1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 19:40:31 +03:00
betaflight/src/main/cli/cli.c
Bruce Luckcuck c6c9ba7229 Fix blocking DSHOT commands
Motor and DSHOT refactoring broke blocking DSHOT commands as the check for commands being enabled was not taking into account that "blocking" type commands need to operate only when the motors are not enabled.

Fixes the CLI `dshotprog` command.
2020-04-17 08:29:24 -04:00

6749 lines
222 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include "platform.h"
// FIXME remove this for targets that don't need a CLI. Perhaps use a no-op macro when USE_CLI is not enabled
// signal that we're in cli mode
bool cliMode = false;
#ifdef USE_CLI
#include "blackbox/blackbox.h"
#include "build/build_config.h"
#include "build/debug.h"
#include "build/version.h"
#include "cli/settings.h"
#include "cms/cms.h"
#include "common/axis.h"
#include "common/color.h"
#include "common/maths.h"
#include "common/printf.h"
#include "common/printf_serial.h"
#include "common/strtol.h"
#include "common/time.h"
#include "common/typeconversion.h"
#include "common/utils.h"
#include "config/config.h"
#include "config/config_eeprom.h"
#include "config/feature.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/adc.h"
#include "drivers/buf_writer.h"
#include "drivers/bus_spi.h"
#include "drivers/dma.h"
#include "drivers/dma_reqmap.h"
#include "drivers/dshot.h"
#include "drivers/dshot_command.h"
#include "drivers/dshot_dpwm.h"
#include "drivers/pwm_output_dshot_shared.h"
#include "drivers/camera_control.h"
#include "drivers/compass/compass.h"
#include "drivers/display.h"
#include "drivers/dma.h"
#include "drivers/flash.h"
#include "drivers/inverter.h"
#include "drivers/io.h"
#include "drivers/io_impl.h"
#include "drivers/light_led.h"
#include "drivers/motor.h"
#include "drivers/rangefinder/rangefinder_hcsr04.h"
#include "drivers/resource.h"
#include "drivers/sdcard.h"
#include "drivers/sensor.h"
#include "drivers/serial.h"
#include "drivers/serial_escserial.h"
#include "drivers/sound_beeper.h"
#include "drivers/stack_check.h"
#include "drivers/system.h"
#include "drivers/time.h"
#include "drivers/timer.h"
#include "drivers/transponder_ir.h"
#include "drivers/usb_msc.h"
#include "drivers/vtx_common.h"
#include "drivers/vtx_table.h"
#include "fc/board_info.h"
#include "fc/controlrate_profile.h"
#include "fc/core.h"
#include "fc/rc.h"
#include "fc/rc_adjustments.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "flight/failsafe.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/position.h"
#include "flight/servos.h"
#include "io/asyncfatfs/asyncfatfs.h"
#include "io/beeper.h"
#include "io/flashfs.h"
#include "io/gimbal.h"
#include "io/gps.h"
#include "io/ledstrip.h"
#include "io/serial.h"
#include "io/transponder_ir.h"
#include "io/usb_msc.h"
#include "io/vtx_control.h"
#include "io/vtx.h"
#include "msp/msp.h"
#include "msp/msp_box.h"
#include "msp/msp_protocol.h"
#include "osd/osd.h"
#include "pg/adc.h"
#include "pg/beeper.h"
#include "pg/beeper_dev.h"
#include "pg/board.h"
#include "pg/bus_i2c.h"
#include "pg/bus_spi.h"
#include "pg/gyrodev.h"
#include "pg/max7456.h"
#include "pg/mco.h"
#include "pg/motor.h"
#include "pg/pinio.h"
#include "pg/pin_pull_up_down.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/rx.h"
#include "pg/rx_pwm.h"
#include "pg/rx_spi_cc2500.h"
#include "pg/serial_uart.h"
#include "pg/sdio.h"
#include "pg/timerio.h"
#include "pg/timerup.h"
#include "pg/usb.h"
#include "pg/vtx_table.h"
#include "rx/rx_bind.h"
#include "rx/rx_spi.h"
#include "scheduler/scheduler.h"
#include "sensors/acceleration.h"
#include "sensors/adcinternal.h"
#include "sensors/barometer.h"
#include "sensors/battery.h"
#include "sensors/boardalignment.h"
#include "sensors/compass.h"
#include "sensors/esc_sensor.h"
#include "sensors/gyro.h"
#include "sensors/gyro_init.h"
#include "sensors/sensors.h"
#include "telemetry/frsky_hub.h"
#include "telemetry/telemetry.h"
#include "cli.h"
static serialPort_t *cliPort = NULL;
#ifdef STM32F1
#define CLI_IN_BUFFER_SIZE 128
#else
// Space required to set array parameters
#define CLI_IN_BUFFER_SIZE 256
#endif
#define CLI_OUT_BUFFER_SIZE 64
static bufWriter_t *cliWriter = NULL;
static bufWriter_t *cliErrorWriter = NULL;
static uint8_t cliWriteBuffer[sizeof(*cliWriter) + CLI_OUT_BUFFER_SIZE];
static char cliBuffer[CLI_IN_BUFFER_SIZE];
static uint32_t bufferIndex = 0;
static bool configIsInCopy = false;
#define CURRENT_PROFILE_INDEX -1
static int8_t pidProfileIndexToUse = CURRENT_PROFILE_INDEX;
static int8_t rateProfileIndexToUse = CURRENT_PROFILE_INDEX;
#ifdef USE_CLI_BATCH
static bool commandBatchActive = false;
static bool commandBatchError = false;
#endif
#if defined(USE_BOARD_INFO)
static bool boardInformationUpdated = false;
#if defined(USE_SIGNATURE)
static bool signatureUpdated = false;
#endif
#endif // USE_BOARD_INFO
static const char* const emptyName = "-";
static const char* const emptyString = "";
#if !defined(USE_CUSTOM_DEFAULTS)
#define CUSTOM_DEFAULTS_START ((char*)0)
#define CUSTOM_DEFAULTS_END ((char *)0)
#else
extern char __custom_defaults_start;
extern char __custom_defaults_end;
#define CUSTOM_DEFAULTS_START (&__custom_defaults_start)
#define CUSTOM_DEFAULTS_END (&__custom_defaults_end)
static bool processingCustomDefaults = false;
static char cliBufferTemp[CLI_IN_BUFFER_SIZE];
#define CUSTOM_DEFAULTS_START_PREFIX ("# " FC_FIRMWARE_NAME)
#define CUSTOM_DEFAULTS_MANUFACTURER_ID_PREFIX "# config: manufacturer_id: "
#define CUSTOM_DEFAULTS_BOARD_NAME_PREFIX ", board_name: "
#define CUSTOM_DEFAULTS_CHANGESET_ID_PREFIX ", version: "
#define CUSTOM_DEFAULTS_DATE_PREFIX ", date: "
static bool customDefaultsHeaderParsed = false;
static bool customDefaultsFound = false;
static char customDefaultsManufacturerId[MAX_MANUFACTURER_ID_LENGTH + 1] = { 0 };
static char customDefaultsBoardName[MAX_BOARD_NAME_LENGTH + 1] = { 0 };
static char customDefaultsChangesetId[9] = { 0 };
static char customDefaultsDate[21] = { 0 };
#endif
#if defined(USE_CUSTOM_DEFAULTS_ADDRESS)
static char __attribute__ ((section(".custom_defaults_start_address"))) *customDefaultsStart = CUSTOM_DEFAULTS_START;
static char __attribute__ ((section(".custom_defaults_end_address"))) *customDefaultsEnd = CUSTOM_DEFAULTS_END;
#endif
#ifndef USE_QUAD_MIXER_ONLY
// sync this with mixerMode_e
static const char * const mixerNames[] = {
"TRI", "QUADP", "QUADX", "BI",
"GIMBAL", "Y6", "HEX6",
"FLYING_WING", "Y4", "HEX6X", "OCTOX8", "OCTOFLATP", "OCTOFLATX",
"AIRPLANE", "HELI_120_CCPM", "HELI_90_DEG", "VTAIL4",
"HEX6H", "PPM_TO_SERVO", "DUALCOPTER", "SINGLECOPTER",
"ATAIL4", "CUSTOM", "CUSTOMAIRPLANE", "CUSTOMTRI", "QUADX1234", NULL
};
#endif
// sync this with features_e
static const char * const featureNames[] = {
"RX_PPM", "", "INFLIGHT_ACC_CAL", "RX_SERIAL", "MOTOR_STOP",
"SERVO_TILT", "SOFTSERIAL", "GPS", "",
"RANGEFINDER", "TELEMETRY", "", "3D", "RX_PARALLEL_PWM",
"RX_MSP", "RSSI_ADC", "LED_STRIP", "DISPLAY", "OSD",
"", "CHANNEL_FORWARDING", "TRANSPONDER", "AIRMODE",
"", "", "RX_SPI", "", "ESC_SENSOR", "ANTI_GRAVITY", "DYNAMIC_FILTER", NULL
};
// sync this with rxFailsafeChannelMode_e
static const char rxFailsafeModeCharacters[] = "ahs";
static const rxFailsafeChannelMode_e rxFailsafeModesTable[RX_FAILSAFE_TYPE_COUNT][RX_FAILSAFE_MODE_COUNT] = {
{ RX_FAILSAFE_MODE_AUTO, RX_FAILSAFE_MODE_HOLD, RX_FAILSAFE_MODE_SET },
{ RX_FAILSAFE_MODE_INVALID, RX_FAILSAFE_MODE_HOLD, RX_FAILSAFE_MODE_SET }
};
#if defined(USE_SENSOR_NAMES)
// sync this with sensors_e
static const char *const sensorTypeNames[] = {
"GYRO", "ACC", "BARO", "MAG", "RANGEFINDER", "GPS", "GPS+MAG", NULL
};
#define SENSOR_NAMES_MASK (SENSOR_GYRO | SENSOR_ACC | SENSOR_BARO | SENSOR_MAG | SENSOR_RANGEFINDER)
static const char * const *sensorHardwareNames[] = {
lookupTableGyroHardware, lookupTableAccHardware, lookupTableBaroHardware, lookupTableMagHardware, lookupTableRangefinderHardware
};
#endif // USE_SENSOR_NAMES
// Needs to be aligned with mcuTypeId_e
static const char *mcuTypeNames[] = {
"SIMULATOR",
"F103",
"F303",
"F40X",
"F411",
"F446",
"F722",
"F745",
"F746",
"F765",
"H750",
"H743 (Rev Unknown)",
"H743 (Rev.Y)",
"H743 (Rev.X)",
"H743 (Rev.V)",
};
typedef enum dumpFlags_e {
DUMP_MASTER = (1 << 0),
DUMP_PROFILE = (1 << 1),
DUMP_RATES = (1 << 2),
DUMP_ALL = (1 << 3),
DO_DIFF = (1 << 4),
SHOW_DEFAULTS = (1 << 5),
HIDE_UNUSED = (1 << 6),
HARDWARE_ONLY = (1 << 7),
BARE = (1 << 8),
} dumpFlags_t;
typedef bool printFn(dumpFlags_t dumpMask, bool equalsDefault, const char *format, ...);
typedef enum {
REBOOT_TARGET_FIRMWARE,
REBOOT_TARGET_BOOTLOADER_ROM,
REBOOT_TARGET_BOOTLOADER_FLASH,
} rebootTarget_e;
typedef struct serialPassthroughPort_s {
int id;
uint32_t baud;
unsigned mode;
serialPort_t *port;
} serialPassthroughPort_t;
static void cliWriterFlushInternal(bufWriter_t *writer)
{
if (writer) {
bufWriterFlush(writer);
}
}
static void cliPrintInternal(bufWriter_t *writer, const char *str)
{
if (writer) {
while (*str) {
bufWriterAppend(writer, *str++);
}
cliWriterFlushInternal(writer);
}
}
static void cliWriterFlush()
{
cliWriterFlushInternal(cliWriter);
}
void cliPrint(const char *str)
{
cliPrintInternal(cliWriter, str);
}
void cliPrintLinefeed(void)
{
cliPrint("\r\n");
}
void cliPrintLine(const char *str)
{
cliPrint(str);
cliPrintLinefeed();
}
#ifdef MINIMAL_CLI
#define cliPrintHashLine(str)
#else
static void cliPrintHashLine(const char *str)
{
cliPrint("\r\n# ");
cliPrintLine(str);
}
#endif
static void cliPutp(void *p, char ch)
{
bufWriterAppend(p, ch);
}
static void cliPrintfva(const char *format, va_list va)
{
if (cliWriter) {
tfp_format(cliWriter, cliPutp, format, va);
cliWriterFlush();
}
}
static bool cliDumpPrintLinef(dumpFlags_t dumpMask, bool equalsDefault, const char *format, ...)
{
if (!((dumpMask & DO_DIFF) && equalsDefault)) {
va_list va;
va_start(va, format);
cliPrintfva(format, va);
va_end(va);
cliPrintLinefeed();
return true;
} else {
return false;
}
}
static void cliWrite(uint8_t ch)
{
if (cliWriter) {
bufWriterAppend(cliWriter, ch);
}
}
static bool cliDefaultPrintLinef(dumpFlags_t dumpMask, bool equalsDefault, const char *format, ...)
{
if ((dumpMask & SHOW_DEFAULTS) && !equalsDefault) {
cliWrite('#');
va_list va;
va_start(va, format);
cliPrintfva(format, va);
va_end(va);
cliPrintLinefeed();
return true;
} else {
return false;
}
}
void cliPrintf(const char *format, ...)
{
va_list va;
va_start(va, format);
cliPrintfva(format, va);
va_end(va);
}
void cliPrintLinef(const char *format, ...)
{
va_list va;
va_start(va, format);
cliPrintfva(format, va);
va_end(va);
cliPrintLinefeed();
}
static void cliPrintErrorVa(const char *cmdName, const char *format, va_list va)
{
if (cliErrorWriter) {
cliPrintInternal(cliErrorWriter, "###ERROR: ");
cliPrintInternal(cliErrorWriter, cmdName);
cliPrintInternal(cliErrorWriter, ": ");
tfp_format(cliErrorWriter, cliPutp, format, va);
va_end(va);
cliPrintInternal(cliErrorWriter, "###");
}
#ifdef USE_CLI_BATCH
if (commandBatchActive) {
commandBatchError = true;
}
#endif
}
static void cliPrintError(const char *cmdName, const char *format, ...)
{
va_list va;
va_start(va, format);
cliPrintErrorVa(cmdName, format, va);
if (!cliWriter) {
// Supply our own linefeed in case we are printing inside a custom defaults operation
// TODO: Fix this by rewriting the entire CLI to have self contained line feeds
// instead of expecting the directly following command to supply the line feed.
cliPrintInternal(cliErrorWriter, "\r\n");
}
}
static void cliPrintErrorLinef(const char *cmdName, const char *format, ...)
{
va_list va;
va_start(va, format);
cliPrintErrorVa(cmdName, format, va);
cliPrintInternal(cliErrorWriter, "\r\n");
}
static void getMinMax(const clivalue_t *var, int *min, int *max)
{
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
case VAR_UINT16:
*min = var->config.minmaxUnsigned.min;
*max = var->config.minmaxUnsigned.max;
break;
default:
*min = var->config.minmax.min;
*max = var->config.minmax.max;
break;
}
}
static void printValuePointer(const char *cmdName, const clivalue_t *var, const void *valuePointer, bool full)
{
if ((var->type & VALUE_MODE_MASK) == MODE_ARRAY) {
for (int i = 0; i < var->config.array.length; i++) {
switch (var->type & VALUE_TYPE_MASK) {
default:
case VAR_UINT8:
// uint8_t array
cliPrintf("%d", ((uint8_t *)valuePointer)[i]);
break;
case VAR_INT8:
// int8_t array
cliPrintf("%d", ((int8_t *)valuePointer)[i]);
break;
case VAR_UINT16:
// uin16_t array
cliPrintf("%d", ((uint16_t *)valuePointer)[i]);
break;
case VAR_INT16:
// int16_t array
cliPrintf("%d", ((int16_t *)valuePointer)[i]);
break;
case VAR_UINT32:
// uin32_t array
cliPrintf("%u", ((uint32_t *)valuePointer)[i]);
break;
}
if (i < var->config.array.length - 1) {
cliPrint(",");
}
}
} else {
int value = 0;
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
value = *(uint8_t *)valuePointer;
break;
case VAR_INT8:
value = *(int8_t *)valuePointer;
break;
case VAR_UINT16:
value = *(uint16_t *)valuePointer;
break;
case VAR_INT16:
value = *(int16_t *)valuePointer;
break;
case VAR_UINT32:
value = *(uint32_t *)valuePointer;
break;
}
bool valueIsCorrupted = false;
switch (var->type & VALUE_MODE_MASK) {
case MODE_DIRECT:
if ((var->type & VALUE_TYPE_MASK) == VAR_UINT32) {
cliPrintf("%u", (uint32_t)value);
if ((uint32_t)value > var->config.u32Max) {
valueIsCorrupted = true;
} else if (full) {
cliPrintf(" 0 %u", var->config.u32Max);
}
} else {
int min;
int max;
getMinMax(var, &min, &max);
cliPrintf("%d", value);
if ((value < min) || (value > max)) {
valueIsCorrupted = true;
} else if (full) {
cliPrintf(" %d %d", min, max);
}
}
break;
case MODE_LOOKUP:
if (value < lookupTables[var->config.lookup.tableIndex].valueCount) {
cliPrint(lookupTables[var->config.lookup.tableIndex].values[value]);
} else {
valueIsCorrupted = true;
}
break;
case MODE_BITSET:
if (value & 1 << var->config.bitpos) {
cliPrintf("ON");
} else {
cliPrintf("OFF");
}
break;
case MODE_STRING:
cliPrintf("%s", (strlen((char *)valuePointer) == 0) ? "-" : (char *)valuePointer);
break;
}
if (valueIsCorrupted) {
cliPrintLinefeed();
cliPrintError(cmdName, "CORRUPTED CONFIG: %s = %d", var->name, value);
}
}
}
static bool valuePtrEqualsDefault(const clivalue_t *var, const void *ptr, const void *ptrDefault)
{
bool result = true;
int elementCount = 1;
uint32_t mask = 0xffffffff;
if ((var->type & VALUE_MODE_MASK) == MODE_ARRAY) {
elementCount = var->config.array.length;
}
if ((var->type & VALUE_MODE_MASK) == MODE_BITSET) {
mask = 1 << var->config.bitpos;
}
for (int i = 0; i < elementCount; i++) {
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
result = result && (((uint8_t *)ptr)[i] & mask) == (((uint8_t *)ptrDefault)[i] & mask);
break;
case VAR_INT8:
result = result && ((int8_t *)ptr)[i] == ((int8_t *)ptrDefault)[i];
break;
case VAR_UINT16:
result = result && (((uint16_t *)ptr)[i] & mask) == (((uint16_t *)ptrDefault)[i] & mask);
break;
case VAR_INT16:
result = result && ((int16_t *)ptr)[i] == ((int16_t *)ptrDefault)[i];
break;
case VAR_UINT32:
result = result && (((uint32_t *)ptr)[i] & mask) == (((uint32_t *)ptrDefault)[i] & mask);
break;
}
}
return result;
}
static const char *cliPrintSectionHeading(dumpFlags_t dumpMask, bool outputFlag, const char *headingStr)
{
if (headingStr && (!(dumpMask & DO_DIFF) || outputFlag)) {
cliPrintHashLine(headingStr);
return NULL;
} else {
return headingStr;
}
}
static void backupPgConfig(const pgRegistry_t *pg)
{
memcpy(pg->copy, pg->address, pg->size);
}
static void restorePgConfig(const pgRegistry_t *pg)
{
memcpy(pg->address, pg->copy, pg->size);
}
static void backupConfigs(void)
{
if (configIsInCopy) {
return;
}
// make copies of configs to do differencing
PG_FOREACH(pg) {
backupPgConfig(pg);
}
configIsInCopy = true;
}
static void restoreConfigs(void)
{
if (!configIsInCopy) {
return;
}
PG_FOREACH(pg) {
restorePgConfig(pg);
}
configIsInCopy = false;
}
#if defined(USE_RESOURCE_MGMT) || defined(USE_TIMER_MGMT)
static bool isReadingConfigFromCopy()
{
return configIsInCopy;
}
#endif
static bool isWritingConfigToCopy()
{
return configIsInCopy
#if defined(USE_CUSTOM_DEFAULTS)
&& !processingCustomDefaults
#endif
;
}
#if defined(USE_CUSTOM_DEFAULTS)
static bool cliProcessCustomDefaults(bool quiet);
#endif
static void backupAndResetConfigs(const bool useCustomDefaults)
{
backupConfigs();
// reset all configs to defaults to do differencing
resetConfig();
#if defined(USE_CUSTOM_DEFAULTS)
if (useCustomDefaults) {
if (!cliProcessCustomDefaults(true)) {
cliPrintLine("###WARNING: NO CUSTOM DEFAULTS FOUND###");
}
}
#else
UNUSED(useCustomDefaults);
#endif
}
static uint8_t getPidProfileIndexToUse()
{
return pidProfileIndexToUse == CURRENT_PROFILE_INDEX ? getCurrentPidProfileIndex() : pidProfileIndexToUse;
}
static uint8_t getRateProfileIndexToUse()
{
return rateProfileIndexToUse == CURRENT_PROFILE_INDEX ? getCurrentControlRateProfileIndex() : rateProfileIndexToUse;
}
static uint16_t getValueOffset(const clivalue_t *value)
{
switch (value->type & VALUE_SECTION_MASK) {
case MASTER_VALUE:
case HARDWARE_VALUE:
return value->offset;
case PROFILE_VALUE:
return value->offset + sizeof(pidProfile_t) * getPidProfileIndexToUse();
case PROFILE_RATE_VALUE:
return value->offset + sizeof(controlRateConfig_t) * getRateProfileIndexToUse();
}
return 0;
}
STATIC_UNIT_TESTED void *cliGetValuePointer(const clivalue_t *value)
{
const pgRegistry_t* rec = pgFind(value->pgn);
if (isWritingConfigToCopy()) {
return CONST_CAST(void *, rec->copy + getValueOffset(value));
} else {
return CONST_CAST(void *, rec->address + getValueOffset(value));
}
}
static const char *dumpPgValue(const char *cmdName, const clivalue_t *value, dumpFlags_t dumpMask, const char *headingStr)
{
const pgRegistry_t *pg = pgFind(value->pgn);
#ifdef DEBUG
if (!pg) {
cliPrintLinef("VALUE %s ERROR", value->name);
return headingStr; // if it's not found, the pgn shouldn't be in the value table!
