
if (((isrflags & USART_STS_OVREFLG) != RESET) && (((cr1its & USART_CTRL1_RXBNEIEN) != RESET)
|| ((cr3its & USART_CTRL3_ERRIEN) != RESET))) {
__DAL_UART_CLEAR_OREFLAG(huart);
}
if (((isrflags & USART_STS_IDLEFLG) != RESET) && ((cr1its & USART_STS_IDLEFLG) != RESET)) {
if (s->port.idleCallback) {
s->port.idleCallback();
}
// clear
(void) huart->Instance->STS;
(void) huart->Instance->DATA;
}
}
#endif // USE_UART