}
#endif
const char *format = "set %s = ";
const char *defaultFormat = "#set %s = ";
const int valueOffset = getValueOffset(value);
const bool equalsDefault = valuePtrEqualsDefault(value, pg->copy + valueOffset, pg->address + valueOffset);
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
if (((dumpMask & DO_DIFF) == 0) || !equalsDefault) {
if (dumpMask & SHOW_DEFAULTS && !equalsDefault) {
cliPrintf(defaultFormat, value->name);
printValuePointer(cmdName, value, (uint8_t*)pg->address + valueOffset, false);
cliPrintLinefeed();
}
cliPrintf(format, value->name);
printValuePointer(cmdName, value, pg->copy + valueOffset, false);
cliPrintLinefeed();
}
return headingStr;
}
static void dumpAllValues(const char *cmdName, uint16_t valueSection, dumpFlags_t dumpMask, const char *headingStr)
{
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < valueTableEntryCount; i++) {
const clivalue_t *value = &valueTable[i];
cliWriterFlush();
if ((value->type & VALUE_SECTION_MASK) == valueSection || ((valueSection == MASTER_VALUE) && (value->type & VALUE_SECTION_MASK) == HARDWARE_VALUE)) {
headingStr = dumpPgValue(cmdName, value, dumpMask, headingStr);
}
}
}
static void cliPrintVar(const char *cmdName, const clivalue_t *var, bool full)
{
const void *ptr = cliGetValuePointer(var);
printValuePointer(cmdName, var, ptr, full);
}
static void cliPrintVarRange(const clivalue_t *var)
{
switch (var->type & VALUE_MODE_MASK) {
case (MODE_DIRECT): {
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT32:
cliPrintLinef("Allowed range: 0 - %u", var->config.u32Max);
break;
case VAR_UINT8:
case VAR_UINT16:
cliPrintLinef("Allowed range: %d - %d", var->config.minmaxUnsigned.min, var->config.minmaxUnsigned.max);
break;
default:
cliPrintLinef("Allowed range: %d - %d", var->config.minmax.min, var->config.minmax.max);
break;
}
}
break;
case (MODE_LOOKUP): {
const lookupTableEntry_t *tableEntry = &lookupTables[var->config.lookup.tableIndex];
cliPrint("Allowed values: ");
bool firstEntry = true;
for (unsigned i = 0; i < tableEntry->valueCount; i++) {
if (tableEntry->values[i]) {
if (!firstEntry) {
cliPrint(", ");
}
cliPrintf("%s", tableEntry->values[i]);
firstEntry = false;
}
}
cliPrintLinefeed();
}
break;
case (MODE_ARRAY): {
cliPrintLinef("Array length: %d", var->config.array.length);
}
break;
case (MODE_STRING): {
cliPrintLinef("String length: %d - %d", var->config.string.minlength, var->config.string.maxlength);
}
break;
case (MODE_BITSET): {
cliPrintLinef("Allowed values: OFF, ON");
}
break;
}
}
static void cliSetVar(const clivalue_t *var, const uint32_t value)
{
void *ptr = cliGetValuePointer(var);
uint32_t workValue;
uint32_t mask;
if ((var->type & VALUE_MODE_MASK) == MODE_BITSET) {
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
mask = (1 << var->config.bitpos) & 0xff;
if (value) {
workValue = *(uint8_t *)ptr | mask;
} else {
workValue = *(uint8_t *)ptr & ~mask;
}
*(uint8_t *)ptr = workValue;
break;
case VAR_UINT16:
mask = (1 << var->config.bitpos) & 0xffff;
if (value) {
workValue = *(uint16_t *)ptr | mask;
} else {
workValue = *(uint16_t *)ptr & ~mask;
}
*(uint16_t *)ptr = workValue;
break;
case VAR_UINT32:
mask = 1 << var->config.bitpos;
if (value) {
workValue = *(uint32_t *)ptr | mask;
} else {
workValue = *(uint32_t *)ptr & ~mask;
}
*(uint32_t *)ptr = workValue;
break;
}
} else {
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
*(uint8_t *)ptr = value;
break;
case VAR_INT8:
*(int8_t *)ptr = value;
break;
case VAR_UINT16:
*(uint16_t *)ptr = value;
break;
case VAR_INT16:
*(int16_t *)ptr = value;
break;
case VAR_UINT32:
*(uint32_t *)ptr = value;
break;
}
}
}
#if defined(USE_RESOURCE_MGMT) && !defined(MINIMAL_CLI)
static void cliRepeat(char ch, uint8_t len)
{
if (cliWriter) {
for (int i = 0; i < len; i++) {
bufWriterAppend(cliWriter, ch);
}
cliPrintLinefeed();
}
}
#endif
static void cliPrompt(void)
{
#if defined(USE_CUSTOM_DEFAULTS) && defined(DEBUG_CUSTOM_DEFAULTS)
if (processingCustomDefaults) {
cliPrint("\r\nd: #");
} else
#endif
{
cliPrint("\r\n# ");
}
}
static void cliShowParseError(const char *cmdName)
{
cliPrintErrorLinef(cmdName, "PARSING FAILED");
}
static void cliShowInvalidArgumentCountError(const char *cmdName)
{
cliPrintErrorLinef(cmdName, "INVALID ARGUMENT COUNT", cmdName);
}
static void cliShowArgumentRangeError(const char *cmdName, char *name, int min, int max)
{
if (name) {
cliPrintErrorLinef(cmdName, "%s: %s NOT BETWEEN %d AND %d", name, min, max);
} else {
cliPrintErrorLinef(cmdName, "ARGUMENT OUT OF RANGE");
}
}
static const char *nextArg(const char *currentArg)
{
const char *ptr = strchr(currentArg, ' ');
while (ptr && *ptr == ' ') {
ptr++;
}
return ptr;
}
static const char *processChannelRangeArgs(const char *ptr, channelRange_t *range, uint8_t *validArgumentCount)
{
for (uint32_t argIndex = 0; argIndex < 2; argIndex++) {
ptr = nextArg(ptr);
if (ptr) {
int val = atoi(ptr);
val = CHANNEL_VALUE_TO_STEP(val);
if (val >= MIN_MODE_RANGE_STEP && val <= MAX_MODE_RANGE_STEP) {
if (argIndex == 0) {
range->startStep = val;
} else {
range->endStep = val;
}
(*validArgumentCount)++;
}
}
}
return ptr;
}
// Check if a string's length is zero
static bool isEmpty(const char *string)
{
return (string == NULL || *string == '\0') ? true : false;
}
static void printRxFailsafe(dumpFlags_t dumpMask, const rxFailsafeChannelConfig_t *rxFailsafeChannelConfigs, const rxFailsafeChannelConfig_t *defaultRxFailsafeChannelConfigs, const char *headingStr)
{
// print out rxConfig failsafe settings
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t channel = 0; channel < MAX_SUPPORTED_RC_CHANNEL_COUNT; channel++) {
const rxFailsafeChannelConfig_t *channelFailsafeConfig = &rxFailsafeChannelConfigs[channel];
const rxFailsafeChannelConfig_t *defaultChannelFailsafeConfig = &defaultRxFailsafeChannelConfigs[channel];
const bool equalsDefault = !memcmp(channelFailsafeConfig, defaultChannelFailsafeConfig, sizeof(*channelFailsafeConfig));
const bool requireValue = channelFailsafeConfig->mode == RX_FAILSAFE_MODE_SET;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
if (requireValue) {
const char *format = "rxfail %u %c %d";
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[defaultChannelFailsafeConfig->mode],
RXFAIL_STEP_TO_CHANNEL_VALUE(defaultChannelFailsafeConfig->step)
);
cliDumpPrintLinef(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[channelFailsafeConfig->mode],
RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfig->step)
);
} else {
const char *format = "rxfail %u %c";
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[defaultChannelFailsafeConfig->mode]
);
cliDumpPrintLinef(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[channelFailsafeConfig->mode]
);
}
}
}
static void cliRxFailsafe(const char *cmdName, char *cmdline)
{
uint8_t channel;
char buf[3];
if (isEmpty(cmdline)) {
// print out rxConfig failsafe settings
for (channel = 0; channel < MAX_SUPPORTED_RC_CHANNEL_COUNT; channel++) {
cliRxFailsafe(cmdName, itoa(channel, buf, 10));
}
} else {
const char *ptr = cmdline;
channel = atoi(ptr++);
if ((channel < MAX_SUPPORTED_RC_CHANNEL_COUNT)) {
rxFailsafeChannelConfig_t *channelFailsafeConfig = rxFailsafeChannelConfigsMutable(channel);
const rxFailsafeChannelType_e type = (channel < NON_AUX_CHANNEL_COUNT) ? RX_FAILSAFE_TYPE_FLIGHT : RX_FAILSAFE_TYPE_AUX;
rxFailsafeChannelMode_e mode = channelFailsafeConfig->mode;
bool requireValue = channelFailsafeConfig->mode == RX_FAILSAFE_MODE_SET;
ptr = nextArg(ptr);
if (ptr) {
const char *p = strchr(rxFailsafeModeCharacters, *(ptr));
if (p) {
const uint8_t requestedMode = p - rxFailsafeModeCharacters;
mode = rxFailsafeModesTable[type][requestedMode];
} else {
mode = RX_FAILSAFE_MODE_INVALID;
}
if (mode == RX_FAILSAFE_MODE_INVALID) {
cliShowParseError(cmdName);
return;
}
requireValue = mode == RX_FAILSAFE_MODE_SET;
ptr = nextArg(ptr);
if (ptr) {
if (!requireValue) {
cliShowParseError(cmdName);
return;
}
uint16_t value = atoi(ptr);
value = CHANNEL_VALUE_TO_RXFAIL_STEP(value);
if (value > MAX_RXFAIL_RANGE_STEP) {
cliPrintErrorLinef(cmdName, "value out of range: %d", value);
return;
}
channelFailsafeConfig->step = value;
} else if (requireValue) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
channelFailsafeConfig->mode = mode;
}
char modeCharacter = rxFailsafeModeCharacters[channelFailsafeConfig->mode];
// double use of cliPrintf below
// 1. acknowledge interpretation on command,
// 2. query current setting on single item,
if (requireValue) {
cliPrintLinef("rxfail %u %c %d",
channel,
modeCharacter,
RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfig->step)
);
} else {
cliPrintLinef("rxfail %u %c",
channel,
modeCharacter
);
}
} else {
cliShowArgumentRangeError(cmdName, "CHANNEL", 0, MAX_SUPPORTED_RC_CHANNEL_COUNT - 1);
}
}
}
static void printAux(dumpFlags_t dumpMask, const modeActivationCondition_t *modeActivationConditions, const modeActivationCondition_t *defaultModeActivationConditions, const char *headingStr)
{
const char *format = "aux %u %u %u %u %u %u %u";
// print out aux channel settings
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < MAX_MODE_ACTIVATION_CONDITION_COUNT; i++) {
const modeActivationCondition_t *mac = &modeActivationConditions[i];
bool equalsDefault = false;
if (defaultModeActivationConditions) {
const modeActivationCondition_t *macDefault = &defaultModeActivationConditions[i];
equalsDefault = !isModeActivationConditionConfigured(mac, macDefault);
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
const box_t *box = findBoxByBoxId(macDefault->modeId);
const box_t *linkedTo = findBoxByBoxId(macDefault->linkedTo);
if (box) {
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
i,
box->permanentId,
macDefault->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(macDefault->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(macDefault->range.endStep),
macDefault->modeLogic,
linkedTo ? linkedTo->permanentId : 0
);
}
}
const box_t *box = findBoxByBoxId(mac->modeId);
const box_t *linkedTo = findBoxByBoxId(mac->linkedTo);
if (box) {
cliDumpPrintLinef(dumpMask, equalsDefault, format,
i,
box->permanentId,
mac->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(mac->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(mac->range.endStep),
mac->modeLogic,
linkedTo ? linkedTo->permanentId : 0
);
}
}
}
static void cliAux(const char *cmdName, char *cmdline)
{
int i, val = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printAux(DUMP_MASTER, modeActivationConditions(0), NULL, NULL);
} else {
ptr = cmdline;
i = atoi(ptr++);
if (i < MAX_MODE_ACTIVATION_CONDITION_COUNT) {
modeActivationCondition_t *mac = modeActivationConditionsMutable(i);
uint8_t validArgumentCount = 0;
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
const box_t *box = findBoxByPermanentId(val);
if (box) {
mac->modeId = box->boxId;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
mac->auxChannelIndex = val;
validArgumentCount++;
}
}
ptr = processChannelRangeArgs(ptr, &mac->range, &validArgumentCount);
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val == MODELOGIC_OR || val == MODELOGIC_AND) {
mac->modeLogic = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
const box_t *box = findBoxByPermanentId(val);
if (box) {
mac->linkedTo = box->boxId;
validArgumentCount++;
}
}
if (validArgumentCount == 4) { // for backwards compatibility
mac->modeLogic = MODELOGIC_OR;
mac->linkedTo = 0;
} else if (validArgumentCount == 5) { // for backwards compatibility
mac->linkedTo = 0;
} else if (validArgumentCount != 6) {
memset(mac, 0, sizeof(modeActivationCondition_t));
}
analyzeModeActivationConditions();
cliPrintLinef( "aux %u %u %u %u %u %u %u",
i,
findBoxByBoxId(mac->modeId)->permanentId,
mac->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(mac->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(mac->range.endStep),
mac->modeLogic,
findBoxByBoxId(mac->linkedTo)->permanentId
);
} else {
cliShowArgumentRangeError(cmdName, "INDEX", 0, MAX_MODE_ACTIVATION_CONDITION_COUNT - 1);
}
}
}
static void printSerial(dumpFlags_t dumpMask, const serialConfig_t *serialConfig, const serialConfig_t *serialConfigDefault, const char *headingStr)
{
const char *format = "serial %d %d %ld %ld %ld %ld";
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < SERIAL_PORT_COUNT; i++) {
if (!serialIsPortAvailable(serialConfig->portConfigs[i].identifier)) {
continue;
};
bool equalsDefault = false;
if (serialConfigDefault) {
equalsDefault = !memcmp(&serialConfig->portConfigs[i], &serialConfigDefault->portConfigs[i], sizeof(serialConfig->portConfigs[i]));
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
serialConfigDefault->portConfigs[i].identifier,
serialConfigDefault->portConfigs[i].functionMask,
baudRates[serialConfigDefault->portConfigs[i].msp_baudrateIndex],
baudRates[serialConfigDefault->portConfigs[i].gps_baudrateIndex],
baudRates[serialConfigDefault->portConfigs[i].telemetry_baudrateIndex],
baudRates[serialConfigDefault->portConfigs[i].blackbox_baudrateIndex]
);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format,
serialConfig->portConfigs[i].identifier,
serialConfig->portConfigs[i].functionMask,
baudRates[serialConfig->portConfigs[i].msp_baudrateIndex],
baudRates[serialConfig->portConfigs[i].gps_baudrateIndex],
baudRates[serialConfig->portConfigs[i].telemetry_baudrateIndex],
baudRates[serialConfig->portConfigs[i].blackbox_baudrateIndex]
);
}
}
static void cliSerial(const char *cmdName, char *cmdline)
{
const char *format = "serial %d %d %ld %ld %ld %ld";
if (isEmpty(cmdline)) {
printSerial(DUMP_MASTER, serialConfig(), NULL, NULL);
return;
}
serialPortConfig_t portConfig;
memset(&portConfig, 0 , sizeof(portConfig));
uint8_t validArgumentCount = 0;
const char *ptr = cmdline;
int val = atoi(ptr++);
serialPortConfig_t *currentConfig = serialFindPortConfigurationMutable(val);
if (currentConfig) {
portConfig.identifier = val;
validArgumentCount++;
}
ptr = nextArg(ptr);
if (ptr) {
val = strtoul(ptr, NULL, 10);
portConfig.functionMask = val;
validArgumentCount++;
}
for (int i = 0; i < 4; i ++) {
ptr = nextArg(ptr);
if (!ptr) {
break;
}
val = atoi(ptr);
uint8_t baudRateIndex = lookupBaudRateIndex(val);
if (baudRates[baudRateIndex] != (uint32_t) val) {
break;
}
switch (i) {
case 0:
if (baudRateIndex < BAUD_9600 || baudRateIndex > BAUD_1000000) {
continue;
}
portConfig.msp_baudrateIndex = baudRateIndex;
break;
case 1:
if (baudRateIndex < BAUD_9600 || baudRateIndex > BAUD_115200) {
continue;
}
portConfig.gps_baudrateIndex = baudRateIndex;
break;
case 2:
if (baudRateIndex != BAUD_AUTO && baudRateIndex > BAUD_115200) {
continue;
}
portConfig.telemetry_baudrateIndex = baudRateIndex;
break;
case 3:
if (baudRateIndex < BAUD_19200 || baudRateIndex > BAUD_2470000) {
continue;
}
portConfig.blackbox_baudrateIndex = baudRateIndex;
break;
}
validArgumentCount++;
}
if (validArgumentCount < 6) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
memcpy(currentConfig, &portConfig, sizeof(portConfig));
cliDumpPrintLinef(0, false, format,
portConfig.identifier,
portConfig.functionMask,
baudRates[portConfig.msp_baudrateIndex],
baudRates[portConfig.gps_baudrateIndex],
baudRates[portConfig.telemetry_baudrateIndex],
baudRates[portConfig.blackbox_baudrateIndex]
);
}
#if defined(USE_SERIAL_PASSTHROUGH)
static void cbCtrlLine(void *context, uint16_t ctrl)
{
#ifdef USE_PINIO
int contextValue = (int)(long)context;
if (contextValue) {
pinioSet(contextValue - 1, !(ctrl & CTRL_LINE_STATE_DTR));
} else
#endif /* USE_PINIO */
UNUSED(context);
if (!(ctrl & CTRL_LINE_STATE_DTR)) {
systemReset();
}
}
static int cliParseSerialMode(const char *tok)
{
int mode = 0;
if (strcasestr(tok, "rx")) {
mode |= MODE_RX;
}
if (strcasestr(tok, "tx")) {
mode |= MODE_TX;
}
return mode;
}
static void cliSerialPassthrough(const char *cmdName, char *cmdline)
{
if (isEmpty(cmdline)) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
serialPassthroughPort_t ports[2] = { {SERIAL_PORT_NONE, 0, 0, NULL}, {cliPort->identifier, 0, 0, cliPort} };
bool enableBaudCb = false;
int port1PinioDtr = 0;
bool port1ResetOnDtr = false;
bool escSensorPassthrough = false;
char *saveptr;
char* tok = strtok_r(cmdline, " ", &saveptr);
int index = 0;
while (tok != NULL) {
switch (index) {
case 0:
if (strcasestr(tok, "esc_sensor")) {
escSensorPassthrough = true;
const serialPortConfig_t *portConfig = findSerialPortConfig(FUNCTION_ESC_SENSOR);
ports[0].id = portConfig->identifier;
} else {
ports[0].id = atoi(tok);
}
break;
case 1:
ports[0].baud = atoi(tok);
break;
case 2:
ports[0].mode = cliParseSerialMode(tok);
break;
case 3:
if (strncasecmp(tok, "reset", strlen(tok)) == 0) {
port1ResetOnDtr = true;
#ifdef USE_PINIO
} else if (strncasecmp(tok, "none", strlen(tok)) == 0) {
port1PinioDtr = 0;
} else {
port1PinioDtr = atoi(tok);
if (port1PinioDtr < 0 || port1PinioDtr > PINIO_COUNT) {
cliPrintLinef("Invalid PinIO number %d", port1PinioDtr);
return ;
}
#endif /* USE_PINIO */
}
break;
case 4:
ports[1].id = atoi(tok);
ports[1].port = NULL;
break;
case 5:
ports[1].baud = atoi(tok);
break;
case 6:
ports[1].mode = cliParseSerialMode(tok);
break;
}
index++;
tok = strtok_r(NULL, " ", &saveptr);
}
// Port checks
if (ports[0].id == ports[1].id) {
cliPrintLinef("Port1 and port2 are same");
return ;
}
for (int i = 0; i < 2; i++) {
if (findSerialPortIndexByIdentifier(ports[i].id) == -1) {
cliPrintLinef("Invalid port%d %d", i + 1, ports[i].id);
return ;
} else {
cliPrintLinef("Port%d: %d ", i + 1, ports[i].id);
}
}
if (ports[0].baud == 0 && ports[1].id == SERIAL_PORT_USB_VCP) {
enableBaudCb = true;
}
for (int i = 0; i < 2; i++) {
serialPort_t **port = &(ports[i].port);
if (*port != NULL) {
continue;
}
int portIndex = i + 1;
serialPortUsage_t *portUsage = findSerialPortUsageByIdentifier(ports[i].id);
if (!portUsage || portUsage->serialPort == NULL) {
bool isUseDefaultBaud = false;
if (ports[i].baud == 0) {
// Set default baud
ports[i].baud = 57600;
isUseDefaultBaud = true;
}
if (!ports[i].mode) {
ports[i].mode = MODE_RXTX;
}
*port = openSerialPort(ports[i].id, FUNCTION_NONE, NULL, NULL,
ports[i].baud, ports[i].mode,
SERIAL_NOT_INVERTED);
if (!*port) {
cliPrintLinef("Port%d could not be opened.", portIndex);
return;
}
if (isUseDefaultBaud) {
cliPrintf("Port%d opened, default baud = %d.\r\n", portIndex, ports[i].baud);
} else {
cliPrintf("Port%d opened, baud = %d.\r\n", portIndex, ports[i].baud);
}
} else {
*port = portUsage->serialPort;
// If the user supplied a mode, override the port's mode, otherwise
// leave the mode unchanged. serialPassthrough() handles one-way ports.
// Set the baud rate if specified
if (ports[i].baud) {
cliPrintf("Port%d is already open, setting baud = %d.\r\n", portIndex, ports[i].baud);
serialSetBaudRate(*port, ports[i].baud);
} else {
cliPrintf("Port%d is already open, baud = %d.\r\n", portIndex, (*port)->baudRate);
}
if (ports[i].mode && (*port)->mode != ports[i].mode) {
cliPrintf("Port%d mode changed from %d to %d.\r\n",
portIndex, (*port)->mode, ports[i].mode);
serialSetMode(*port, ports[i].mode);
}
// If this port has a rx callback associated we need to remove it now.
// Otherwise no data will be pushed in the serial port buffer!
if ((*port)->rxCallback) {
(*port)->rxCallback = NULL;
}
}
}
// If no baud rate is specified allow to be set via USB
if (enableBaudCb) {
cliPrintLine("Port1 baud rate change over USB enabled.");
// Register the right side baud rate setting routine with the left side which allows setting of the UART
// baud rate over USB without setting it using the serialpassthrough command
serialSetBaudRateCb(ports[0].port, serialSetBaudRate, ports[1].port);
}
char *resetMessage = "";
if (port1ResetOnDtr && ports[1].id == SERIAL_PORT_USB_VCP) {
resetMessage = "or drop DTR ";
}
cliPrintLinef("Forwarding, power cycle %sto exit.", resetMessage);
if ((ports[1].id == SERIAL_PORT_USB_VCP) && (port1ResetOnDtr
#ifdef USE_PINIO
|| port1PinioDtr
#endif /* USE_PINIO */
)) {
// Register control line state callback
serialSetCtrlLineStateCb(ports[0].port, cbCtrlLine, (void *)(intptr_t)(port1PinioDtr));
}
// XXX Review ESC pass through under refactored motor handling
#ifdef USE_PWM_OUTPUT
if (escSensorPassthrough) {
// pwmDisableMotors();
motorDisable();
delay(5);
unsigned motorsCount = getMotorCount();
for (unsigned i = 0; i < motorsCount; i++) {
const ioTag_t tag = motorConfig()->dev.ioTags[i];
if (tag) {
const timerHardware_t *timerHardware = timerGetByTag(tag);
if (timerHardware) {
IO_t io = IOGetByTag(tag);
IOInit(io, OWNER_MOTOR, 0);
IOConfigGPIO(io, IOCFG_OUT_PP);
if (timerHardware->output & TIMER_OUTPUT_INVERTED) {
IOLo(io);
} else {
IOHi(io);
}
}
}
}
}
#endif
serialPassthrough(ports[0].port, ports[1].port, NULL, NULL);
}
#endif
static void printAdjustmentRange(dumpFlags_t dumpMask, const adjustmentRange_t *adjustmentRanges, const adjustmentRange_t *defaultAdjustmentRanges, const char *headingStr)
{
const char *format = "adjrange %u 0 %u %u %u %u %u %u %u";
// print out adjustment ranges channel settings
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < MAX_ADJUSTMENT_RANGE_COUNT; i++) {
const adjustmentRange_t *ar = &adjustmentRanges[i];
bool equalsDefault = false;
if (defaultAdjustmentRanges) {
const adjustmentRange_t *arDefault = &defaultAdjustmentRanges[i];
equalsDefault = !memcmp(ar, arDefault, sizeof(*ar));
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
i,
arDefault->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(arDefault->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(arDefault->range.endStep),
arDefault->adjustmentConfig,
arDefault->auxSwitchChannelIndex,
arDefault->adjustmentCenter,
arDefault->adjustmentScale
);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format,
i,
ar->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(ar->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(ar->range.endStep),
ar->adjustmentConfig,
ar->auxSwitchChannelIndex,
ar->adjustmentCenter,
ar->adjustmentScale
);
}
}
static void cliAdjustmentRange(const char *cmdName, char *cmdline)
{
const char *format = "adjrange %u 0 %u %u %u %u %u %u %u";
int i, val = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printAdjustmentRange(DUMP_MASTER, adjustmentRanges(0), NULL, NULL);
} else {
ptr = cmdline;
i = atoi(ptr++);
if (i < MAX_ADJUSTMENT_RANGE_COUNT) {
adjustmentRange_t *ar = adjustmentRangesMutable(i);
uint8_t validArgumentCount = 0;
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
// Was: slot
// Keeping the parameter to retain backwards compatibility for the command format.
validArgumentCount++;
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
ar->auxChannelIndex = val;
validArgumentCount++;
}
}
ptr = processChannelRangeArgs(ptr, &ar->range, &validArgumentCount);
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < ADJUSTMENT_FUNCTION_COUNT) {
ar->adjustmentConfig = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
ar->auxSwitchChannelIndex = val;
validArgumentCount++;
}
}
if (validArgumentCount != 6) {
memset(ar, 0, sizeof(adjustmentRange_t));
cliShowInvalidArgumentCountError(cmdName);
return;
}
// Optional arguments
ar->adjustmentCenter = 0;
ar->adjustmentScale = 0;
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
ar->adjustmentCenter = val;
validArgumentCount++;
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
ar->adjustmentScale = val;
validArgumentCount++;
}
activeAdjustmentRangeReset();
cliDumpPrintLinef(0, false, format,
i,
ar->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(ar->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(ar->range.endStep),
ar->adjustmentConfig,
ar->auxSwitchChannelIndex,
ar->adjustmentCenter,
ar->adjustmentScale
);
} else {
cliShowArgumentRangeError(cmdName, "INDEX", 0, MAX_ADJUSTMENT_RANGE_COUNT - 1);
}
}
}
#ifndef USE_QUAD_MIXER_ONLY
static void printMotorMix(dumpFlags_t dumpMask, const motorMixer_t *customMotorMixer, const motorMixer_t *defaultCustomMotorMixer, const char *headingStr)
{
const char *format = "mmix %d %s %s %s %s";
char buf0[FTOA_BUFFER_LENGTH];
char buf1[FTOA_BUFFER_LENGTH];
char buf2[FTOA_BUFFER_LENGTH];
char buf3[FTOA_BUFFER_LENGTH];
for (uint32_t i = 0; i < MAX_SUPPORTED_MOTORS; i++) {
if (customMotorMixer[i].throttle == 0.0f)
break;
const float thr = customMotorMixer[i].throttle;
const float roll = customMotorMixer[i].roll;
const float pitch = customMotorMixer[i].pitch;
const float yaw = customMotorMixer[i].yaw;
bool equalsDefault = false;
if (defaultCustomMotorMixer) {
const float thrDefault = defaultCustomMotorMixer[i].throttle;
const float rollDefault = defaultCustomMotorMixer[i].roll;
const float pitchDefault = defaultCustomMotorMixer[i].pitch;
const float yawDefault = defaultCustomMotorMixer[i].yaw;
const bool equalsDefault = thr == thrDefault && roll == rollDefault && pitch == pitchDefault && yaw == yawDefault;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
i,
ftoa(thrDefault, buf0),
ftoa(rollDefault, buf1),
ftoa(pitchDefault, buf2),
ftoa(yawDefault, buf3));
}
cliDumpPrintLinef(dumpMask, equalsDefault, format,
i,
ftoa(thr, buf0),
ftoa(roll, buf1),
ftoa(pitch, buf2),
ftoa(yaw, buf3));
}
}
#endif // USE_QUAD_MIXER_ONLY
static void cliMotorMix(const char *cmdName, char *cmdline)
{
#ifdef USE_QUAD_MIXER_ONLY
UNUSED(cmdline);
#else
int check = 0;
uint8_t len;
const char *ptr;
if (isEmpty(cmdline)) {
printMotorMix(DUMP_MASTER, customMotorMixer(0), NULL, NULL);
} else if (strncasecmp(cmdline, "reset", 5) == 0) {
// erase custom mixer
for (uint32_t i = 0; i < MAX_SUPPORTED_MOTORS; i++) {
customMotorMixerMutable(i)->throttle = 0.0f;
}
} else if (strncasecmp(cmdline, "load", 4) == 0) {
ptr = nextArg(cmdline);
if (ptr) {
len = strlen(ptr);
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL) {
cliPrintErrorLinef(cmdName, "INVALID NAME");
break;
}
if (strncasecmp(ptr, mixerNames[i], len) == 0) {
mixerLoadMix(i, customMotorMixerMutable(0));
cliPrintLinef("Loaded %s", mixerNames[i]);
cliMotorMix(cmdName, "");
break;
}
}
}
} else {
ptr = cmdline;
uint32_t i = atoi(ptr); // get motor number
if (i < MAX_SUPPORTED_MOTORS) {
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->throttle = fastA2F(ptr);
check++;
}
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->roll = fastA2F(ptr);
check++;
}
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->pitch = fastA2F(ptr);
check++;
}
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->yaw = fastA2F(ptr);
check++;
}
if (check != 4) {
cliShowInvalidArgumentCountError(cmdName);
} else {
printMotorMix(DUMP_MASTER, customMotorMixer(0), NULL, NULL);
}
} else {
cliShowArgumentRangeError(cmdName, "INDEX", 0, MAX_SUPPORTED_MOTORS - 1);
}
}
#endif
}
static void printRxRange(dumpFlags_t dumpMask, const rxChannelRangeConfig_t *channelRangeConfigs, const rxChannelRangeConfig_t *defaultChannelRangeConfigs, const char *headingStr)
{
const char *format = "rxrange %u %u %u";
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < NON_AUX_CHANNEL_COUNT; i++) {
bool equalsDefault = false;
if (defaultChannelRangeConfigs) {
equalsDefault = !memcmp(&channelRangeConfigs[i], &defaultChannelRangeConfigs[i], sizeof(channelRangeConfigs[i]));
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
i,
defaultChannelRangeConfigs[i].min,
defaultChannelRangeConfigs[i].max
);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format,
i,
channelRangeConfigs[i].min,
channelRangeConfigs[i].max
);
}
}
static void cliRxRange(const char *cmdName, char *cmdline)
{
const char *format = "rxrange %u %u %u";
int i, validArgumentCount = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printRxRange(DUMP_MASTER, rxChannelRangeConfigs(0), NULL, NULL);
} else if (strcasecmp(cmdline, "reset") == 0) {
resetAllRxChannelRangeConfigurations(rxChannelRangeConfigsMutable(0));
} else {
ptr = cmdline;
i = atoi(ptr);
if (i >= 0 && i < NON_AUX_CHANNEL_COUNT) {
int rangeMin = PWM_PULSE_MIN, rangeMax = PWM_PULSE_MAX;
ptr = nextArg(ptr);
if (ptr) {
rangeMin = atoi(ptr);
validArgumentCount++;
}
ptr = nextArg(ptr);
if (ptr) {
rangeMax = atoi(ptr);
validArgumentCount++;
}
if (validArgumentCount != 2) {
cliShowInvalidArgumentCountError(cmdName);
} else if (rangeMin < PWM_PULSE_MIN || rangeMin > PWM_PULSE_MAX || rangeMax < PWM_PULSE_MIN || rangeMax > PWM_PULSE_MAX) {
cliShowArgumentRangeError(cmdName, "range min/max", PWM_PULSE_MIN, PWM_PULSE_MAX);
} else {
rxChannelRangeConfig_t *channelRangeConfig = rxChannelRangeConfigsMutable(i);
channelRangeConfig->min = rangeMin;
channelRangeConfig->max = rangeMax;
cliDumpPrintLinef(0, false, format,
i,
channelRangeConfig->min,
channelRangeConfig->max
);
}
} else {
cliShowArgumentRangeError(cmdName, "CHANNEL", 0, NON_AUX_CHANNEL_COUNT - 1);
}
}
}
#ifdef USE_LED_STRIP_STATUS_MODE
static void printLed(dumpFlags_t dumpMask, const ledConfig_t *ledConfigs, const ledConfig_t *defaultLedConfigs, const char *headingStr)
{
const char *format = "led %u %s";
char ledConfigBuffer[20];
char ledConfigDefaultBuffer[20];
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < LED_MAX_STRIP_LENGTH; i++) {
ledConfig_t ledConfig = ledConfigs[i];
generateLedConfig(&ledConfig, ledConfigBuffer, sizeof(ledConfigBuffer));
bool equalsDefault = false;
if (defaultLedConfigs) {
ledConfig_t ledConfigDefault = defaultLedConfigs[i];
equalsDefault = ledConfig == ledConfigDefault;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
generateLedConfig(&ledConfigDefault, ledConfigDefaultBuffer, sizeof(ledConfigDefaultBuffer));
cliDefaultPrintLinef(dumpMask, equalsDefault, format, i, ledConfigDefaultBuffer);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format, i, ledConfigBuffer);
}
}
static void cliLed(const char *cmdName, char *cmdline)
{
const char *format = "led %u %s";
char ledConfigBuffer[20];
int i;
const char *ptr;
if (isEmpty(cmdline)) {
printLed(DUMP_MASTER, ledStripStatusModeConfig()->ledConfigs, NULL, NULL);
} else {
ptr = cmdline;
i = atoi(ptr);
if (i >= 0 && i < LED_MAX_STRIP_LENGTH) {
ptr = nextArg(cmdline);
if (parseLedStripConfig(i, ptr)) {
generateLedConfig((ledConfig_t *)&ledStripStatusModeConfig()->ledConfigs[i], ledConfigBuffer, sizeof(ledConfigBuffer));
cliDumpPrintLinef(0, false, format, i, ledConfigBuffer);
} else {
cliShowParseError(cmdName);
}
} else {
cliShowArgumentRangeError(cmdName, "INDEX", 0, LED_MAX_STRIP_LENGTH - 1);
}
}
}
static void printColor(dumpFlags_t dumpMask, const hsvColor_t *colors, const hsvColor_t *defaultColors, const char *headingStr)
{
const char *format = "color %u %d,%u,%u";
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < LED_CONFIGURABLE_COLOR_COUNT; i++) {
const hsvColor_t *color = &colors[i];
bool equalsDefault = false;
if (defaultColors) {
const hsvColor_t *colorDefault = &defaultColors[i];
equalsDefault = !memcmp(color, colorDefault, sizeof(*color));
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format, i,colorDefault->h, colorDefault->s, colorDefault->v);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format, i, color->h, color->s, color->v);
}
}
static void cliColor(const char *cmdName, char *cmdline)
{
const char *format = "color %u %d,%u,%u";
if (isEmpty(cmdline)) {
printColor(DUMP_MASTER, ledStripStatusModeConfig()->colors, NULL, NULL);
} else {
const char *ptr = cmdline;
const int i = atoi(ptr);
if (i < LED_CONFIGURABLE_COLOR_COUNT) {
ptr = nextArg(cmdline);
if (parseColor(i, ptr)) {
const hsvColor_t *color = &ledStripStatusModeConfig()->colors[i];
cliDumpPrintLinef(0, false, format, i, color->h, color->s, color->v);
} else {
cliShowParseError(cmdName);
}
} else {
cliShowArgumentRangeError(cmdName, "INDEX", 0, LED_CONFIGURABLE_COLOR_COUNT - 1);
}
}
}
static void printModeColor(dumpFlags_t dumpMask, const ledStripStatusModeConfig_t *ledStripStatusModeConfig, const ledStripStatusModeConfig_t *defaultLedStripConfig, const char *headingStr)
{
const char *format = "mode_color %u %u %u";
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < LED_MODE_COUNT; i++) {
for (uint32_t j = 0; j < LED_DIRECTION_COUNT; j++) {
int colorIndex = ledStripStatusModeConfig->modeColors[i].color[j];
bool equalsDefault = false;
if (defaultLedStripConfig) {
int colorIndexDefault = defaultLedStripConfig->modeColors[i].color[j];
equalsDefault = colorIndex == colorIndexDefault;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format, i, j, colorIndexDefault);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format, i, j, colorIndex);
}
}
for (uint32_t j = 0; j < LED_SPECIAL_COLOR_COUNT; j++) {
const int colorIndex = ledStripStatusModeConfig->specialColors.color[j];
bool equalsDefault = false;
if (defaultLedStripConfig) {
const int colorIndexDefault = defaultLedStripConfig->specialColors.color[j];
equalsDefault = colorIndex == colorIndexDefault;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format, LED_SPECIAL, j, colorIndexDefault);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format, LED_SPECIAL, j, colorIndex);
}
const int ledStripAuxChannel = ledStripStatusModeConfig->ledstrip_aux_channel;
bool equalsDefault = false;
if (defaultLedStripConfig) {
const int ledStripAuxChannelDefault = defaultLedStripConfig->ledstrip_aux_channel;
equalsDefault = ledStripAuxChannel == ledStripAuxChannelDefault;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format, LED_AUX_CHANNEL, 0, ledStripAuxChannelDefault);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format, LED_AUX_CHANNEL, 0, ledStripAuxChannel);
}
static void cliModeColor(const char *cmdName, char *cmdline)
{
if (isEmpty(cmdline)) {
printModeColor(DUMP_MASTER, ledStripStatusModeConfig(), NULL, NULL);
} else {
enum {MODE = 0, FUNCTION, COLOR, ARGS_COUNT};
int args[ARGS_COUNT];
int argNo = 0;
char *saveptr;
const char* ptr = strtok_r(cmdline, " ", &saveptr);
while (ptr && argNo < ARGS_COUNT) {
args[argNo++] = atoi(ptr);
ptr = strtok_r(NULL, " ", &saveptr);
}
if (ptr != NULL || argNo != ARGS_COUNT) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
int modeIdx = args[MODE];
int funIdx = args[FUNCTION];
int color = args[COLOR];
if (!setModeColor(modeIdx, funIdx, color)) {
cliShowParseError(cmdName);
return;
}
// values are validated
cliPrintLinef("mode_color %u %u %u", modeIdx, funIdx, color);
}
}
#endif
#ifdef USE_SERVOS
static void printServo(dumpFlags_t dumpMask, const servoParam_t *servoParams, const servoParam_t *defaultServoParams, const char *headingStr)
{
// print out servo settings
const char *format = "servo %u %d %d %d %d %d";
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
const servoParam_t *servoConf = &servoParams[i];
bool equalsDefault = false;
if (defaultServoParams) {
const servoParam_t *defaultServoConf = &defaultServoParams[i];
equalsDefault = !memcmp(servoConf, defaultServoConf, sizeof(*servoConf));
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
i,
defaultServoConf->min,
defaultServoConf->max,
defaultServoConf->middle,
defaultServoConf->rate,
defaultServoConf->forwardFromChannel
);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format,
i,
servoConf->min,
servoConf->max,
servoConf->middle,
servoConf->rate,
servoConf->forwardFromChannel
);
}
// print servo directions
for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
const char *format = "smix reverse %d %d r";
const servoParam_t *servoConf = &servoParams[i];
const servoParam_t *servoConfDefault = &defaultServoParams[i];
if (defaultServoParams) {
bool equalsDefault = servoConf->reversedSources == servoConfDefault->reversedSources;
for (uint32_t channel = 0; channel < INPUT_SOURCE_COUNT; channel++) {
equalsDefault = ~(servoConf->reversedSources ^ servoConfDefault->reversedSources) & (1 << channel);
if (servoConfDefault->reversedSources & (1 << channel)) {
cliDefaultPrintLinef(dumpMask, equalsDefault, format, i , channel);
}
if (servoConf->reversedSources & (1 << channel)) {
cliDumpPrintLinef(dumpMask, equalsDefault, format, i , channel);
}
}
} else {
for (uint32_t channel = 0; channel < INPUT_SOURCE_COUNT; channel++) {
if (servoConf->reversedSources & (1 << channel)) {
cliDumpPrintLinef(dumpMask, true, format, i , channel);
}
}
}
}
}
static void cliServo(const char *cmdName, char *cmdline)
{
const char *format = "servo %u %d %d %d %d %d";
enum { SERVO_ARGUMENT_COUNT = 6 };
int16_t arguments[SERVO_ARGUMENT_COUNT];
servoParam_t *servo;
int i;
char *ptr;
if (isEmpty(cmdline)) {
printServo(DUMP_MASTER, servoParams(0), NULL, NULL);
} else {
int validArgumentCount = 0;
ptr = cmdline;
// Command line is integers (possibly negative) separated by spaces, no other characters allowed.
// If command line doesn't fit the format, don't modify the config
while (*ptr) {
if (*ptr == '-' || (*ptr >= '0' && *ptr <= '9')) {
if (validArgumentCount >= SERVO_ARGUMENT_COUNT) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
arguments[validArgumentCount++] = atoi(ptr);
do {
ptr++;
} while (*ptr >= '0' && *ptr <= '9');
} else if (*ptr == ' ') {
ptr++;
} else {
cliShowParseError(cmdName);
return;
}
}
enum {INDEX = 0, MIN, MAX, MIDDLE, RATE, FORWARD};
i = arguments[INDEX];
// Check we got the right number of args and the servo index is correct (don't validate the other values)
if (validArgumentCount != SERVO_ARGUMENT_COUNT || i < 0 || i >= MAX_SUPPORTED_SERVOS) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
servo = servoParamsMutable(i);
if (
arguments[MIN] < PWM_PULSE_MIN || arguments[MIN] > PWM_PULSE_MAX ||
arguments[MAX] < PWM_PULSE_MIN || arguments[MAX] > PWM_PULSE_MAX ||
arguments[MIDDLE] < arguments[MIN] || arguments[MIDDLE] > arguments[MAX] ||
arguments[MIN] > arguments[MAX] || arguments[MAX] < arguments[MIN] ||
arguments[RATE] < -100 || arguments[RATE] > 100 ||
arguments[FORWARD] >= MAX_SUPPORTED_RC_CHANNEL_COUNT
) {
cliShowArgumentRangeError(cmdName, NULL, 0, 0);
return;
}
servo->min = arguments[MIN];
servo->max = arguments[MAX];
servo->middle = arguments[MIDDLE];
servo->rate = arguments[RATE];
servo->forwardFromChannel = arguments[FORWARD];
cliDumpPrintLinef(0, false, format,
i,
servo->min,
servo->max,
servo->middle,
servo->rate,
servo->forwardFromChannel
);
}
}
#endif
#ifdef USE_SERVOS
static void printServoMix(dumpFlags_t dumpMask, const servoMixer_t *customServoMixers, const servoMixer_t *defaultCustomServoMixers, const char *headingStr)
{
const char *format = "smix %d %d %d %d %d %d %d %d";
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; i < MAX_SERVO_RULES; i++) {
const servoMixer_t customServoMixer = customServoMixers[i];
if (customServoMixer.rate == 0) {
break;
}
bool equalsDefault = false;
if (defaultCustomServoMixers) {
servoMixer_t customServoMixerDefault = defaultCustomServoMixers[i];
equalsDefault = !memcmp(&customServoMixer, &customServoMixerDefault, sizeof(customServoMixer));
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
i,
customServoMixerDefault.targetChannel,
customServoMixerDefault.inputSource,
customServoMixerDefault.rate,
customServoMixerDefault.speed,
customServoMixerDefault.min,
customServoMixerDefault.max,
customServoMixerDefault.box
);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format,
i,
customServoMixer.targetChannel,
customServoMixer.inputSource,
customServoMixer.rate,
customServoMixer.speed,
customServoMixer.min,
customServoMixer.max,
customServoMixer.box
);
}
}
static void cliServoMix(const char *cmdName, char *cmdline)
{
int args[8], check = 0;
int len = strlen(cmdline);
if (len == 0) {
printServoMix(DUMP_MASTER, customServoMixers(0), NULL, NULL);
} else if (strncasecmp(cmdline, "reset", 5) == 0) {
// erase custom mixer
memset(customServoMixers_array(), 0, sizeof(*customServoMixers_array()));
for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servoParamsMutable(i)->reversedSources = 0;
}
} else if (strncasecmp(cmdline, "load", 4) == 0) {
const char *ptr = nextArg(cmdline);
if (ptr) {
len = strlen(ptr);
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL) {
cliPrintErrorLinef(cmdName, "INVALID NAME");
break;
}
if (strncasecmp(ptr, mixerNames[i], len) == 0) {
servoMixerLoadMix(i);
cliPrintLinef("Loaded %s", mixerNames[i]);
cliServoMix(cmdName, "");
break;
}
}
}
} else if (strncasecmp(cmdline, "reverse", 7) == 0) {
enum {SERVO = 0, INPUT, REVERSE, ARGS_COUNT};
char *ptr = strchr(cmdline, ' ');
if (ptr == NULL) {
cliPrintf("s");
for (uint32_t inputSource = 0; inputSource < INPUT_SOURCE_COUNT; inputSource++)
cliPrintf("\ti%d", inputSource);
cliPrintLinefeed();
for (uint32_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) {
cliPrintf("%d", servoIndex);
for (uint32_t inputSource = 0; inputSource < INPUT_SOURCE_COUNT; inputSource++) {
cliPrintf("\t%s ", (servoParams(servoIndex)->reversedSources & (1 << inputSource)) ? "r" : "n");
}
cliPrintLinefeed();
}
return;
}
char *saveptr;
ptr = strtok_r(ptr, " ", &saveptr);
while (ptr != NULL && check < ARGS_COUNT - 1) {
args[check++] = atoi(ptr);
ptr = strtok_r(NULL, " ", &saveptr);
}
if (ptr == NULL || check != ARGS_COUNT - 1) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
if (args[SERVO] >= 0 && args[SERVO] < MAX_SUPPORTED_SERVOS
&& args[INPUT] >= 0 && args[INPUT] < INPUT_SOURCE_COUNT
&& (*ptr == 'r' || *ptr == 'n')) {
if (*ptr == 'r') {
servoParamsMutable(args[SERVO])->reversedSources |= 1 << args[INPUT];
} else {
servoParamsMutable(args[SERVO])->reversedSources &= ~(1 << args[INPUT]);
}
} else {
cliShowArgumentRangeError(cmdName, "servo", 0, MAX_SUPPORTED_SERVOS);
return;
}
cliServoMix(cmdName, "reverse");
} else {
enum {RULE = 0, TARGET, INPUT, RATE, SPEED, MIN, MAX, BOX, ARGS_COUNT};
char *saveptr;
char *ptr = strtok_r(cmdline, " ", &saveptr);
while (ptr != NULL && check < ARGS_COUNT) {
args[check++] = atoi(ptr);
ptr = strtok_r(NULL, " ", &saveptr);
}
if (ptr != NULL || check != ARGS_COUNT) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
int32_t i = args[RULE];
if (i >= 0 && i < MAX_SERVO_RULES &&
args[TARGET] >= 0 && args[TARGET] < MAX_SUPPORTED_SERVOS &&
args[INPUT] >= 0 && args[INPUT] < INPUT_SOURCE_COUNT &&
args[RATE] >= -100 && args[RATE] <= 100 &&
args[SPEED] >= 0 && args[SPEED] <= MAX_SERVO_SPEED &&
args[MIN] >= 0 && args[MIN] <= 100 &&
args[MAX] >= 0 && args[MAX] <= 100 && args[MIN] < args[MAX] &&
args[BOX] >= 0 && args[BOX] <= MAX_SERVO_BOXES) {
customServoMixersMutable(i)->targetChannel = args[TARGET];
customServoMixersMutable(i)->inputSource = args[INPUT];
customServoMixersMutable(i)->rate = args[RATE];
customServoMixersMutable(i)->speed = args[SPEED];
customServoMixersMutable(i)->min = args[MIN];
customServoMixersMutable(i)->max = args[MAX];
customServoMixersMutable(i)->box = args[BOX];
cliServoMix(cmdName, "");
} else {
cliShowArgumentRangeError(cmdName, NULL, 0, 0);
}
}
}
#endif
#ifdef USE_SDCARD
static void cliWriteBytes(const uint8_t *buffer, int count)
{
while (count > 0) {
cliWrite(*buffer);
buffer++;
count--;
}
}
static void cliSdInfo(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
cliPrint("SD card: ");
if (sdcardConfig()->mode == SDCARD_MODE_NONE) {
cliPrintLine("Not configured");
return;
}
if (!sdcard_isInserted()) {
cliPrintLine("None inserted");
return;
}
if (!sdcard_isFunctional() || !sdcard_isInitialized()) {
cliPrintLine("Startup failed");
return;
}
const sdcardMetadata_t *metadata = sdcard_getMetadata();
cliPrintf("Manufacturer 0x%x, %ukB, %02d/%04d, v%d.%d, '",
metadata->manufacturerID,
metadata->numBlocks / 2, /* One block is half a kB */
metadata->productionMonth,
metadata->productionYear,
metadata->productRevisionMajor,
metadata->productRevisionMinor
);
cliWriteBytes((uint8_t*)metadata->productName, sizeof(metadata->productName));
cliPrint("'\r\n" "Filesystem: ");
switch (afatfs_getFilesystemState()) {
case AFATFS_FILESYSTEM_STATE_READY:
cliPrint("Ready");
break;
case AFATFS_FILESYSTEM_STATE_INITIALIZATION:
cliPrint("Initializing");
break;
case AFATFS_FILESYSTEM_STATE_UNKNOWN:
case AFATFS_FILESYSTEM_STATE_FATAL:
cliPrint("Fatal");
switch (afatfs_getLastError()) {
case AFATFS_ERROR_BAD_MBR:
cliPrint(" - no FAT MBR partitions");
break;
case AFATFS_ERROR_BAD_FILESYSTEM_HEADER:
cliPrint(" - bad FAT header");
break;
case AFATFS_ERROR_GENERIC:
case AFATFS_ERROR_NONE:
; // Nothing more detailed to print
break;
}
break;
}
cliPrintLinefeed();
}
#endif
#ifdef USE_FLASH_CHIP
static void cliFlashInfo(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
const flashGeometry_t *layout = flashGetGeometry();
cliPrintLinef("Flash sectors=%u, sectorSize=%u, pagesPerSector=%u, pageSize=%u, totalSize=%u",
layout->sectors, layout->sectorSize, layout->pagesPerSector, layout->pageSize, layout->totalSize);
for (uint8_t index = 0; index < FLASH_MAX_PARTITIONS; index++) {
const flashPartition_t *partition;
if (index == 0) {
cliPrintLine("Paritions:");
}
partition = flashPartitionFindByIndex(index);
if (!partition) {
break;
}
cliPrintLinef(" %d: %s %u %u", index, flashPartitionGetTypeName(partition->type), partition->startSector, partition->endSector);
}
#ifdef USE_FLASHFS
const flashPartition_t *flashPartition = flashPartitionFindByType(FLASH_PARTITION_TYPE_FLASHFS);
cliPrintLinef("FlashFS size=%u, usedSize=%u",
FLASH_PARTITION_SECTOR_COUNT(flashPartition) * layout->sectorSize,
flashfsGetOffset()
);
#endif
}
static void cliFlashErase(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
if (!flashfsIsSupported()) {
return;
}
#ifndef MINIMAL_CLI
uint32_t i = 0;
cliPrintLine("Erasing, please wait ... ");
#else
cliPrintLine("Erasing,");
#endif
cliWriterFlush();
flashfsEraseCompletely();
while (!flashfsIsReady()) {
#ifndef MINIMAL_CLI
cliPrintf(".");
if (i++ > 120) {
i=0;
cliPrintLinefeed();
}
cliWriterFlush();
#endif
delay(100);
}
beeper(BEEPER_BLACKBOX_ERASE);
cliPrintLinefeed();
cliPrintLine("Done.");
}
#ifdef USE_FLASH_TOOLS
static void cliFlashVerify(const char *cmdName, char *cmdline)
{
UNUSED(cmdline);
cliPrintLine("Verifying");
if (flashfsVerifyEntireFlash()) {
cliPrintLine("Success");
} else {
cliPrintErrorLinef(cmdName, "Failed");
}
}
static void cliFlashWrite(const char *cmdName, char *cmdline)
{
const uint32_t address = atoi(cmdline);
const char *text = strchr(cmdline, ' ');
if (!text) {
cliShowInvalidArgumentCountError(cmdName);
} else {
flashfsSeekAbs(address);
flashfsWrite((uint8_t*)text, strlen(text), true);
flashfsFlushSync();
cliPrintLinef("Wrote %u bytes at %u.", strlen(text), address);
}
}
static void cliFlashRead(const char *cmdName, char *cmdline)
{
uint32_t address = atoi(cmdline);
const char *nextArg = strchr(cmdline, ' ');
if (!nextArg) {
cliShowInvalidArgumentCountError(cmdName);
} else {
uint32_t length = atoi(nextArg);
cliPrintLinef("Reading %u bytes at %u:", length, address);
uint8_t buffer[32];
while (length > 0) {
int bytesRead = flashfsReadAbs(address, buffer, length < sizeof(buffer) ? length : sizeof(buffer));
for (int i = 0; i < bytesRead; i++) {
cliWrite(buffer[i]);
}
length -= bytesRead;
address += bytesRead;
if (bytesRead == 0) {
//Assume we reached the end of the volume or something fatal happened
break;
}
}
cliPrintLinefeed();
}
}
#endif
#endif
#ifdef USE_VTX_CONTROL
static void printVtx(dumpFlags_t dumpMask, const vtxConfig_t *vtxConfig, const vtxConfig_t *vtxConfigDefault, const char *headingStr)
{
// print out vtx channel settings
const char *format = "vtx %u %u %u %u %u %u %u";
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
bool equalsDefault = false;
for (uint32_t i = 0; i < MAX_CHANNEL_ACTIVATION_CONDITION_COUNT; i++) {
const vtxChannelActivationCondition_t *cac = &vtxConfig->vtxChannelActivationConditions[i];
if (vtxConfigDefault) {
const vtxChannelActivationCondition_t *cacDefault = &vtxConfigDefault->vtxChannelActivationConditions[i];
equalsDefault = !memcmp(cac, cacDefault, sizeof(*cac));
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, format,
i,
cacDefault->auxChannelIndex,
cacDefault->band,
cacDefault->channel,
cacDefault->power,
MODE_STEP_TO_CHANNEL_VALUE(cacDefault->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(cacDefault->range.endStep)
);
}
cliDumpPrintLinef(dumpMask, equalsDefault, format,
i,
cac->auxChannelIndex,
cac->band,
cac->channel,
cac->power,
MODE_STEP_TO_CHANNEL_VALUE(cac->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(cac->range.endStep)
);
}
}
static void cliVtx(const char *cmdName, char *cmdline)
{
const char *format = "vtx %u %u %u %u %u %u %u";
int i, val = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printVtx(DUMP_MASTER, vtxConfig(), NULL, NULL);
} else {
#ifdef USE_VTX_TABLE
const uint8_t maxBandIndex = vtxTableConfig()->bands;
const uint8_t maxChannelIndex = vtxTableConfig()->channels;
const uint8_t maxPowerIndex = vtxTableConfig()->powerLevels;
#else
const uint8_t maxBandIndex = VTX_TABLE_MAX_BANDS;
const uint8_t maxChannelIndex = VTX_TABLE_MAX_CHANNELS;
const uint8_t maxPowerIndex = VTX_TABLE_MAX_POWER_LEVELS;
#endif
ptr = cmdline;
i = atoi(ptr++);
if (i < MAX_CHANNEL_ACTIVATION_CONDITION_COUNT) {
vtxChannelActivationCondition_t *cac = &vtxConfigMutable()->vtxChannelActivationConditions[i];
uint8_t validArgumentCount = 0;
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
cac->auxChannelIndex = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val <= maxBandIndex) {
cac->band = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val <= maxChannelIndex) {
cac->channel = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val <= maxPowerIndex) {
cac->power= val;
validArgumentCount++;
}
}
ptr = processChannelRangeArgs(ptr, &cac->range, &validArgumentCount);
if (validArgumentCount != 6) {
memset(cac, 0, sizeof(vtxChannelActivationCondition_t));
cliShowInvalidArgumentCountError(cmdName);
} else {
cliDumpPrintLinef(0, false, format,
i,
cac->auxChannelIndex,
cac->band,
cac->channel,
cac->power,
MODE_STEP_TO_CHANNEL_VALUE(cac->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(cac->range.endStep)
);
}
} else {
cliShowArgumentRangeError(cmdName, "INDEX", 0, MAX_CHANNEL_ACTIVATION_CONDITION_COUNT - 1);
}
}
}
#endif // VTX_CONTROL
#ifdef USE_VTX_TABLE
static char *formatVtxTableBandFrequency(const bool isFactory, const uint16_t *frequency, int channels)
{
static char freqbuf[5 * VTX_TABLE_MAX_CHANNELS + 8 + 1];
char freqtmp[5 + 1];
freqbuf[0] = 0;
strcat(freqbuf, isFactory ? " FACTORY" : " CUSTOM ");
for (int channel = 0; channel < channels; channel++) {
tfp_sprintf(freqtmp, " %4d", frequency[channel]);
strcat(freqbuf, freqtmp);
}
return freqbuf;
}
static const char *printVtxTableBand(dumpFlags_t dumpMask, int band, const vtxTableConfig_t *currentConfig, const vtxTableConfig_t *defaultConfig, const char *headingStr)
{
char *fmt = "vtxtable band %d %s %c%s";
bool equalsDefault = false;
if (defaultConfig) {
equalsDefault = true;
if (strcasecmp(currentConfig->bandNames[band], defaultConfig->bandNames[band])) {
equalsDefault = false;
}
if (currentConfig->bandLetters[band] != defaultConfig->bandLetters[band]) {
equalsDefault = false;
}
for (int channel = 0; channel < VTX_TABLE_MAX_CHANNELS; channel++) {
if (currentConfig->frequency[band][channel] != defaultConfig->frequency[band][channel]) {
equalsDefault = false;
}
}
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
char *freqbuf = formatVtxTableBandFrequency(defaultConfig->isFactoryBand[band], defaultConfig->frequency[band], defaultConfig->channels);
cliDefaultPrintLinef(dumpMask, equalsDefault, fmt, band + 1, defaultConfig->bandNames[band], defaultConfig->bandLetters[band], freqbuf);
}
char *freqbuf = formatVtxTableBandFrequency(currentConfig->isFactoryBand[band], currentConfig->frequency[band], currentConfig->channels);
cliDumpPrintLinef(dumpMask, equalsDefault, fmt, band + 1, currentConfig->bandNames[band], currentConfig->bandLetters[band], freqbuf);
return headingStr;
}
static char *formatVtxTablePowerValues(const uint16_t *levels, int count)
{
// (max 4 digit + 1 space) per level
static char pwrbuf[5 * VTX_TABLE_MAX_POWER_LEVELS + 1];
char pwrtmp[5 + 1];
pwrbuf[0] = 0;
for (int pwrindex = 0; pwrindex < count; pwrindex++) {
tfp_sprintf(pwrtmp, " %d", levels[pwrindex]);
strcat(pwrbuf, pwrtmp);
}
return pwrbuf;
}
static const char *printVtxTablePowerValues(dumpFlags_t dumpMask, const vtxTableConfig_t *currentConfig, const vtxTableConfig_t *defaultConfig, const char *headingStr)
{
char *fmt = "vtxtable powervalues%s";
bool equalsDefault = false;
if (defaultConfig) {
equalsDefault = true;
for (int pwrindex = 0; pwrindex < VTX_TABLE_MAX_POWER_LEVELS; pwrindex++) {
if (defaultConfig->powerValues[pwrindex] != currentConfig->powerValues[pwrindex]) {
equalsDefault = false;
}
}
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
char *pwrbuf = formatVtxTablePowerValues(defaultConfig->powerValues, VTX_TABLE_MAX_POWER_LEVELS);
cliDefaultPrintLinef(dumpMask, equalsDefault, fmt, pwrbuf);
}
char *pwrbuf = formatVtxTablePowerValues(currentConfig->powerValues, currentConfig->powerLevels);
cliDumpPrintLinef(dumpMask, equalsDefault, fmt, pwrbuf);
return headingStr;
}
static char *formatVtxTablePowerLabels(const char labels[VTX_TABLE_MAX_POWER_LEVELS][VTX_TABLE_POWER_LABEL_LENGTH + 1], int count)
{
static char pwrbuf[(VTX_TABLE_POWER_LABEL_LENGTH + 1) * VTX_TABLE_MAX_POWER_LEVELS + 1];
char pwrtmp[(VTX_TABLE_POWER_LABEL_LENGTH + 1) + 1];
pwrbuf[0] = 0;
for (int pwrindex = 0; pwrindex < count; pwrindex++) {
strcat(pwrbuf, " ");
strcpy(pwrtmp, labels[pwrindex]);
// trim trailing space
char *sp;
while ((sp = strchr(pwrtmp, ' '))) {
*sp = 0;
}
strcat(pwrbuf, pwrtmp);
}
return pwrbuf;
}
static const char *printVtxTablePowerLabels(dumpFlags_t dumpMask, const vtxTableConfig_t *currentConfig, const vtxTableConfig_t *defaultConfig, const char *headingStr)
{
char *fmt = "vtxtable powerlabels%s";
bool equalsDefault = false;
if (defaultConfig) {
equalsDefault = true;
for (int pwrindex = 0; pwrindex < VTX_TABLE_MAX_POWER_LEVELS; pwrindex++) {
if (strcasecmp(defaultConfig->powerLabels[pwrindex], currentConfig->powerLabels[pwrindex])) {
equalsDefault = false;
}
}
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
char *pwrbuf = formatVtxTablePowerLabels(defaultConfig->powerLabels, VTX_TABLE_MAX_POWER_LEVELS);
cliDefaultPrintLinef(dumpMask, equalsDefault, fmt, pwrbuf);
}
char *pwrbuf = formatVtxTablePowerLabels(currentConfig->powerLabels, currentConfig->powerLevels);
cliDumpPrintLinef(dumpMask, equalsDefault, fmt, pwrbuf);
return headingStr;
}
static void printVtxTable(dumpFlags_t dumpMask, const vtxTableConfig_t *currentConfig, const vtxTableConfig_t *defaultConfig, const char *headingStr)
{
bool equalsDefault;
char *fmt;
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
// bands
equalsDefault = false;
fmt = "vtxtable bands %d";
if (defaultConfig) {
equalsDefault = (defaultConfig->bands == currentConfig->bands);
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, fmt, defaultConfig->bands);
}
cliDumpPrintLinef(dumpMask, equalsDefault, fmt, currentConfig->bands);
// channels
equalsDefault = false;
fmt = "vtxtable channels %d";
if (defaultConfig) {
equalsDefault = (defaultConfig->channels == currentConfig->channels);
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, fmt, defaultConfig->channels);
}
cliDumpPrintLinef(dumpMask, equalsDefault, fmt, currentConfig->channels);
// band
for (int band = 0; band < currentConfig->bands; band++) {
headingStr = printVtxTableBand(dumpMask, band, currentConfig, defaultConfig, headingStr);
}
// powerlevels
equalsDefault = false;
fmt = "vtxtable powerlevels %d";
if (defaultConfig) {
equalsDefault = (defaultConfig->powerLevels == currentConfig->powerLevels);
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, equalsDefault, fmt, defaultConfig->powerLevels);
}
cliDumpPrintLinef(dumpMask, equalsDefault, fmt, currentConfig->powerLevels);
// powervalues
// powerlabels
headingStr = printVtxTablePowerValues(dumpMask, currentConfig, defaultConfig, headingStr);
headingStr = printVtxTablePowerLabels(dumpMask, currentConfig, defaultConfig, headingStr);
}
static void cliVtxTable(const char *cmdName, char *cmdline)
{
char *tok;
char *saveptr;
// Band number or nothing
tok = strtok_r(cmdline, " ", &saveptr);
if (!tok) {
printVtxTable(DUMP_MASTER | HIDE_UNUSED, vtxTableConfigMutable(), NULL, NULL);
return;
}
if (strcasecmp(tok, "bands") == 0) {
tok = strtok_r(NULL, " ", &saveptr);
int bands = atoi(tok);
if (bands < 0 || bands > VTX_TABLE_MAX_BANDS) {
cliShowArgumentRangeError(cmdName, "BAND COUNT", 0, VTX_TABLE_MAX_BANDS);
return;
}
if (bands < vtxTableConfigMutable()->bands) {
for (int i = bands; i < vtxTableConfigMutable()->bands; i++) {
vtxTableConfigClearBand(vtxTableConfigMutable(), i);
}
}
vtxTableConfigMutable()->bands = bands;
} else if (strcasecmp(tok, "channels") == 0) {
tok = strtok_r(NULL, " ", &saveptr);
int channels = atoi(tok);
if (channels < 0 || channels > VTX_TABLE_MAX_CHANNELS) {
cliShowArgumentRangeError(cmdName, "CHANNEL COUNT", 0, VTX_TABLE_MAX_CHANNELS);
return;
}
if (channels < vtxTableConfigMutable()->channels) {
for (int i = 0; i < VTX_TABLE_MAX_BANDS; i++) {
vtxTableConfigClearChannels(vtxTableConfigMutable(), i, channels);
}
}
vtxTableConfigMutable()->channels = channels;
} else if (strcasecmp(tok, "powerlevels") == 0) {
// Number of power levels
tok = strtok_r(NULL, " ", &saveptr);
if (tok) {
int levels = atoi(tok);
if (levels < 0 || levels > VTX_TABLE_MAX_POWER_LEVELS) {
cliShowArgumentRangeError(cmdName, "POWER LEVEL COUNT", 0, VTX_TABLE_MAX_POWER_LEVELS);
} else {
if (levels < vtxTableConfigMutable()->powerLevels) {
vtxTableConfigClearPowerValues(vtxTableConfigMutable(), levels);
vtxTableConfigClearPowerLabels(vtxTableConfigMutable(), levels);
}
vtxTableConfigMutable()->powerLevels = levels;
}
} else {
// XXX Show current level count?
}
return;
} else if (strcasecmp(tok, "powervalues") == 0) {
// Power values
uint16_t power[VTX_TABLE_MAX_POWER_LEVELS];
int count;
int levels = vtxTableConfigMutable()->powerLevels;
memset(power, 0, sizeof(power));
for (count = 0; count < levels && (tok = strtok_r(NULL, " ", &saveptr)); count++) {
int value = atoi(tok);
power[count] = value;
}
// Check remaining tokens
if (count < levels) {
cliPrintErrorLinef(cmdName, "NOT ENOUGH VALUES (EXPECTED %d)", levels);
return;
} else if ((tok = strtok_r(NULL, " ", &saveptr))) {
cliPrintErrorLinef(cmdName, "TOO MANY VALUES (EXPECTED %d)", levels);
return;
}
for (int i = 0; i < VTX_TABLE_MAX_POWER_LEVELS; i++) {
vtxTableConfigMutable()->powerValues[i] = power[i];
}
} else if (strcasecmp(tok, "powerlabels") == 0) {
// Power labels
char label[VTX_TABLE_MAX_POWER_LEVELS][VTX_TABLE_POWER_LABEL_LENGTH + 1];
int levels = vtxTableConfigMutable()->powerLevels;
int count;
for (count = 0; count < levels && (tok = strtok_r(NULL, " ", &saveptr)); count++) {
strncpy(label[count], tok, VTX_TABLE_POWER_LABEL_LENGTH);
for (unsigned i = 0; i < strlen(label[count]); i++) {
label[count][i] = toupper(label[count][i]);
}
}
// Check remaining tokens
if (count < levels) {
cliPrintErrorLinef(cmdName, "NOT ENOUGH LABELS (EXPECTED %d)", levels);
return;
} else if ((tok = strtok_r(NULL, " ", &saveptr))) {
cliPrintErrorLinef(cmdName, "TOO MANY LABELS (EXPECTED %d)", levels);
return;
}
for (int i = 0; i < count; i++) {
vtxTableStrncpyWithPad(vtxTableConfigMutable()->powerLabels[i], label[i], VTX_TABLE_POWER_LABEL_LENGTH);
}
} else if (strcasecmp(tok, "band") == 0) {
int bands = vtxTableConfigMutable()->bands;
tok = strtok_r(NULL, " ", &saveptr);
if (!tok) {
return;
}
int band = atoi(tok);
--band;
if (band < 0 || band >= bands) {
cliShowArgumentRangeError(cmdName, "BAND NUMBER", 1, bands);
return;
}
// Band name
tok = strtok_r(NULL, " ", &saveptr);
if (!tok) {
return;
}
char bandname[VTX_TABLE_BAND_NAME_LENGTH + 1];
memset(bandname, 0, VTX_TABLE_BAND_NAME_LENGTH + 1);
strncpy(bandname, tok, VTX_TABLE_BAND_NAME_LENGTH);
for (unsigned i = 0; i < strlen(bandname); i++) {
bandname[i] = toupper(bandname[i]);
}
// Band letter
tok = strtok_r(NULL, " ", &saveptr);
if (!tok) {
return;
}
char bandletter = toupper(tok[0]);
uint16_t bandfreq[VTX_TABLE_MAX_CHANNELS];
int channel = 0;
int channels = vtxTableConfigMutable()->channels;
bool isFactory = false;
for (channel = 0; channel < channels && (tok = strtok_r(NULL, " ", &saveptr)); channel++) {
if (channel == 0 && !isdigit(tok[0])) {
channel -= 1;
if (strcasecmp(tok, "FACTORY") == 0) {
isFactory = true;
} else if (strcasecmp(tok, "CUSTOM") == 0) {
isFactory = false;
} else {
cliPrintErrorLinef(cmdName, "INVALID FACTORY FLAG %s (EXPECTED FACTORY OR CUSTOM)", tok);
return;
}
}
int freq = atoi(tok);
if (freq < 0) {
cliPrintErrorLinef(cmdName, "INVALID FREQUENCY %s", tok);
return;
}
bandfreq[channel] = freq;
}
if (channel < channels) {
cliPrintErrorLinef(cmdName, "NOT ENOUGH FREQUENCIES (EXPECTED %d)", channels);
return;
} else if ((tok = strtok_r(NULL, " ", &saveptr))) {
cliPrintErrorLinef(cmdName, "TOO MANY FREQUENCIES (EXPECTED %d)", channels);
return;
}
vtxTableStrncpyWithPad(vtxTableConfigMutable()->bandNames[band], bandname, VTX_TABLE_BAND_NAME_LENGTH);
vtxTableConfigMutable()->bandLetters[band] = bandletter;
for (int i = 0; i < channel; i++) {
vtxTableConfigMutable()->frequency[band][i] = bandfreq[i];
}
vtxTableConfigMutable()->isFactoryBand[band] = isFactory;
} else {
// Bad subcommand
cliPrintErrorLinef(cmdName, "INVALID SUBCOMMAND %s", tok);
}
}
static void cliVtxInfo(const char *cmdName, char *cmdline)
{
UNUSED(cmdline);
// Display the available power levels
uint16_t levels[VTX_TABLE_MAX_POWER_LEVELS];
uint16_t powers[VTX_TABLE_MAX_POWER_LEVELS];
vtxDevice_t *vtxDevice = vtxCommonDevice();
if (vtxDevice) {
uint8_t level_count = vtxCommonGetVTXPowerLevels(vtxDevice, levels, powers);
if (level_count) {
for (int i = 0; i < level_count; i++) {
cliPrintLinef("level %d dBm, power %d mW", levels[i], powers[i]);
}
} else {
cliPrintErrorLinef(cmdName, "NO POWER VALUES DEFINED");
}
} else {
cliPrintErrorLinef(cmdName, "NO VTX");
}
}
#endif // USE_VTX_TABLE
static void printName(dumpFlags_t dumpMask, const pilotConfig_t *pilotConfig)
{
const bool equalsDefault = strlen(pilotConfig->name) == 0;
cliDumpPrintLinef(dumpMask, equalsDefault, "\r\n# name: %s", equalsDefault ? emptyName : pilotConfig->name);
}
#if defined(USE_BOARD_INFO)
#define ERROR_MESSAGE "%s CANNOT BE CHANGED. CURRENT VALUE: '%s'"
static void printBoardName(dumpFlags_t dumpMask)
{
if (!(dumpMask & DO_DIFF) || strlen(getBoardName())) {
cliPrintLinef("board_name %s", getBoardName());
}
}
static void cliBoardName(const char *cmdName, char *cmdline)
{
const unsigned int len = strlen(cmdline);
const char *boardName = getBoardName();
if (len > 0 && strlen(boardName) != 0 && boardInformationIsSet() && (len != strlen(boardName) || strncmp(boardName, cmdline, len))) {
cliPrintErrorLinef(cmdName, ERROR_MESSAGE, "BOARD_NAME", boardName);
} else {
if (len > 0 && !configIsInCopy && setBoardName(cmdline)) {
boardInformationUpdated = true;
cliPrintHashLine("Set board_name.");
}
printBoardName(DUMP_ALL);
}
}
static void printManufacturerId(dumpFlags_t dumpMask)
{
if (!(dumpMask & DO_DIFF) || strlen(getManufacturerId())) {
cliPrintLinef("manufacturer_id %s", getManufacturerId());
}
}
static void cliManufacturerId(const char *cmdName, char *cmdline)
{
const unsigned int len = strlen(cmdline);
const char *manufacturerId = getManufacturerId();
if (len > 0 && boardInformationIsSet() && strlen(manufacturerId) != 0 && (len != strlen(manufacturerId) || strncmp(manufacturerId, cmdline, len))) {
cliPrintErrorLinef(cmdName, ERROR_MESSAGE, "MANUFACTURER_ID", manufacturerId);
} else {
if (len > 0 && !configIsInCopy && setManufacturerId(cmdline)) {
boardInformationUpdated = true;
cliPrintHashLine("Set manufacturer_id.");
}
printManufacturerId(DUMP_ALL);
}
}
#if defined(USE_SIGNATURE)
static void writeSignature(char *signatureStr, uint8_t *signature)
{
for (unsigned i = 0; i < SIGNATURE_LENGTH; i++) {
tfp_sprintf(&signatureStr[2 * i], "%02x", signature[i]);
}
}
static void cliSignature(const char *cmdName, char *cmdline)
{
const int len = strlen(cmdline);
uint8_t signature[SIGNATURE_LENGTH] = {0};
if (len > 0) {
if (len != 2 * SIGNATURE_LENGTH) {
cliPrintErrorLinef(cmdName, "INVALID LENGTH: %d (EXPECTED: %d)", len, 2 * SIGNATURE_LENGTH);
return;
}
#define BLOCK_SIZE 2
for (unsigned i = 0; i < SIGNATURE_LENGTH; i++) {
char temp[BLOCK_SIZE + 1];
strncpy(temp, &cmdline[i * BLOCK_SIZE], BLOCK_SIZE);
temp[BLOCK_SIZE] = '\0';
char *end;
unsigned result = strtoul(temp, &end, 16);
if (end == &temp[BLOCK_SIZE]) {
signature[i] = result;
} else {
cliPrintErrorLinef(cmdName, "INVALID CHARACTER FOUND: %c", end[0]);
return;
}
}
#undef BLOCK_SIZE
}
char signatureStr[SIGNATURE_LENGTH * 2 + 1] = {0};
if (len > 0 && signatureIsSet() && memcmp(signature, getSignature(), SIGNATURE_LENGTH)) {
writeSignature(signatureStr, getSignature());
cliPrintErrorLinef(cmdName, ERROR_MESSAGE, "SIGNATURE", signatureStr);
} else {
if (len > 0 && !configIsInCopy && setSignature(signature)) {
signatureUpdated = true;
writeSignature(signatureStr, getSignature());
cliPrintHashLine("Set signature.");
} else if (signatureUpdated || signatureIsSet()) {
writeSignature(signatureStr, getSignature());
}
cliPrintLinef("signature %s", signatureStr);
}
}
#endif
#undef ERROR_MESSAGE
#endif // USE_BOARD_INFO
static void cliMcuId(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
cliPrintLinef("mcu_id %08x%08x%08x", U_ID_0, U_ID_1, U_ID_2);
}
static void printFeature(dumpFlags_t dumpMask, const uint32_t mask, const uint32_t defaultMask, const char *headingStr)
{
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (uint32_t i = 0; featureNames[i]; i++) { // disabled features first
if (strcmp(featureNames[i], emptyString) != 0) { //Skip unused
const char *format = "feature -%s";
const bool equalsDefault = (~defaultMask | mask) & (1 << i);
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDefaultPrintLinef(dumpMask, (defaultMask | ~mask) & (1 << i), format, featureNames[i]);
cliDumpPrintLinef(dumpMask, equalsDefault, format, featureNames[i]);
}
}
for (uint32_t i = 0; featureNames[i]; i++) { // enabled features
if (strcmp(featureNames[i], emptyString) != 0) { //Skip unused
const char *format = "feature %s";
if (defaultMask & (1 << i)) {
cliDefaultPrintLinef(dumpMask, (~defaultMask | mask) & (1 << i), format, featureNames[i]);
}
if (mask & (1 << i)) {
const bool equalsDefault = (defaultMask | ~mask) & (1 << i);
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDumpPrintLinef(dumpMask, equalsDefault, format, featureNames[i]);
}
}
}
}
static void cliFeature(const char *cmdName, char *cmdline)
{
uint32_t len = strlen(cmdline);
const uint32_t mask = featureConfig()->enabledFeatures;
if (len == 0) {
cliPrint("Enabled: ");
for (uint32_t i = 0; ; i++) {
if (featureNames[i] == NULL) {
break;
}
if (mask & (1 << i)) {
cliPrintf("%s ", featureNames[i]);
}
}
cliPrintLinefeed();
} else if (strncasecmp(cmdline, "list", len) == 0) {
cliPrint("Available:");
for (uint32_t i = 0; ; i++) {
if (featureNames[i] == NULL)
break;
if (strcmp(featureNames[i], emptyString) != 0) //Skip unused
cliPrintf(" %s", featureNames[i]);
}
cliPrintLinefeed();
return;
} else {
uint32_t feature;
bool remove = false;
if (cmdline[0] == '-') {
// remove feature
remove = true;
cmdline++; // skip over -
len--;
}
for (uint32_t i = 0; ; i++) {
if (featureNames[i] == NULL) {
cliPrintErrorLinef(cmdName, "INVALID NAME");
break;
}
if (strncasecmp(cmdline, featureNames[i], len) == 0) {
feature = 1 << i;
#ifndef USE_GPS
if (feature & FEATURE_GPS) {
cliPrintLine("unavailable");
break;
}
#endif
#ifndef USE_RANGEFINDER
if (feature & FEATURE_RANGEFINDER) {
cliPrintLine("unavailable");
break;
}
#endif
if (remove) {
featureConfigClear(feature);
cliPrint("Disabled");
} else {
featureConfigSet(feature);
cliPrint("Enabled");
}
cliPrintLinef(" %s", featureNames[i]);
break;
}
}
}
}
#if defined(USE_BEEPER)
static void printBeeper(dumpFlags_t dumpMask, const uint32_t offFlags, const uint32_t offFlagsDefault, const char *name, const uint32_t allowedFlags, const char *headingStr)
{
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
const uint8_t beeperCount = beeperTableEntryCount();
for (int32_t i = 0; i < beeperCount - 1; i++) {
if (beeperModeMaskForTableIndex(i) & allowedFlags) {
const char *formatOff = "%s -%s";
const char *formatOn = "%s %s";
const uint32_t beeperModeMask = beeperModeMaskForTableIndex(i);
cliDefaultPrintLinef(dumpMask, ~(offFlags ^ offFlagsDefault) & beeperModeMask, offFlags & beeperModeMask ? formatOn : formatOff, name, beeperNameForTableIndex(i));
const bool equalsDefault = ~(offFlags ^ offFlagsDefault) & beeperModeMask;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
cliDumpPrintLinef(dumpMask, equalsDefault, offFlags & beeperModeMask ? formatOff : formatOn, name, beeperNameForTableIndex(i));
}
}
}
static void processBeeperCommand(const char *cmdName, char *cmdline, uint32_t *offFlags, const uint32_t allowedFlags)
{
uint32_t len = strlen(cmdline);
uint8_t beeperCount = beeperTableEntryCount();
if (len == 0) {
cliPrintf("Disabled:");
for (int32_t i = 0; ; i++) {
if (i == beeperCount - 1) {
if (*offFlags == 0)
cliPrint(" none");
break;
}
if (beeperModeMaskForTableIndex(i) & *offFlags)
cliPrintf(" %s", beeperNameForTableIndex(i));
}
cliPrintLinefeed();
} else if (strncasecmp(cmdline, "list", len) == 0) {
cliPrint("Available:");
for (uint32_t i = 0; i < beeperCount; i++) {
if (beeperModeMaskForTableIndex(i) & allowedFlags) {
cliPrintf(" %s", beeperNameForTableIndex(i));
}
}
cliPrintLinefeed();
} else {
bool remove = false;
if (cmdline[0] == '-') {
remove = true; // this is for beeper OFF condition
cmdline++;
len--;
}
for (uint32_t i = 0; ; i++) {
if (i == beeperCount) {
cliPrintErrorLinef(cmdName, "INVALID NAME");
break;
}
if (strncasecmp(cmdline, beeperNameForTableIndex(i), len) == 0 && beeperModeMaskForTableIndex(i) & (allowedFlags | BEEPER_GET_FLAG(BEEPER_ALL))) {
if (remove) { // beeper off
if (i == BEEPER_ALL - 1) {
*offFlags = allowedFlags;
} else {
*offFlags |= beeperModeMaskForTableIndex(i);
}
cliPrint("Disabled");
}
else { // beeper on
if (i == BEEPER_ALL - 1) {
*offFlags = 0;
} else {
*offFlags &= ~beeperModeMaskForTableIndex(i);
}
cliPrint("Enabled");
}
cliPrintLinef(" %s", beeperNameForTableIndex(i));
break;
}
}
}
}
#if defined(USE_DSHOT)
static void cliBeacon(const char *cmdName, char *cmdline)
{
processBeeperCommand(cmdName, cmdline, &(beeperConfigMutable()->dshotBeaconOffFlags), DSHOT_BEACON_ALLOWED_MODES);
}
#endif
static void cliBeeper(const char *cmdName, char *cmdline)
{
processBeeperCommand(cmdName, cmdline, &(beeperConfigMutable()->beeper_off_flags), BEEPER_ALLOWED_MODES);
}
#endif
#if defined(USE_RX_BIND)
static void cliRxBind(const char *cmdName, char *cmdline)
{
UNUSED(cmdline);
if (!startRxBind()) {
cliPrintErrorLinef(cmdName, "Not supported.");
} else {
cliPrintLinef("Binding...");
}
}
#endif
static void printMap(dumpFlags_t dumpMask, const rxConfig_t *rxConfig, const rxConfig_t *defaultRxConfig, const char *headingStr)
{
bool equalsDefault = true;
char buf[16];
char bufDefault[16];
uint32_t i;
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (i = 0; i < RX_MAPPABLE_CHANNEL_COUNT; i++) {
buf[rxConfig->rcmap[i]] = rcChannelLetters[i];
if (defaultRxConfig) {
bufDefault[defaultRxConfig->rcmap[i]] = rcChannelLetters[i];
equalsDefault = equalsDefault && (rxConfig->rcmap[i] == defaultRxConfig->rcmap[i]);
}
}
buf[i] = '\0';
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
const char *formatMap = "map %s";
if (defaultRxConfig) {
bufDefault[i] = '\0';
cliDefaultPrintLinef(dumpMask, equalsDefault, formatMap, bufDefault);
}
cliDumpPrintLinef(dumpMask, equalsDefault, formatMap, buf);
}
static void cliMap(const char *cmdName, char *cmdline)
{
uint32_t i;
char buf[RX_MAPPABLE_CHANNEL_COUNT + 1];
uint32_t len = strlen(cmdline);
if (len == RX_MAPPABLE_CHANNEL_COUNT) {
for (i = 0; i < RX_MAPPABLE_CHANNEL_COUNT; i++) {
buf[i] = toupper((unsigned char)cmdline[i]);
}
buf[i] = '\0';
for (i = 0; i < RX_MAPPABLE_CHANNEL_COUNT; i++) {
buf[i] = toupper((unsigned char)cmdline[i]);
if (strchr(rcChannelLetters, buf[i]) && !strchr(buf + i + 1, buf[i]))
continue;
cliShowParseError(cmdName);
return;
}
parseRcChannels(buf, rxConfigMutable());
} else if (len > 0) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
for (i = 0; i < RX_MAPPABLE_CHANNEL_COUNT; i++) {
buf[rxConfig()->rcmap[i]] = rcChannelLetters[i];
}
buf[i] = '\0';
cliPrintLinef("map %s", buf);
}
static char *skipSpace(char *buffer)
{
while (*(buffer) == ' ') {
buffer++;
}
return buffer;
}
static char *checkCommand(char *cmdline, const char *command)
{
if (!strncasecmp(cmdline, command, strlen(command)) // command names match
&& (isspace((unsigned)cmdline[strlen(command)]) || cmdline[strlen(command)] == 0)) {
return skipSpace(cmdline + strlen(command) + 1);
} else {
return 0;
}
}
static void cliRebootEx(rebootTarget_e rebootTarget)
{
cliPrint("\r\nRebooting");
cliWriterFlush();
waitForSerialPortToFinishTransmitting(cliPort);
motorShutdown();
switch (rebootTarget) {
case REBOOT_TARGET_BOOTLOADER_ROM:
systemResetToBootloader(BOOTLOADER_REQUEST_ROM);
break;
#if defined(USE_FLASH_BOOT_LOADER)
case REBOOT_TARGET_BOOTLOADER_FLASH:
systemResetToBootloader(BOOTLOADER_REQUEST_FLASH);
break;
#endif
case REBOOT_TARGET_FIRMWARE:
default:
systemReset();
break;
}
}
static void cliReboot(void)
{
cliRebootEx(REBOOT_TARGET_FIRMWARE);
}
static void cliBootloader(const char *cmdName, char *cmdline)
{
rebootTarget_e rebootTarget;
if (
#if !defined(USE_FLASH_BOOT_LOADER)
isEmpty(cmdline) ||
#endif
strncasecmp(cmdline, "rom", 3) == 0) {
rebootTarget = REBOOT_TARGET_BOOTLOADER_ROM;
cliPrintHashLine("restarting in ROM bootloader mode");
#if defined(USE_FLASH_BOOT_LOADER)
} else if (isEmpty(cmdline) || strncasecmp(cmdline, "flash", 5) == 0) {
rebootTarget = REBOOT_TARGET_BOOTLOADER_FLASH;
cliPrintHashLine("restarting in flash bootloader mode");
#endif
} else {
cliPrintErrorLinef(cmdName, "Invalid option");
return;
}
cliRebootEx(rebootTarget);
}
static void cliExit(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
cliPrintHashLine("leaving CLI mode, unsaved changes lost");
cliWriterFlush();
*cliBuffer = '\0';
bufferIndex = 0;
cliMode = false;
// incase a motor was left running during motortest, clear it here
mixerResetDisarmedMotors();
cliReboot();
}
#ifdef USE_GPS
static void cliGpsPassthrough(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
gpsEnablePassthrough(cliPort);
}
#endif
#if defined(USE_GYRO_REGISTER_DUMP) && !defined(SIMULATOR_BUILD)
static void cliPrintGyroRegisters(uint8_t whichSensor)
{
cliPrintLinef("# WHO_AM_I 0x%X", gyroReadRegister(whichSensor, MPU_RA_WHO_AM_I));
cliPrintLinef("# CONFIG 0x%X", gyroReadRegister(whichSensor, MPU_RA_CONFIG));
cliPrintLinef("# GYRO_CONFIG 0x%X", gyroReadRegister(whichSensor, MPU_RA_GYRO_CONFIG));
}
static void cliDumpGyroRegisters(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
#ifdef USE_MULTI_GYRO
if ((gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_1) || (gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_BOTH)) {
cliPrintLinef("\r\n# Gyro 1");
cliPrintGyroRegisters(GYRO_CONFIG_USE_GYRO_1);
}
if ((gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_2) || (gyroConfig()->gyro_to_use == GYRO_CONFIG_USE_GYRO_BOTH)) {
cliPrintLinef("\r\n# Gyro 2");
cliPrintGyroRegisters(GYRO_CONFIG_USE_GYRO_2);
}
#else
cliPrintGyroRegisters(GYRO_CONFIG_USE_GYRO_1);
#endif
}
#endif
static int parseOutputIndex(const char *cmdName, char *pch, bool allowAllEscs) {
int outputIndex = atoi(pch);
if ((outputIndex >= 0) && (outputIndex < getMotorCount())) {
cliPrintLinef("Using output %d.", outputIndex);
} else if (allowAllEscs && outputIndex == ALL_MOTORS) {
cliPrintLinef("Using all outputs.");
} else {
cliPrintErrorLinef(cmdName, "INVALID OUTPUT NUMBER. RANGE: 0 - %d.", getMotorCount() - 1);
return -1;
}
return outputIndex;
}
#if defined(USE_DSHOT)
#if defined(USE_ESC_SENSOR) && defined(USE_ESC_SENSOR_INFO)
#define ESC_INFO_KISS_V1_EXPECTED_FRAME_SIZE 15
#define ESC_INFO_KISS_V2_EXPECTED_FRAME_SIZE 21
#define ESC_INFO_BLHELI32_EXPECTED_FRAME_SIZE 64
enum {
ESC_INFO_KISS_V1,
ESC_INFO_KISS_V2,
ESC_INFO_BLHELI32
};
#define ESC_INFO_VERSION_POSITION 12
static void printEscInfo(const char *cmdName, const uint8_t *escInfoBuffer, uint8_t bytesRead)
{
bool escInfoReceived = false;
if (bytesRead > ESC_INFO_VERSION_POSITION) {
uint8_t escInfoVersion;
uint8_t frameLength;
if (escInfoBuffer[ESC_INFO_VERSION_POSITION] == 254) {
escInfoVersion = ESC_INFO_BLHELI32;
frameLength = ESC_INFO_BLHELI32_EXPECTED_FRAME_SIZE;
} else if (escInfoBuffer[ESC_INFO_VERSION_POSITION] == 255) {
escInfoVersion = ESC_INFO_KISS_V2;
frameLength = ESC_INFO_KISS_V2_EXPECTED_FRAME_SIZE;
} else {
escInfoVersion = ESC_INFO_KISS_V1;
frameLength = ESC_INFO_KISS_V1_EXPECTED_FRAME_SIZE;
}
if (bytesRead == frameLength) {
escInfoReceived = true;
if (calculateCrc8(escInfoBuffer, frameLength - 1) == escInfoBuffer[frameLength - 1]) {
uint8_t firmwareVersion = 0;
uint8_t firmwareSubVersion = 0;
uint8_t escType = 0;
switch (escInfoVersion) {
case ESC_INFO_KISS_V1:
firmwareVersion = escInfoBuffer[12];
firmwareSubVersion = (escInfoBuffer[13] & 0x1f) + 97;
escType = (escInfoBuffer[13] & 0xe0) >> 5;
break;
case ESC_INFO_KISS_V2:
firmwareVersion = escInfoBuffer[13];
firmwareSubVersion = escInfoBuffer[14];
escType = escInfoBuffer[15];
break;
case ESC_INFO_BLHELI32:
firmwareVersion = escInfoBuffer[13];
firmwareSubVersion = escInfoBuffer[14];
escType = escInfoBuffer[15];
break;
}
cliPrint("ESC Type: ");
switch (escInfoVersion) {
case ESC_INFO_KISS_V1:
case ESC_INFO_KISS_V2:
switch (escType) {
case 1:
cliPrintLine("KISS8A");
break;
case 2:
cliPrintLine("KISS16A");
break;
case 3:
cliPrintLine("KISS24A");
break;
case 5:
cliPrintLine("KISS Ultralite");
break;
default:
cliPrintLine("unknown");
break;
}
break;
case ESC_INFO_BLHELI32:
{
char *escType = (char *)(escInfoBuffer + 31);
escType[32] = 0;
cliPrintLine(escType);
}
break;
}
cliPrint("MCU Serial No: 0x");
for (int i = 0; i < 12; i++) {
if (i && (i % 3 == 0)) {
cliPrint("-");
}
cliPrintf("%02x", escInfoBuffer[i]);
}
cliPrintLinefeed();
switch (escInfoVersion) {
case ESC_INFO_KISS_V1:
case ESC_INFO_KISS_V2:
cliPrintLinef("Firmware Version: %d.%02d%c", firmwareVersion / 100, firmwareVersion % 100, (char)firmwareSubVersion);
break;
case ESC_INFO_BLHELI32:
cliPrintLinef("Firmware Version: %d.%02d%", firmwareVersion, firmwareSubVersion);
break;
}
if (escInfoVersion == ESC_INFO_KISS_V2 || escInfoVersion == ESC_INFO_BLHELI32) {
cliPrintLinef("Rotation Direction: %s", escInfoBuffer[16] ? "reversed" : "normal");
cliPrintLinef("3D: %s", escInfoBuffer[17] ? "on" : "off");
if (escInfoVersion == ESC_INFO_BLHELI32) {
uint8_t setting = escInfoBuffer[18];
cliPrint("Low voltage Limit: ");
switch (setting) {
case 0:
cliPrintLine("off");
break;
case 255:
cliPrintLine("unsupported");
break;
default:
cliPrintLinef("%d.%01d", setting / 10, setting % 10);
break;
}
setting = escInfoBuffer[19];
cliPrint("Current Limit: ");
switch (setting) {
case 0:
cliPrintLine("off");
break;
case 255:
cliPrintLine("unsupported");
break;
default:
cliPrintLinef("%d", setting);
break;
}
for (int i = 0; i < 4; i++) {
setting = escInfoBuffer[i + 20];
cliPrintLinef("LED %d: %s", i, setting ? (setting == 255) ? "unsupported" : "on" : "off");
}
}
}
} else {
cliPrintErrorLinef(cmdName, "CHECKSUM ERROR.");
}
}
}
if (!escInfoReceived) {
cliPrintLine("No Info.");
}
}
static void executeEscInfoCommand(const char *cmdName, uint8_t escIndex)
{
cliPrintLinef("Info for ESC %d:", escIndex);
uint8_t escInfoBuffer[ESC_INFO_BLHELI32_EXPECTED_FRAME_SIZE];
startEscDataRead(escInfoBuffer, ESC_INFO_BLHELI32_EXPECTED_FRAME_SIZE);
dshotCommandWrite(escIndex, getMotorCount(), DSHOT_CMD_ESC_INFO, DSHOT_CMD_TYPE_BLOCKING);
delay(10);
printEscInfo(cmdName, escInfoBuffer, getNumberEscBytesRead());
}
#endif // USE_ESC_SENSOR && USE_ESC_SENSOR_INFO
static void cliDshotProg(const char *cmdName, char *cmdline)
{
if (isEmpty(cmdline) || !isMotorProtocolDshot()) {
cliShowParseError(cmdName);
return;
}
char *saveptr;
char *pch = strtok_r(cmdline, " ", &saveptr);
int pos = 0;
int escIndex = 0;
bool firstCommand = true;
while (pch != NULL) {
switch (pos) {
case 0:
escIndex = parseOutputIndex(cmdName, pch, true);
if (escIndex == -1) {
return;
}
break;
default:
{
int command = atoi(pch);
if (command >= 0 && command < DSHOT_MIN_THROTTLE) {
if (firstCommand) {
// pwmDisableMotors();
motorDisable();
if (command == DSHOT_CMD_ESC_INFO) {
delay(5); // Wait for potential ESC telemetry transmission to finish
} else {
delay(1);
}
firstCommand = false;
}
if (command != DSHOT_CMD_ESC_INFO) {
dshotCommandWrite(escIndex, getMotorCount(), command, DSHOT_CMD_TYPE_BLOCKING);
} else {
#if defined(USE_ESC_SENSOR) && defined(USE_ESC_SENSOR_INFO)
if (featureIsEnabled(FEATURE_ESC_SENSOR)) {
if (escIndex != ALL_MOTORS) {
executeEscInfoCommand(cmdName, escIndex);
} else {
for (uint8_t i = 0; i < getMotorCount(); i++) {
executeEscInfoCommand(cmdName, i);
}
}
} else
#endif
{
cliPrintLine("Not supported.");
}
}
cliPrintLinef("Command Sent: %d", command);
} else {
cliPrintErrorLinef(cmdName, "INVALID COMMAND. RANGE: 1 - %d.", DSHOT_MIN_THROTTLE - 1);
}
}
break;
}
pos++;
pch = strtok_r(NULL, " ", &saveptr);
}
motorEnable();
}
#endif // USE_DSHOT
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(const char *cmdName, char *cmdline)
{
if (isEmpty(cmdline)) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
char *saveptr;
char *pch = strtok_r(cmdline, " ", &saveptr);
int pos = 0;
uint8_t mode = 0;
int escIndex = 0;
while (pch != NULL) {
switch (pos) {
case 0:
if (strncasecmp(pch, "sk", strlen(pch)) == 0) {
mode = PROTOCOL_SIMONK;
} else if (strncasecmp(pch, "bl", strlen(pch)) == 0) {
mode = PROTOCOL_BLHELI;
} else if (strncasecmp(pch, "ki", strlen(pch)) == 0) {
mode = PROTOCOL_KISS;
} else if (strncasecmp(pch, "cc", strlen(pch)) == 0) {
mode = PROTOCOL_KISSALL;
} else {
cliShowParseError(cmdName);
return;
}
break;
case 1:
escIndex = parseOutputIndex(cmdName, pch, mode == PROTOCOL_KISS);
if (escIndex == -1) {
return;
}
break;
default:
cliShowInvalidArgumentCountError(cmdName);
return;
break;
}
pos++;
pch = strtok_r(NULL, " ", &saveptr);
}
if (!escEnablePassthrough(cliPort, &motorConfig()->dev, escIndex, mode)) {
cliPrintErrorLinef(cmdName, "Error starting ESC connection");
}
}
#endif
#ifndef USE_QUAD_MIXER_ONLY
static void cliMixer(const char *cmdName, char *cmdline)
{
int len;
len = strlen(cmdline);
if (len == 0) {
cliPrintLinef("Mixer: %s", mixerNames[mixerConfig()->mixerMode - 1]);
return;
} else if (strncasecmp(cmdline, "list", len) == 0) {
cliPrint("Available:");
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL)
break;
cliPrintf(" %s", mixerNames[i]);
}
cliPrintLinefeed();
return;
}
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL) {
cliPrintErrorLinef(cmdName, "INVALID NAME");
return;
}
if (strncasecmp(cmdline, mixerNames[i], len) == 0) {
mixerConfigMutable()->mixerMode = i + 1;
break;
}
}
cliMixer(cmdName, "");
}
#endif
static void cliMotor(const char *cmdName, char *cmdline)
{
if (isEmpty(cmdline)) {
cliShowInvalidArgumentCountError(cmdName);
return;
}
int motorIndex = 0;
int motorValue = 0;
char *saveptr;
char *pch = strtok_r(cmdline, " ", &saveptr);
int index = 0;
while (pch != NULL) {
switch (index) {
case 0:
motorIndex = parseOutputIndex(cmdName, pch, true);
if (motorIndex == -1) {
return;
}
break;
case 1:
motorValue = atoi(pch);
break;
}
index++;
pch = strtok_r(NULL, " ", &saveptr);
}
if (index == 2) {
if (motorValue < PWM_RANGE_MIN || motorValue > PWM_RANGE_MAX) {
cliShowArgumentRangeError(cmdName, "VALUE", 1000, 2000);
} else {
uint32_t motorOutputValue = motorConvertFromExternal(motorValue);
if (motorIndex != ALL_MOTORS) {
motor_disarmed[motorIndex] = motorOutputValue;
cliPrintLinef("motor %d: %d", motorIndex, motorOutputValue);
} else {
for (int i = 0; i < getMotorCount(); i++) {
motor_disarmed[i] = motorOutputValue;
}
cliPrintLinef("all motors: %d", motorOutputValue);
}
}
} else {
cliShowInvalidArgumentCountError(cmdName);
}
}
#ifndef MINIMAL_CLI
static void cliPlaySound(const char *cmdName, char *cmdline)
{
int i;
const char *name;
static int lastSoundIdx = -1;
if (isEmpty(cmdline)) {
i = lastSoundIdx + 1; //next sound index
if ((name=beeperNameForTableIndex(i)) == NULL) {
while (true) { //no name for index; try next one
if (++i >= beeperTableEntryCount())
i = 0; //if end then wrap around to first entry
if ((name=beeperNameForTableIndex(i)) != NULL)
break; //if name OK then play sound below
if (i == lastSoundIdx + 1) { //prevent infinite loop
cliPrintErrorLinef(cmdName, "ERROR PLAYING SOUND");
return;
}
}
}
} else { //index value was given
i = atoi(cmdline);
if ((name=beeperNameForTableIndex(i)) == NULL) {
cliPrintLinef("No sound for index %d", i);
return;
}
}
lastSoundIdx = i;
beeperSilence();
cliPrintLinef("Playing sound %d: %s", i, name);
beeper(beeperModeForTableIndex(i));
}
#endif
static void cliProfile(const char *cmdName, char *cmdline)
{
if (isEmpty(cmdline)) {
cliPrintLinef("profile %d", getPidProfileIndexToUse());
return;
} else {
const int i = atoi(cmdline);
if (i >= 0 && i < PID_PROFILE_COUNT) {
changePidProfile(i);
cliProfile(cmdName, "");
} else {
cliPrintErrorLinef(cmdName, "PROFILE OUTSIDE OF [0..%d]", PID_PROFILE_COUNT - 1);
}
}
}
static void cliRateProfile(const char *cmdName, char *cmdline)
{
if (isEmpty(cmdline)) {
cliPrintLinef("rateprofile %d", getRateProfileIndexToUse());
return;
} else {
const int i = atoi(cmdline);
if (i >= 0 && i < CONTROL_RATE_PROFILE_COUNT) {
changeControlRateProfile(i);
cliRateProfile(cmdName, "");
} else {
cliPrintErrorLinef(cmdName, "RATE PROFILE OUTSIDE OF [0..%d]", CONTROL_RATE_PROFILE_COUNT - 1);
}
}
}
static void cliDumpPidProfile(const char *cmdName, uint8_t pidProfileIndex, dumpFlags_t dumpMask)
{
if (pidProfileIndex >= PID_PROFILE_COUNT) {
// Faulty values
return;
}
pidProfileIndexToUse = pidProfileIndex;
cliPrintLinefeed();
cliProfile(cmdName, "");
char profileStr[10];
tfp_sprintf(profileStr, "profile %d", pidProfileIndex);
dumpAllValues(cmdName, PROFILE_VALUE, dumpMask, profileStr);
pidProfileIndexToUse = CURRENT_PROFILE_INDEX;
}
static void cliDumpRateProfile(const char *cmdName, uint8_t rateProfileIndex, dumpFlags_t dumpMask)
{
if (rateProfileIndex >= CONTROL_RATE_PROFILE_COUNT) {
// Faulty values
return;
}
rateProfileIndexToUse = rateProfileIndex;
cliPrintLinefeed();
cliRateProfile(cmdName, "");
char rateProfileStr[14];
tfp_sprintf(rateProfileStr, "rateprofile %d", rateProfileIndex);
dumpAllValues(cmdName, PROFILE_RATE_VALUE, dumpMask, rateProfileStr);
rateProfileIndexToUse = CURRENT_PROFILE_INDEX;
}
#ifdef USE_CLI_BATCH
static void cliPrintCommandBatchWarning(const char *cmdName, const char *warning)
{
cliPrintErrorLinef(cmdName, "ERRORS WERE DETECTED - PLEASE REVIEW BEFORE CONTINUING");
if (warning) {
cliPrintErrorLinef(cmdName, warning);
}
}
static void resetCommandBatch(void)
{
commandBatchActive = false;
commandBatchError = false;
}
static void cliBatch(const char *cmdName, char *cmdline)
{
if (strncasecmp(cmdline, "start", 5) == 0) {
if (!commandBatchActive) {
commandBatchActive = true;
commandBatchError = false;
}
cliPrintLine("Command batch started");
} else if (strncasecmp(cmdline, "end", 3) == 0) {
if (commandBatchActive && commandBatchError) {
cliPrintCommandBatchWarning(cmdName, NULL);
} else {
cliPrintLine("Command batch ended");
}
resetCommandBatch();
} else {
cliPrintErrorLinef(cmdName, "Invalid option");
}
}
#endif
static bool prepareSave(void)
{
#if defined(USE_CUSTOM_DEFAULTS)
if (processingCustomDefaults) {
return true;
}
#endif
#ifdef USE_CLI_BATCH
if (commandBatchActive && commandBatchError) {
return false;
}
#endif
#if defined(USE_BOARD_INFO)
if (boardInformationUpdated) {
persistBoardInformation();
}
#if defined(USE_SIGNATURE)
if (signatureUpdated) {
persistSignature();
}
#endif
#endif // USE_BOARD_INFO
return true;
}
bool tryPrepareSave(const char *cmdName)
{
bool success = prepareSave();
#if defined(USE_CLI_BATCH)
if (!success) {
cliPrintCommandBatchWarning(cmdName, "PLEASE FIX ERRORS THEN 'SAVE'");
resetCommandBatch();
return false;
}
#else
UNUSED(cmdName);
UNUSED(success);
#endif
return true;
}
static void cliSave(const char *cmdName, char *cmdline)
{
UNUSED(cmdline);
if (tryPrepareSave(cmdName)) {
writeEEPROM();
cliPrintHashLine("saving");
cliReboot();
}
}
#if defined(USE_CUSTOM_DEFAULTS)
bool resetConfigToCustomDefaults(void)
{
resetConfig();
#ifdef USE_CLI_BATCH
commandBatchError = false;
#endif
cliProcessCustomDefaults(true);
return prepareSave();
}
static bool customDefaultsHasNext(const char *customDefaultsPtr)
{
return *customDefaultsPtr && *customDefaultsPtr != 0xFF && customDefaultsPtr < customDefaultsEnd;
}
static const char *parseCustomDefaultsHeaderElement(char *dest, const char *customDefaultsPtr, const char *prefix, char terminator)
{
char *endPtr = NULL;
unsigned len = strlen(prefix);
if (customDefaultsPtr && customDefaultsHasNext(customDefaultsPtr) && strncmp(customDefaultsPtr, prefix, len) == 0) {
customDefaultsPtr += len;
endPtr = strchr(customDefaultsPtr, terminator);
}
if (endPtr && customDefaultsHasNext(endPtr)) {
len = endPtr - customDefaultsPtr;
memcpy(dest, customDefaultsPtr, len);
customDefaultsPtr += len;
return customDefaultsPtr;
}
return NULL;
}
static void parseCustomDefaultsHeader(void)
{
const char *customDefaultsPtr = customDefaultsStart;
if (strncmp(customDefaultsPtr, CUSTOM_DEFAULTS_START_PREFIX, strlen(CUSTOM_DEFAULTS_START_PREFIX)) == 0) {
customDefaultsFound = true;
customDefaultsPtr = strchr(customDefaultsPtr, '\n');
if (customDefaultsPtr && customDefaultsHasNext(customDefaultsPtr)) {
customDefaultsPtr++;
}
customDefaultsPtr = parseCustomDefaultsHeaderElement(customDefaultsManufacturerId, customDefaultsPtr, CUSTOM_DEFAULTS_MANUFACTURER_ID_PREFIX, CUSTOM_DEFAULTS_BOARD_NAME_PREFIX[0]);
customDefaultsPtr = parseCustomDefaultsHeaderElement(customDefaultsBoardName, customDefaultsPtr, CUSTOM_DEFAULTS_BOARD_NAME_PREFIX, CUSTOM_DEFAULTS_CHANGESET_ID_PREFIX[0]);
customDefaultsPtr = parseCustomDefaultsHeaderElement(customDefaultsChangesetId, customDefaultsPtr, CUSTOM_DEFAULTS_CHANGESET_ID_PREFIX, CUSTOM_DEFAULTS_DATE_PREFIX[0]);
customDefaultsPtr = parseCustomDefaultsHeaderElement(customDefaultsDate, customDefaultsPtr, CUSTOM_DEFAULTS_DATE_PREFIX, '\n');
}
customDefaultsHeaderParsed = true;
}
bool hasCustomDefaults(void)
{
if (!customDefaultsHeaderParsed) {
parseCustomDefaultsHeader();
}
return customDefaultsFound;
}
#endif
static void cliDefaults(const char *cmdName, char *cmdline)
{
bool saveConfigs = true;
#if defined(USE_CUSTOM_DEFAULTS)
bool useCustomDefaults = true;
#elif defined(USE_CUSTOM_DEFAULTS_ADDRESS)
// Required to keep the linker from eliminating these
if (customDefaultsStart != customDefaultsEnd) {
delay(0);
}
#endif
if (isEmpty(cmdline)) {
} else if (strncasecmp(cmdline, "nosave", 6) == 0) {
saveConfigs = false;
#if defined(USE_CUSTOM_DEFAULTS)
} else if (strncasecmp(cmdline, "bare", 4) == 0) {
useCustomDefaults = false;
} else if (strncasecmp(cmdline, "show", 4) == 0) {
if (hasCustomDefaults()) {
char *customDefaultsPtr = customDefaultsStart;
while (customDefaultsHasNext(customDefaultsPtr)) {
if (*customDefaultsPtr != '\n') {
cliPrintf("%c", *customDefaultsPtr++);
} else {
cliPrintLinefeed();
customDefaultsPtr++;
}
}
} else {
cliPrintError(cmdName, "NO CUSTOM DEFAULTS FOUND");
}
return;
#endif
} else {
cliPrintError(cmdName, "INVALID OPTION");
return;
}
cliPrintHashLine("resetting to defaults");
resetConfig();
#ifdef USE_CLI_BATCH
// Reset only the error state and allow the batch active state to remain.
// This way if a "defaults nosave" was issued after the "batch on" we'll
// only reset the current error state but the batch will still be active
// for subsequent commands.
commandBatchError = false;
#endif
#if defined(USE_CUSTOM_DEFAULTS)
if (useCustomDefaults) {
cliProcessCustomDefaults(false);
}
#endif
if (saveConfigs && tryPrepareSave(cmdName)) {
writeUnmodifiedConfigToEEPROM();
cliReboot();
}
}
static void cliPrintVarDefault(const char *cmdName, const clivalue_t *value)
{
const pgRegistry_t *pg = pgFind(value->pgn);
if (pg) {
const char *defaultFormat = "Default value: ";
const int valueOffset = getValueOffset(value);
const bool equalsDefault = valuePtrEqualsDefault(value, pg->copy + valueOffset, pg->address + valueOffset);
if (!equalsDefault) {
cliPrintf(defaultFormat, value->name);
printValuePointer(cmdName, value, (uint8_t*)pg->address + valueOffset, false);
cliPrintLinefeed();
}
}
}
STATIC_UNIT_TESTED void cliGet(const char *cmdName, char *cmdline)
{
const clivalue_t *val;
int matchedCommands = 0;
pidProfileIndexToUse = getCurrentPidProfileIndex();
rateProfileIndexToUse = getCurrentControlRateProfileIndex();
backupAndResetConfigs(true);
for (uint32_t i = 0; i < valueTableEntryCount; i++) {
if (strcasestr(valueTable[i].name, cmdline)) {
val = &valueTable[i];
if (matchedCommands > 0) {
cliPrintLinefeed();
}
cliPrintf("%s = ", valueTable[i].name);
cliPrintVar(cmdName, val, 0);
cliPrintLinefeed();
switch (val->type & VALUE_SECTION_MASK) {
case PROFILE_VALUE:
cliProfile(cmdName, "");
break;
case PROFILE_RATE_VALUE:
cliRateProfile(cmdName, "");
break;
default:
break;
}
cliPrintVarRange(val);
cliPrintVarDefault(cmdName, val);
matchedCommands++;
}
}
restoreConfigs();
pidProfileIndexToUse = CURRENT_PROFILE_INDEX;
rateProfileIndexToUse = CURRENT_PROFILE_INDEX;
if (!matchedCommands) {
cliPrintErrorLinef(cmdName, "INVALID NAME");
}
}
static uint8_t getWordLength(char *bufBegin, char *bufEnd)
{
while (*(bufEnd - 1) == ' ') {
bufEnd--;
}
return bufEnd - bufBegin;
}
uint16_t cliGetSettingIndex(char *name, uint8_t length)
{
for (uint32_t i = 0; i < valueTableEntryCount; i++) {
const char *settingName = valueTable[i].name;
// ensure exact match when setting to prevent setting variables with shorter names
if (strncasecmp(name, settingName, strlen(settingName)) == 0 && length == strlen(settingName)) {
return i;
}
}
return valueTableEntryCount;
}
STATIC_UNIT_TESTED void cliSet(const char *cmdName, char *cmdline)
{
const uint32_t len = strlen(cmdline);
char *eqptr;
if (len == 0 || (len == 1 && cmdline[0] == '*')) {
cliPrintLine("Current settings: ");
for (uint32_t i = 0; i < valueTableEntryCount; i++) {
const clivalue_t *val = &valueTable[i];
cliPrintf("%s = ", valueTable[i].name);
cliPrintVar(cmdName, val, len); // when len is 1 (when * is passed as argument), it will print min/max values as well, for gui
cliPrintLinefeed();
}
} else if ((eqptr = strstr(cmdline, "=")) != NULL) {
// has equals
uint8_t variableNameLength = getWordLength(cmdline, eqptr);
// skip the '=' and any ' ' characters
eqptr++;
eqptr = skipSpace(eqptr);
const uint16_t index = cliGetSettingIndex(cmdline, variableNameLength);
if (index >= valueTableEntryCount) {
cliPrintErrorLinef(cmdName, "INVALID NAME");
return;
}
const clivalue_t *val = &valueTable[index];
bool valueChanged = false;
int16_t value = 0;
switch (val->type & VALUE_MODE_MASK) {
case MODE_DIRECT: {
if ((val->type & VALUE_TYPE_MASK) == VAR_UINT32) {
uint32_t value = strtoul(eqptr, NULL, 10);
if (value <= val->config.u32Max) {
cliSetVar(val, value);
valueChanged = true;
}
} else {
int value = atoi(eqptr);
int min;
int max;
getMinMax(val, &min, &max);
if (value >= min && value <= max) {
cliSetVar(val, value);
valueChanged = true;
}
}
}
break;
case MODE_LOOKUP:
case MODE_BITSET: {
int tableIndex;
if ((val->type & VALUE_MODE_MASK) == MODE_BITSET) {
tableIndex = TABLE_OFF_ON;
} else {
tableIndex = val->config.lookup.tableIndex;
}
const lookupTableEntry_t *tableEntry = &lookupTables[tableIndex];
bool matched = false;
for (uint32_t tableValueIndex = 0; tableValueIndex < tableEntry->valueCount && !matched; tableValueIndex++) {
matched = tableEntry->values[tableValueIndex] && strcasecmp(tableEntry->values[tableValueIndex], eqptr) == 0;
if (matched) {
value = tableValueIndex;
cliSetVar(val, value);
valueChanged = true;
}
}
}
break;
case MODE_ARRAY: {
const uint8_t arrayLength = val->config.array.length;
char *valPtr = eqptr;
int i = 0;
while (i < arrayLength && valPtr != NULL) {
// skip spaces
valPtr = skipSpace(valPtr);
// process substring starting at valPtr
// note: no need to copy substrings for atoi()
// it stops at the first character that cannot be converted...
switch (val->type & VALUE_TYPE_MASK) {
default:
case VAR_UINT8:
{
// fetch data pointer
uint8_t *data = (uint8_t *)cliGetValuePointer(val) + i;
// store value
*data = (uint8_t)atoi((const char*) valPtr);
}
break;
case VAR_INT8:
{
// fetch data pointer
int8_t *data = (int8_t *)cliGetValuePointer(val) + i;
// store value
*data = (int8_t)atoi((const char*) valPtr);
}
break;
case VAR_UINT16:
{
// fetch data pointer
uint16_t *data = (uint16_t *)cliGetValuePointer(val) + i;
// store value
*data = (uint16_t)atoi((const char*) valPtr);
}
break;
case VAR_INT16:
{
// fetch data pointer
int16_t *data = (int16_t *)cliGetValuePointer(val) + i;
// store value
*data = (int16_t)atoi((const char*) valPtr);
}
break;
case VAR_UINT32:
{
// fetch data pointer
uint32_t *data = (uint32_t *)cliGetValuePointer(val) + i;
// store value
*data = (uint32_t)strtoul((const char*) valPtr, NULL, 10);
}
break;
}
// find next comma (or end of string)
valPtr = strchr(valPtr, ',') + 1;
i++;
}
}
// mark as changed
valueChanged = true;
break;
case MODE_STRING: {
char *valPtr = eqptr;
valPtr = skipSpace(valPtr);
const unsigned int len = strlen(valPtr);
const uint8_t min = val->config.string.minlength;
const uint8_t max = val->config.string.maxlength;
const bool updatable = ((val->config.string.flags & STRING_FLAGS_WRITEONCE) == 0 ||
strlen((char *)cliGetValuePointer(val)) == 0 ||
strncmp(valPtr, (char *)cliGetValuePointer(val), len) == 0);
if (updatable && len > 0 && len <= max) {
memset((char *)cliGetValuePointer(val), 0, max);
if (len >= min && strncmp(valPtr, emptyName, len)) {
strncpy((char *)cliGetValuePointer(val), valPtr, len);
}
valueChanged = true;
} else {
cliPrintErrorLinef(cmdName, "STRING MUST BE 1-%d CHARACTERS OR '-' FOR EMPTY", max);
}
}
break;
}
if (valueChanged) {
cliPrintf("%s set to ", val->name);
cliPrintVar(cmdName, val, 0);
} else {
cliPrintErrorLinef(cmdName, "INVALID VALUE");
cliPrintVarRange(val);
}
return;
} else {
// no equals, check for matching variables.
cliGet(cmdName, cmdline);
}
}
const char *getMcuTypeById(mcuTypeId_e id)
{
if (id < MCU_TYPE_UNKNOWN) {
return mcuTypeNames[id];
} else {
return "UNKNOWN";
}
}
static void cliStatus(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
// MCU type, clock, vrefint, core temperature
cliPrintf("MCU %s Clock=%dMHz", getMcuTypeById(getMcuTypeId()), (SystemCoreClock / 1000000));
#ifdef STM32F4
// Only F4 is capable of switching between HSE/HSI (for now)
int sysclkSource = SystemSYSCLKSource();
const char *SYSCLKSource[] = { "HSI", "HSE", "PLLP", "PLLR" };
const char *PLLSource[] = { "-HSI", "-HSE" };
int pllSource;
if (sysclkSource >= 2) {
pllSource = SystemPLLSource();
}
cliPrintf(" (%s%s)", SYSCLKSource[sysclkSource], (sysclkSource < 2) ? "" : PLLSource[pllSource]);
#endif
#ifdef USE_ADC_INTERNAL
uint16_t vrefintMv = getVrefMv();
int16_t coretemp = getCoreTemperatureCelsius();
cliPrintLinef(", Vref=%d.%2dV, Core temp=%ddegC", vrefintMv / 1000, (vrefintMv % 1000) / 10, coretemp);
#else
cliPrintLinefeed();
#endif
// Stack and config sizes and usages
cliPrintf("Stack size: %d, Stack address: 0x%x", stackTotalSize(), stackHighMem());
#ifdef STACK_CHECK
cliPrintf(", Stack used: %d", stackUsedSize());
#endif
cliPrintLinefeed();
cliPrintLinef("Config size: %d, Max available config: %d", getEEPROMConfigSize(), getEEPROMStorageSize());
// Sensors
cliPrint("Gyros detected:");
bool found = false;
for (unsigned pos = 0; pos < 7; pos++) {
if (gyroConfig()->gyrosDetected & BIT(pos)) {
if (found) {
cliPrint(",");
} else {
found = true;
}
cliPrintf(" gyro %d", pos + 1);
}
}
cliPrintLinefeed();
#if defined(USE_SENSOR_NAMES)
const uint32_t detectedSensorsMask = sensorsMask();
for (uint32_t i = 0; ; i++) {
if (sensorTypeNames[i] == NULL) {
break;
}
const uint32_t mask = (1 << i);
if ((detectedSensorsMask & mask) && (mask & SENSOR_NAMES_MASK)) {
const uint8_t sensorHardwareIndex = detectedSensors[i];
const char *sensorHardware = sensorHardwareNames[i][sensorHardwareIndex];
if (i) {
cliPrint(", ");
}
cliPrintf("%s=%s", sensorTypeNames[i], sensorHardware);
#if defined(USE_ACC)
if (mask == SENSOR_ACC && acc.dev.revisionCode) {
cliPrintf(".%c", acc.dev.revisionCode);
}
#endif
}
}
cliPrintLinefeed();
#endif /* USE_SENSOR_NAMES */
#if defined(USE_OSD)
osdDisplayPortDevice_e displayPortDevice;
osdGetDisplayPort(&displayPortDevice);
cliPrintLinef("OSD: %s", lookupTableOsdDisplayPortDevice[displayPortDevice]);
#endif
// Uptime and wall clock
cliPrintf("System Uptime: %d seconds", millis() / 1000);
#ifdef USE_RTC_TIME
char buf[FORMATTED_DATE_TIME_BUFSIZE];
dateTime_t dt;
if (rtcGetDateTime(&dt)) {
dateTimeFormatLocal(buf, &dt);
cliPrintf(", Current Time: %s", buf);
}
#endif
cliPrintLinefeed();
// Run status
const int gyroRate = getTaskDeltaTimeUs(TASK_GYRO) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTimeUs(TASK_GYRO)));
int rxRate = getCurrentRxRefreshRate();
if (rxRate != 0) {
rxRate = (int)(1000000.0f / ((float)rxRate));
}
const int systemRate = getTaskDeltaTimeUs(TASK_SYSTEM) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTimeUs(TASK_SYSTEM)));
cliPrintLinef("CPU:%d%%, cycle time: %d, GYRO rate: %d, RX rate: %d, System rate: %d",
constrain(getAverageSystemLoadPercent(), 0, LOAD_PERCENTAGE_ONE), getTaskDeltaTimeUs(TASK_GYRO), gyroRate, rxRate, systemRate);
// Battery meter
cliPrintLinef("Voltage: %d * 0.01V (%dS battery - %s)", getBatteryVoltage(), getBatteryCellCount(), getBatteryStateString());
// Other devices and status
#ifdef USE_I2C
const uint16_t i2cErrorCounter = i2cGetErrorCounter();
#else
const uint16_t i2cErrorCounter = 0;
#endif
cliPrintLinef("I2C Errors: %d", i2cErrorCounter);
#ifdef USE_SDCARD
cliSdInfo(cmdName, "");
#endif
cliPrint("Arming disable flags:");
armingDisableFlags_e flags = getArmingDisableFlags();
while (flags) {
const int bitpos = ffs(flags) - 1;
flags &= ~(1 << bitpos);
cliPrintf(" %s", armingDisableFlagNames[bitpos]);
}
cliPrintLinefeed();
}
#if defined(USE_TASK_STATISTICS)
static void cliTasks(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
int maxLoadSum = 0;
int averageLoadSum = 0;
#ifndef MINIMAL_CLI
if (systemConfig()->task_statistics) {
cliPrintLine("Task list rate/hz max/us avg/us maxload avgload total/ms");
} else {
cliPrintLine("Task list");
}
#endif
for (taskId_e taskId = 0; taskId < TASK_COUNT; taskId++) {
taskInfo_t taskInfo;
getTaskInfo(taskId, &taskInfo);
if (taskInfo.isEnabled) {
int taskFrequency = taskInfo.averageDeltaTimeUs == 0 ? 0 : lrintf(1e6f / taskInfo.averageDeltaTimeUs);
cliPrintf("%02d - (%15s) ", taskId, taskInfo.taskName);
const int maxLoad = taskInfo.maxExecutionTimeUs == 0 ? 0 :(taskInfo.maxExecutionTimeUs * taskFrequency + 5000) / 1000;
const int averageLoad = taskInfo.averageExecutionTimeUs == 0 ? 0 : (taskInfo.averageExecutionTimeUs * taskFrequency + 5000) / 1000;
if (taskId != TASK_SERIAL) {
maxLoadSum += maxLoad;
averageLoadSum += averageLoad;
}
if (systemConfig()->task_statistics) {
cliPrintLinef("%6d %7d %7d %4d.%1d%% %4d.%1d%% %9d",
taskFrequency, taskInfo.maxExecutionTimeUs, taskInfo.averageExecutionTimeUs,
maxLoad/10, maxLoad%10, averageLoad/10, averageLoad%10, taskInfo.totalExecutionTimeUs / 1000);
} else {
cliPrintLinef("%6d", taskFrequency);
}
schedulerResetTaskMaxExecutionTime(taskId);
}
}
if (systemConfig()->task_statistics) {
cfCheckFuncInfo_t checkFuncInfo;
getCheckFuncInfo(&checkFuncInfo);
cliPrintLinef("RX Check Function %19d %7d %25d", checkFuncInfo.maxExecutionTimeUs, checkFuncInfo.averageExecutionTimeUs, checkFuncInfo.totalExecutionTimeUs / 1000);
cliPrintLinef("Total (excluding SERIAL) %25d.%1d%% %4d.%1d%%", maxLoadSum/10, maxLoadSum%10, averageLoadSum/10, averageLoadSum%10);
schedulerResetCheckFunctionMaxExecutionTime();
}
}
#endif
static void cliVersion(const char *cmdName, char *cmdline)
{
UNUSED(cmdline);
#if !(defined(USE_CUSTOM_DEFAULTS) && defined(USE_UNIFIED_TARGET))
UNUSED(cmdName);
#endif
cliPrintf("# %s / %s (%s) %s %s / %s (%s) MSP API: %s",
FC_FIRMWARE_NAME,
targetName,
systemConfig()->boardIdentifier,
FC_VERSION_STRING,
buildDate,
buildTime,
shortGitRevision,
MSP_API_VERSION_STRING
);
#ifdef FEATURE_CUT_LEVEL
cliPrintLinef(" / FEATURE CUT LEVEL %d", FEATURE_CUT_LEVEL);
#else
cliPrintLinefeed();
#endif
#if defined(USE_CUSTOM_DEFAULTS)
if (hasCustomDefaults()) {
if (strlen(customDefaultsManufacturerId) || strlen(customDefaultsBoardName) || strlen(customDefaultsChangesetId) || strlen(customDefaultsDate)) {
cliPrintLinef("%s%s%s%s%s%s%s%s",
CUSTOM_DEFAULTS_MANUFACTURER_ID_PREFIX, customDefaultsManufacturerId,
CUSTOM_DEFAULTS_BOARD_NAME_PREFIX, customDefaultsBoardName,
CUSTOM_DEFAULTS_CHANGESET_ID_PREFIX, customDefaultsChangesetId,
CUSTOM_DEFAULTS_DATE_PREFIX, customDefaultsDate
);
} else {
cliPrintHashLine("config: YES");
}
} else {
#if defined(USE_UNIFIED_TARGET)
cliPrintError(cmdName, "NO CONFIG FOUND");
#else
cliPrintHashLine("NO CUSTOM DEFAULTS FOUND");
#endif // USE_UNIFIED_TARGET
}
#endif // USE_CUSTOM_DEFAULTS
#if defined(USE_UNIFIED_TARGET) && defined(USE_BOARD_INFO)
if (strlen(getManufacturerId()) && strlen(getBoardName())) {
cliPrintf("# board: manufacturer_id: %s, board_name: %s", getManufacturerId(), getBoardName());
}
#endif
}
#ifdef USE_RC_SMOOTHING_FILTER
static void cliRcSmoothing(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
rcSmoothingFilter_t *rcSmoothingData = getRcSmoothingData();
cliPrint("# RC Smoothing Type: ");
if (rxConfig()->rc_smoothing_type == RC_SMOOTHING_TYPE_FILTER) {
cliPrintLine("FILTER");
if (rcSmoothingAutoCalculate()) {
const uint16_t avgRxFrameUs = rcSmoothingData->averageFrameTimeUs;
cliPrint("# Detected RX frame rate: ");
if (avgRxFrameUs == 0) {
cliPrintLine("NO SIGNAL");
} else {
cliPrintLinef("%d.%03dms", avgRxFrameUs / 1000, avgRxFrameUs % 1000);
}
}
cliPrintLinef("# Input filter type: %s", lookupTables[TABLE_RC_SMOOTHING_INPUT_TYPE].values[rcSmoothingData->inputFilterType]);
cliPrintf("# Active input cutoff: %dhz ", rcSmoothingData->inputCutoffFrequency);
if (rcSmoothingData->inputCutoffSetting == 0) {
cliPrintLine("(auto)");
} else {
cliPrintLine("(manual)");
}
cliPrintf("# Derivative filter type: %s", lookupTables[TABLE_RC_SMOOTHING_DERIVATIVE_TYPE].values[rcSmoothingData->derivativeFilterType]);
if (rcSmoothingData->derivativeFilterTypeSetting == RC_SMOOTHING_DERIVATIVE_AUTO) {
cliPrintLine(" (auto)");
} else {
cliPrintLinefeed();
}
cliPrintf("# Active derivative cutoff: %dhz (", rcSmoothingData->derivativeCutoffFrequency);
if (rcSmoothingData->derivativeFilterType == RC_SMOOTHING_DERIVATIVE_OFF) {
cliPrintLine("off)");
} else {
if (rcSmoothingData->derivativeCutoffSetting == 0) {
cliPrintLine("auto)");
} else {
cliPrintLine("manual)");
}
}
} else {
cliPrintLine("INTERPOLATION");
}
}
#endif // USE_RC_SMOOTHING_FILTER
#if defined(USE_RESOURCE_MGMT)
#define MAX_RESOURCE_INDEX(x) ((x) == 0 ? 1 : (x))
typedef struct {
const uint8_t owner;
pgn_t pgn;
uint8_t stride;
uint8_t offset;
const uint8_t maxIndex;
} cliResourceValue_t;
// Handy macros for keeping the table tidy.
// DEFS : Single entry
// DEFA : Array of uint8_t (stride = 1)
// DEFW : Wider stride case; array of structs.
#define DEFS(owner, pgn, type, member) \
{ owner, pgn, 0, offsetof(type, member), 0 }
#define DEFA(owner, pgn, type, member, max) \
{ owner, pgn, sizeof(ioTag_t), offsetof(type, member), max }
#define DEFW(owner, pgn, type, member, max) \
{ owner, pgn, sizeof(type), offsetof(type, member), max }
const cliResourceValue_t resourceTable[] = {
#ifdef USE_BEEPER
DEFS( OWNER_BEEPER, PG_BEEPER_DEV_CONFIG, beeperDevConfig_t, ioTag) ,
#endif
DEFA( OWNER_MOTOR, PG_MOTOR_CONFIG, motorConfig_t, dev.ioTags[0], MAX_SUPPORTED_MOTORS ),
#ifdef USE_SERVOS
DEFA( OWNER_SERVO, PG_SERVO_CONFIG, servoConfig_t, dev.ioTags[0], MAX_SUPPORTED_SERVOS ),
#endif
#if defined(USE_PPM)
DEFS( OWNER_PPMINPUT, PG_PPM_CONFIG, ppmConfig_t, ioTag ),
#endif
#if defined(USE_PWM)
DEFA( OWNER_PWMINPUT, PG_PWM_CONFIG, pwmConfig_t, ioTags[0], PWM_INPUT_PORT_COUNT ),
#endif
#ifdef USE_RANGEFINDER_HCSR04
DEFS( OWNER_SONAR_TRIGGER, PG_SONAR_CONFIG, sonarConfig_t, triggerTag ),
DEFS( OWNER_SONAR_ECHO, PG_SONAR_CONFIG, sonarConfig_t, echoTag ),
#endif
#ifdef USE_LED_STRIP
DEFS( OWNER_LED_STRIP, PG_LED_STRIP_CONFIG, ledStripConfig_t, ioTag ),
#endif
#ifdef USE_UART
DEFA( OWNER_SERIAL_TX, PG_SERIAL_PIN_CONFIG, serialPinConfig_t, ioTagTx[0], SERIAL_PORT_MAX_INDEX ),
DEFA( OWNER_SERIAL_RX, PG_SERIAL_PIN_CONFIG, serialPinConfig_t, ioTagRx[0], SERIAL_PORT_MAX_INDEX ),
#endif
#ifdef USE_INVERTER
DEFA( OWNER_INVERTER, PG_SERIAL_PIN_CONFIG, serialPinConfig_t, ioTagInverter[0], SERIAL_PORT_MAX_INDEX ),
#endif
#ifdef USE_I2C
DEFW( OWNER_I2C_SCL, PG_I2C_CONFIG, i2cConfig_t, ioTagScl, I2CDEV_COUNT ),
DEFW( OWNER_I2C_SDA, PG_I2C_CONFIG, i2cConfig_t, ioTagSda, I2CDEV_COUNT ),
#endif
DEFA( OWNER_LED, PG_STATUS_LED_CONFIG, statusLedConfig_t, ioTags[0], STATUS_LED_NUMBER ),
#ifdef USE_SPEKTRUM_BIND
DEFS( OWNER_RX_BIND, PG_RX_CONFIG, rxConfig_t, spektrum_bind_pin_override_ioTag ),
DEFS( OWNER_RX_BIND_PLUG, PG_RX_CONFIG, rxConfig_t, spektrum_bind_plug_ioTag ),
#endif
#ifdef USE_TRANSPONDER
DEFS( OWNER_TRANSPONDER, PG_TRANSPONDER_CONFIG, transponderConfig_t, ioTag ),
#endif
#ifdef USE_SPI
DEFW( OWNER_SPI_SCK, PG_SPI_PIN_CONFIG, spiPinConfig_t, ioTagSck, SPIDEV_COUNT ),
DEFW( OWNER_SPI_MISO, PG_SPI_PIN_CONFIG, spiPinConfig_t, ioTagMiso, SPIDEV_COUNT ),
DEFW( OWNER_SPI_MOSI, PG_SPI_PIN_CONFIG, spiPinConfig_t, ioTagMosi, SPIDEV_COUNT ),
#endif
#ifdef USE_ESCSERIAL
DEFS( OWNER_ESCSERIAL, PG_ESCSERIAL_CONFIG, escSerialConfig_t, ioTag ),
#endif
#ifdef USE_CAMERA_CONTROL
DEFS( OWNER_CAMERA_CONTROL, PG_CAMERA_CONTROL_CONFIG, cameraControlConfig_t, ioTag ),
#endif
#ifdef USE_ADC
DEFS( OWNER_ADC_BATT, PG_ADC_CONFIG, adcConfig_t, vbat.ioTag ),
DEFS( OWNER_ADC_RSSI, PG_ADC_CONFIG, adcConfig_t, rssi.ioTag ),
DEFS( OWNER_ADC_CURR, PG_ADC_CONFIG, adcConfig_t, current.ioTag ),
DEFS( OWNER_ADC_EXT, PG_ADC_CONFIG, adcConfig_t, external1.ioTag ),
#endif
#ifdef USE_BARO
DEFS( OWNER_BARO_CS, PG_BAROMETER_CONFIG, barometerConfig_t, baro_spi_csn ),
DEFS( OWNER_BARO_EOC, PG_BAROMETER_CONFIG, barometerConfig_t, baro_eoc_tag ),
DEFS( OWNER_BARO_XCLR, PG_BAROMETER_CONFIG, barometerConfig_t, baro_xclr_tag ),
#endif
#ifdef USE_MAG
DEFS( OWNER_COMPASS_CS, PG_COMPASS_CONFIG, compassConfig_t, mag_spi_csn ),
#ifdef USE_MAG_DATA_READY_SIGNAL
DEFS( OWNER_COMPASS_EXTI, PG_COMPASS_CONFIG, compassConfig_t, interruptTag ),
#endif
#endif
#ifdef USE_SDCARD_SPI
DEFS( OWNER_SDCARD_CS, PG_SDCARD_CONFIG, sdcardConfig_t, chipSelectTag ),
#endif
#ifdef USE_SDCARD
DEFS( OWNER_SDCARD_DETECT, PG_SDCARD_CONFIG, sdcardConfig_t, cardDetectTag ),
#endif
#if defined(STM32H7) && defined(USE_SDCARD_SDIO)
DEFS( OWNER_SDIO_CK, PG_SDIO_PIN_CONFIG, sdioPinConfig_t, CKPin ),
DEFS( OWNER_SDIO_CMD, PG_SDIO_PIN_CONFIG, sdioPinConfig_t, CMDPin ),
DEFS( OWNER_SDIO_D0, PG_SDIO_PIN_CONFIG, sdioPinConfig_t, D0Pin ),
DEFS( OWNER_SDIO_D1, PG_SDIO_PIN_CONFIG, sdioPinConfig_t, D1Pin ),
DEFS( OWNER_SDIO_D2, PG_SDIO_PIN_CONFIG, sdioPinConfig_t, D2Pin ),
DEFS( OWNER_SDIO_D3, PG_SDIO_PIN_CONFIG, sdioPinConfig_t, D3Pin ),
#endif
#ifdef USE_PINIO
DEFA( OWNER_PINIO, PG_PINIO_CONFIG, pinioConfig_t, ioTag, PINIO_COUNT ),
#endif
#if defined(USE_USB_MSC)
DEFS( OWNER_USB_MSC_PIN, PG_USB_CONFIG, usbDev_t, mscButtonPin ),
#endif
#ifdef USE_FLASH_CHIP
DEFS( OWNER_FLASH_CS, PG_FLASH_CONFIG, flashConfig_t, csTag ),
#endif
#ifdef USE_MAX7456
DEFS( OWNER_OSD_CS, PG_MAX7456_CONFIG, max7456Config_t, csTag ),
#endif
#ifdef USE_RX_SPI
DEFS( OWNER_RX_SPI_CS, PG_RX_SPI_CONFIG, rxSpiConfig_t, csnTag ),
DEFS( OWNER_RX_SPI_EXTI, PG_RX_SPI_CONFIG, rxSpiConfig_t, extiIoTag ),
DEFS( OWNER_RX_SPI_BIND, PG_RX_SPI_CONFIG, rxSpiConfig_t, bindIoTag ),
DEFS( OWNER_RX_SPI_LED, PG_RX_SPI_CONFIG, rxSpiConfig_t, ledIoTag ),
#if defined(USE_RX_CC2500) && defined(USE_RX_CC2500_SPI_PA_LNA)
DEFS( OWNER_RX_SPI_CC2500_TX_EN, PG_RX_CC2500_SPI_CONFIG, rxCc2500SpiConfig_t, txEnIoTag ),
DEFS( OWNER_RX_SPI_CC2500_LNA_EN, PG_RX_CC2500_SPI_CONFIG, rxCc2500SpiConfig_t, lnaEnIoTag ),
#if defined(USE_RX_CC2500_SPI_DIVERSITY)
DEFS( OWNER_RX_SPI_CC2500_ANT_SEL, PG_RX_CC2500_SPI_CONFIG, rxCc2500SpiConfig_t, antSelIoTag ),
#endif
#endif
#endif
#ifdef USE_GYRO_EXTI
DEFW( OWNER_GYRO_EXTI, PG_GYRO_DEVICE_CONFIG, gyroDeviceConfig_t, extiTag, MAX_GYRODEV_COUNT ),
#endif
DEFW( OWNER_GYRO_CS, PG_GYRO_DEVICE_CONFIG, gyroDeviceConfig_t, csnTag, MAX_GYRODEV_COUNT ),
#ifdef USE_USB_DETECT
DEFS( OWNER_USB_DETECT, PG_USB_CONFIG, usbDev_t, detectPin ),
#endif
#ifdef USE_VTX_RTC6705
DEFS( OWNER_VTX_POWER, PG_VTX_IO_CONFIG, vtxIOConfig_t, powerTag ),
DEFS( OWNER_VTX_CS, PG_VTX_IO_CONFIG, vtxIOConfig_t, csTag ),
DEFS( OWNER_VTX_DATA, PG_VTX_IO_CONFIG, vtxIOConfig_t, dataTag ),
DEFS( OWNER_VTX_CLK, PG_VTX_IO_CONFIG, vtxIOConfig_t, clockTag ),
#endif
#ifdef USE_PIN_PULL_UP_DOWN
DEFA( OWNER_PULLUP, PG_PULLUP_CONFIG, pinPullUpDownConfig_t, ioTag, PIN_PULL_UP_DOWN_COUNT ),
DEFA( OWNER_PULLDOWN, PG_PULLDOWN_CONFIG, pinPullUpDownConfig_t, ioTag, PIN_PULL_UP_DOWN_COUNT ),
#endif
};
#undef DEFS
#undef DEFA
#undef DEFW
static ioTag_t *getIoTag(const cliResourceValue_t value, uint8_t index)
{
const pgRegistry_t* rec = pgFind(value.pgn);
return CONST_CAST(ioTag_t *, rec->address + value.stride * index + value.offset);
}
static void printResource(dumpFlags_t dumpMask, const char *headingStr)
{
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (unsigned int i = 0; i < ARRAYLEN(resourceTable); i++) {
const char* owner = ownerNames[resourceTable[i].owner];
const pgRegistry_t* pg = pgFind(resourceTable[i].pgn);
const void *currentConfig;
const void *defaultConfig;
if (isReadingConfigFromCopy()) {
currentConfig = pg->copy;
defaultConfig = pg->address;
} else {
currentConfig = pg->address;
defaultConfig = NULL;
}
for (int index = 0; index < MAX_RESOURCE_INDEX(resourceTable[i].maxIndex); index++) {
const ioTag_t ioTag = *(ioTag_t *)((const uint8_t *)currentConfig + resourceTable[i].stride * index + resourceTable[i].offset);
ioTag_t ioTagDefault = NULL;
if (defaultConfig) {
ioTagDefault = *(ioTag_t *)((const uint8_t *)defaultConfig + resourceTable[i].stride * index + resourceTable[i].offset);
}
const bool equalsDefault = ioTag == ioTagDefault;
const char *format = "resource %s %d %c%02d";
const char *formatUnassigned = "resource %s %d NONE";
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
if (ioTagDefault) {
cliDefaultPrintLinef(dumpMask, equalsDefault, format, owner, RESOURCE_INDEX(index), IO_GPIOPortIdxByTag(ioTagDefault) + 'A', IO_GPIOPinIdxByTag(ioTagDefault));
} else if (defaultConfig) {
cliDefaultPrintLinef(dumpMask, equalsDefault, formatUnassigned, owner, RESOURCE_INDEX(index));
}
if (ioTag) {
cliDumpPrintLinef(dumpMask, equalsDefault, format, owner, RESOURCE_INDEX(index), IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag));
} else if (!(dumpMask & HIDE_UNUSED)) {
cliDumpPrintLinef(dumpMask, equalsDefault, formatUnassigned, owner, RESOURCE_INDEX(index));
}
}
}
}
static void printResourceOwner(uint8_t owner, uint8_t index)
{
cliPrintf("%s", ownerNames[resourceTable[owner].owner]);
if (resourceTable[owner].maxIndex > 0) {
cliPrintf(" %d", RESOURCE_INDEX(index));
}
}
static void resourceCheck(uint8_t resourceIndex, uint8_t index, ioTag_t newTag)
{
if (!newTag) {
return;
}
const char * format = "\r\nNOTE: %c%02d already assigned to ";
for (int r = 0; r < (int)ARRAYLEN(resourceTable); r++) {
for (int i = 0; i < MAX_RESOURCE_INDEX(resourceTable[r].maxIndex); i++) {
ioTag_t *tag = getIoTag(resourceTable[r], i);
if (*tag == newTag) {
bool cleared = false;
if (r == resourceIndex) {
if (i == index) {
continue;
}
*tag = IO_TAG_NONE;
cleared = true;
}
cliPrintf(format, DEFIO_TAG_GPIOID(newTag) + 'A', DEFIO_TAG_PIN(newTag));
printResourceOwner(r, i);
if (cleared) {
cliPrintf(". ");
printResourceOwner(r, i);
cliPrintf(" disabled");
}
cliPrintLine(".");
}
}
}
}
static bool strToPin(char *pch, ioTag_t *tag)
{
if (strcasecmp(pch, "NONE") == 0) {
*tag = IO_TAG_NONE;
return true;
} else {
unsigned pin = 0;
unsigned port = (*pch >= 'a') ? *pch - 'a' : *pch - 'A';
if (port < 8) {
pch++;
pin = atoi(pch);
if (pin < 16) {
*tag = DEFIO_TAG_MAKE(port, pin);
return true;
}
}
}
return false;
}
#ifdef USE_DMA
static void showDma(void)
{
cliPrintLinefeed();
#ifdef MINIMAL_CLI
cliPrintLine("DMA:");
#else
cliPrintLine("Currently active DMA:");
cliRepeat('-', 20);
#endif
for (int i = 1; i <= DMA_LAST_HANDLER; i++) {
const resourceOwner_t *owner = dmaGetOwner(i);
cliPrintf(DMA_OUTPUT_STRING, DMA_DEVICE_NO(i), DMA_DEVICE_INDEX(i));
if (owner->resourceIndex > 0) {
cliPrintLinef(" %s %d", ownerNames[owner->owner], owner->resourceIndex);
} else {
cliPrintLinef(" %s", ownerNames[owner->owner]);
}
}
}
#endif
#ifdef USE_DMA_SPEC
typedef struct dmaoptEntry_s {
char *device;
dmaPeripheral_e peripheral;
pgn_t pgn;
uint8_t stride;
uint8_t offset;
uint8_t maxIndex;
uint32_t presenceMask;
} dmaoptEntry_t;
#define MASK_IGNORED (0)
// Handy macros for keeping the table tidy.
// DEFS : Single entry
// DEFA : Array of uint8_t (stride = 1)
// DEFW : Wider stride case; array of structs.
#define DEFS(device, peripheral, pgn, type, member) \
{ device, peripheral, pgn, 0, offsetof(type, member), 0, MASK_IGNORED }
#define DEFA(device, peripheral, pgn, type, member, max, mask) \
{ device, peripheral, pgn, sizeof(uint8_t), offsetof(type, member), max, mask }
#define DEFW(device, peripheral, pgn, type, member, max, mask) \
{ device, peripheral, pgn, sizeof(type), offsetof(type, member), max, mask }
dmaoptEntry_t dmaoptEntryTable[] = {
DEFW("SPI_TX", DMA_PERIPH_SPI_TX, PG_SPI_PIN_CONFIG, spiPinConfig_t, txDmaopt, SPIDEV_COUNT, MASK_IGNORED),
DEFW("SPI_RX", DMA_PERIPH_SPI_RX, PG_SPI_PIN_CONFIG, spiPinConfig_t, rxDmaopt, SPIDEV_COUNT, MASK_IGNORED),
DEFA("ADC", DMA_PERIPH_ADC, PG_ADC_CONFIG, adcConfig_t, dmaopt, ADCDEV_COUNT, MASK_IGNORED),
DEFS("SDIO", DMA_PERIPH_SDIO, PG_SDIO_CONFIG, sdioConfig_t, dmaopt),
DEFW("UART_TX", DMA_PERIPH_UART_TX, PG_SERIAL_UART_CONFIG, serialUartConfig_t, txDmaopt, UARTDEV_CONFIG_MAX, MASK_IGNORED),
DEFW("UART_RX", DMA_PERIPH_UART_RX, PG_SERIAL_UART_CONFIG, serialUartConfig_t, rxDmaopt, UARTDEV_CONFIG_MAX, MASK_IGNORED),
#if defined(STM32H7) || defined(STM32G4)
DEFW("TIMUP", DMA_PERIPH_TIMUP, PG_TIMER_UP_CONFIG, timerUpConfig_t, dmaopt, HARDWARE_TIMER_DEFINITION_COUNT, TIMUP_TIMERS),
#endif
};
#undef DEFS
#undef DEFA
#undef DEFW
#define DMA_OPT_UI_INDEX(i) ((i) + 1)
#define DMA_OPT_STRING_BUFSIZE 5
#if defined(STM32H7) || defined(STM32G4)
#define DMA_CHANREQ_STRING "Request"
#else
#define DMA_CHANREQ_STRING "Channel"
#endif
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
#define DMA_STCH_STRING "Stream"
#else
#define DMA_STCH_STRING "Channel"
#endif
#define DMASPEC_FORMAT_STRING "DMA%d " DMA_STCH_STRING " %d " DMA_CHANREQ_STRING " %d"
static void optToString(int optval, char *buf)
{
if (optval == DMA_OPT_UNUSED) {
memcpy(buf, "NONE", DMA_OPT_STRING_BUFSIZE);
} else {
tfp_sprintf(buf, "%d", optval);
}
}
static void printPeripheralDmaoptDetails(dmaoptEntry_t *entry, int index, const dmaoptValue_t dmaopt, const bool equalsDefault, const dumpFlags_t dumpMask, printFn *printValue)
{
if (dmaopt != DMA_OPT_UNUSED) {
printValue(dumpMask, equalsDefault,
"dma %s %d %d",
entry->device, DMA_OPT_UI_INDEX(index), dmaopt);
const dmaChannelSpec_t *dmaChannelSpec = dmaGetChannelSpecByPeripheral(entry->peripheral, index, dmaopt);
dmaCode_t dmaCode = 0;
if (dmaChannelSpec) {
dmaCode = dmaChannelSpec->code;
}
printValue(dumpMask, equalsDefault,
"# %s %d: " DMASPEC_FORMAT_STRING,
entry->device, DMA_OPT_UI_INDEX(index), DMA_CODE_CONTROLLER(dmaCode), DMA_CODE_STREAM(dmaCode), DMA_CODE_CHANNEL(dmaCode));
} else if (!(dumpMask & HIDE_UNUSED)) {
printValue(dumpMask, equalsDefault,
"dma %s %d NONE",
entry->device, DMA_OPT_UI_INDEX(index));
}
}
static const char *printPeripheralDmaopt(dmaoptEntry_t *entry, int index, dumpFlags_t dumpMask, const char *headingStr)
{
const pgRegistry_t* pg = pgFind(entry->pgn);
const void *currentConfig;
const void *defaultConfig;
if (isReadingConfigFromCopy()) {
currentConfig = pg->copy;
defaultConfig = pg->address;
} else {
currentConfig = pg->address;
defaultConfig = NULL;
}
dmaoptValue_t currentOpt = *(dmaoptValue_t *)((uint8_t *)currentConfig + entry->stride * index + entry->offset);
dmaoptValue_t defaultOpt;
if (defaultConfig) {
defaultOpt = *(dmaoptValue_t *)((uint8_t *)defaultConfig + entry->stride * index + entry->offset);
} else {
defaultOpt = DMA_OPT_UNUSED;
}
bool equalsDefault = currentOpt == defaultOpt;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
if (defaultConfig) {
printPeripheralDmaoptDetails(entry, index, defaultOpt, equalsDefault, dumpMask, cliDefaultPrintLinef);
}
printPeripheralDmaoptDetails(entry, index, currentOpt, equalsDefault, dumpMask, cliDumpPrintLinef);
return headingStr;
}
#if defined(USE_TIMER_MGMT)
static void printTimerDmaoptDetails(const ioTag_t ioTag, const timerHardware_t *timer, const dmaoptValue_t dmaopt, const bool equalsDefault, const dumpFlags_t dumpMask, printFn *printValue)
{
const char *format = "dma pin %c%02d %d";
if (dmaopt != DMA_OPT_UNUSED) {
const bool printDetails = printValue(dumpMask, equalsDefault, format,
IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag),
dmaopt
);
if (printDetails) {
const dmaChannelSpec_t *dmaChannelSpec = dmaGetChannelSpecByTimerValue(timer->tim, timer->channel, dmaopt);
dmaCode_t dmaCode = 0;
if (dmaChannelSpec) {
dmaCode = dmaChannelSpec->code;
printValue(dumpMask, false,
"# pin %c%02d: " DMASPEC_FORMAT_STRING,
IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag),
DMA_CODE_CONTROLLER(dmaCode), DMA_CODE_STREAM(dmaCode), DMA_CODE_CHANNEL(dmaCode)
);
}
}
} else if (!(dumpMask & HIDE_UNUSED)) {
printValue(dumpMask, equalsDefault,
"dma pin %c%02d NONE",
IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag)
);
}
}
static const char *printTimerDmaopt(const timerIOConfig_t *currentConfig, const timerIOConfig_t *defaultConfig, unsigned index, dumpFlags_t dumpMask, bool tagsInUse[], const char *headingStr)
{
const ioTag_t ioTag = currentConfig[index].ioTag;
if (!ioTag) {
return headingStr;
}
const timerHardware_t *timer = timerGetByTagAndIndex(ioTag, currentConfig[index].index);
const dmaoptValue_t dmaopt = currentConfig[index].dmaopt;
dmaoptValue_t defaultDmaopt = DMA_OPT_UNUSED;
bool equalsDefault = defaultDmaopt == dmaopt;
if (defaultConfig) {
for (unsigned i = 0; i < MAX_TIMER_PINMAP_COUNT; i++) {
if (defaultConfig[i].ioTag == ioTag) {
defaultDmaopt = defaultConfig[i].dmaopt;
// We need to check timer as well here to get 'default' DMA options for non-default timers printed, because setting the timer resets the DMA option.
equalsDefault = (defaultDmaopt == dmaopt) && (defaultConfig[i].index == currentConfig[index].index || dmaopt == DMA_OPT_UNUSED);
tagsInUse[index] = true;
break;
}
}
}
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
if (defaultConfig) {
printTimerDmaoptDetails(ioTag, timer, defaultDmaopt, equalsDefault, dumpMask, cliDefaultPrintLinef);
}
printTimerDmaoptDetails(ioTag, timer, dmaopt, equalsDefault, dumpMask, cliDumpPrintLinef);
return headingStr;
}
#endif
static void printDmaopt(dumpFlags_t dumpMask, const char *headingStr)
{
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
for (size_t i = 0; i < ARRAYLEN(dmaoptEntryTable); i++) {
dmaoptEntry_t *entry = &dmaoptEntryTable[i];
for (int index = 0; index < entry->maxIndex; index++) {
headingStr = printPeripheralDmaopt(entry, index, dumpMask, headingStr);
}
}
#if defined(USE_TIMER_MGMT)
const pgRegistry_t* pg = pgFind(PG_TIMER_IO_CONFIG);
const timerIOConfig_t *currentConfig;
const timerIOConfig_t *defaultConfig;
if (isReadingConfigFromCopy()) {
currentConfig = (timerIOConfig_t *)pg->copy;
defaultConfig = (timerIOConfig_t *)pg->address;
} else {
currentConfig = (timerIOConfig_t *)pg->address;
defaultConfig = NULL;
}
bool tagsInUse[MAX_TIMER_PINMAP_COUNT] = { false };
for (unsigned i = 0; i < MAX_TIMER_PINMAP_COUNT; i++) {
headingStr = printTimerDmaopt(currentConfig, defaultConfig, i, dumpMask, tagsInUse, headingStr);
}
if (defaultConfig) {
for (unsigned i = 0; i < MAX_TIMER_PINMAP_COUNT; i++) {
if (!tagsInUse[i] && defaultConfig[i].ioTag && defaultConfig[i].dmaopt != DMA_OPT_UNUSED) {
const timerHardware_t *timer = timerGetByTagAndIndex(defaultConfig[i].ioTag, defaultConfig[i].index);
headingStr = cliPrintSectionHeading(dumpMask, true, headingStr);
printTimerDmaoptDetails(defaultConfig[i].ioTag, timer, defaultConfig[i].dmaopt, false, dumpMask, cliDefaultPrintLinef);
printTimerDmaoptDetails(defaultConfig[i].ioTag, timer, DMA_OPT_UNUSED, false, dumpMask, cliDumpPrintLinef);
}
}
}
#endif
}
static void cliDmaopt(const char *cmdName, char *cmdline)
{
char *pch = NULL;
char *saveptr;
// Peripheral name or command option
pch = strtok_r(cmdline, " ", &saveptr);
if (!pch) {
printDmaopt(DUMP_MASTER | HIDE_UNUSED, NULL);
return;
} else if (strcasecmp(pch, "list") == 0) {
cliPrintErrorLinef(cmdName, "NOT IMPLEMENTED YET");
return;
}
dmaoptEntry_t *entry = NULL;
for (unsigned i = 0; i < ARRAYLEN(dmaoptEntryTable); i++) {
if (strcasecmp(pch, dmaoptEntryTable[i].device) == 0) {
entry = &dmaoptEntryTable[i];
}
}
if (!entry && strcasecmp(pch, "pin") != 0) {
cliPrintErrorLinef(cmdName, "BAD DEVICE: %s", pch);
return;
}
// Index
dmaoptValue_t orgval = DMA_OPT_UNUSED;
int index = 0;
dmaoptValue_t *optaddr = NULL;
ioTag_t ioTag = IO_TAG_NONE;
#if defined(USE_TIMER_MGMT)
timerIOConfig_t *timerIoConfig = NULL;
#endif
const timerHardware_t *timer = NULL;
pch = strtok_r(NULL, " ", &saveptr);
if (entry) {
index = atoi(pch) - 1;
if (index < 0 || index >= entry->maxIndex || (entry->presenceMask != MASK_IGNORED && !(entry->presenceMask & BIT(index + 1)))) {
cliPrintErrorLinef(cmdName, "BAD INDEX: '%s'", pch ? pch : "");
return;
}
const pgRegistry_t* pg = pgFind(entry->pgn);
const void *currentConfig;
if (isWritingConfigToCopy()) {
currentConfig = pg->copy;
} else {
currentConfig = pg->address;
}
optaddr = (dmaoptValue_t *)((uint8_t *)currentConfig + entry->stride * index + entry->offset);
orgval = *optaddr;
} else {
// It's a pin
if (!pch || !(strToPin(pch, &ioTag) && IOGetByTag(ioTag))) {
cliPrintErrorLinef(cmdName, "INVALID PIN: '%s'", pch ? pch : "");
return;
}
orgval = dmaoptByTag(ioTag);
#if defined(USE_TIMER_MGMT)
timerIoConfig = timerIoConfigByTag(ioTag);
#endif
timer = timerGetByTag(ioTag);
}
// opt or list
pch = strtok_r(NULL, " ", &saveptr);
if (!pch) {
if (entry) {
printPeripheralDmaoptDetails(entry, index, *optaddr, true, DUMP_MASTER, cliDumpPrintLinef);
}
#if defined(USE_TIMER_MGMT)
else {
printTimerDmaoptDetails(ioTag, timer, orgval, true, DUMP_MASTER, cliDumpPrintLinef);
}
#endif
return;
} else if (strcasecmp(pch, "list") == 0) {
// Show possible opts
const dmaChannelSpec_t *dmaChannelSpec;
if (entry) {
for (int opt = 0; (dmaChannelSpec = dmaGetChannelSpecByPeripheral(entry->peripheral, index, opt)); opt++) {
cliPrintLinef("# %d: " DMASPEC_FORMAT_STRING, opt, DMA_CODE_CONTROLLER(dmaChannelSpec->code), DMA_CODE_STREAM(dmaChannelSpec->code), DMA_CODE_CHANNEL(dmaChannelSpec->code));
}
} else {
for (int opt = 0; (dmaChannelSpec = dmaGetChannelSpecByTimerValue(timer->tim, timer->channel, opt)); opt++) {
cliPrintLinef("# %d: " DMASPEC_FORMAT_STRING, opt, DMA_CODE_CONTROLLER(dmaChannelSpec->code), DMA_CODE_STREAM(dmaChannelSpec->code), DMA_CODE_CHANNEL(dmaChannelSpec->code));
}
}
return;
} else if (pch) {
int optval;
if (strcasecmp(pch, "none") == 0) {
optval = DMA_OPT_UNUSED;
} else {
optval = atoi(pch);
if (entry) {
if (!dmaGetChannelSpecByPeripheral(entry->peripheral, index, optval)) {
cliPrintErrorLinef(cmdName, "INVALID DMA OPTION FOR %s %d: '%s'", entry->device, DMA_OPT_UI_INDEX(index), pch);
return;
}
} else {
if (!dmaGetChannelSpecByTimerValue(timer->tim, timer->channel, optval)) {
cliPrintErrorLinef(cmdName, "INVALID DMA OPTION FOR PIN %c%02d: '%s'", IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag), pch);
return;
}
}
}
char optvalString[DMA_OPT_STRING_BUFSIZE];
optToString(optval, optvalString);
char orgvalString[DMA_OPT_STRING_BUFSIZE];
optToString(orgval, orgvalString);
if (optval != orgval) {
if (entry) {
*optaddr = optval;
cliPrintLinef("# dma %s %d: changed from %s to %s", entry->device, DMA_OPT_UI_INDEX(index), orgvalString, optvalString);
} else {
#if defined(USE_TIMER_MGMT)
timerIoConfig->dmaopt = optval;
#endif
cliPrintLinef("# dma pin %c%02d: changed from %s to %s", IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag), orgvalString, optvalString);
}
} else {
if (entry) {
cliPrintLinef("# dma %s %d: no change: %s", entry->device, DMA_OPT_UI_INDEX(index), orgvalString);
} else {
cliPrintLinef("# dma %c%02d: no change: %s", IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag),orgvalString);
}
}
}
}
#endif // USE_DMA_SPEC
#ifdef USE_DMA
static void cliDma(const char *cmdName, char* cmdline)
{
int len = strlen(cmdline);
if (len && strncasecmp(cmdline, "show", len) == 0) {
showDma();
return;
}
#if defined(USE_DMA_SPEC)
cliDmaopt(cmdName, cmdline);
#else
cliShowParseError(cmdName);
#endif
}
#endif
#endif // USE_RESOURCE_MGMT
#ifdef USE_TIMER_MGMT
static void printTimerDetails(const ioTag_t ioTag, const unsigned timerIndex, const bool equalsDefault, const dumpFlags_t dumpMask, printFn *printValue)
{
const char *format = "timer %c%02d AF%d";
const char *emptyFormat = "timer %c%02d NONE";
if (timerIndex > 0) {
const timerHardware_t *timer = timerGetByTagAndIndex(ioTag, timerIndex);
const bool printDetails = printValue(dumpMask, equalsDefault, format,
IO_GPIOPortIdxByTag(ioTag) + 'A',
IO_GPIOPinIdxByTag(ioTag),
timer->alternateFunction
);
if (printDetails) {
printValue(dumpMask, false,
"# pin %c%02d: TIM%d CH%d%s (AF%d)",
IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag),
timerGetTIMNumber(timer->tim),
CC_INDEX_FROM_CHANNEL(timer->channel) + 1,
timer->output & TIMER_OUTPUT_N_CHANNEL ? "N" : "",
timer->alternateFunction
);
}
} else {
printValue(dumpMask, equalsDefault, emptyFormat,
IO_GPIOPortIdxByTag(ioTag) + 'A',
IO_GPIOPinIdxByTag(ioTag)
);
}
}
static void printTimer(dumpFlags_t dumpMask, const char *headingStr)
{
const pgRegistry_t* pg = pgFind(PG_TIMER_IO_CONFIG);
const timerIOConfig_t *currentConfig;
const timerIOConfig_t *defaultConfig;
headingStr = cliPrintSectionHeading(dumpMask, false, headingStr);
if (isReadingConfigFromCopy()) {
currentConfig = (timerIOConfig_t *)pg->copy;
defaultConfig = (timerIOConfig_t *)pg->address;
} else {
currentConfig = (timerIOConfig_t *)pg->address;
defaultConfig = NULL;
}
bool tagsInUse[MAX_TIMER_PINMAP_COUNT] = { false };
for (unsigned int i = 0; i < MAX_TIMER_PINMAP_COUNT; i++) {
const ioTag_t ioTag = currentConfig[i].ioTag;
if (!ioTag) {
continue;
}
const uint8_t timerIndex = currentConfig[i].index;
uint8_t defaultTimerIndex = 0;
if (defaultConfig) {
for (unsigned i = 0; i < MAX_TIMER_PINMAP_COUNT; i++) {
if (defaultConfig[i].ioTag == ioTag) {
defaultTimerIndex = defaultConfig[i].index;
tagsInUse[i] = true;
break;
}
}
}
const bool equalsDefault = defaultTimerIndex == timerIndex;
headingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, headingStr);
if (defaultConfig && defaultTimerIndex) {
printTimerDetails(ioTag, defaultTimerIndex, equalsDefault, dumpMask, cliDefaultPrintLinef);
}
printTimerDetails(ioTag, timerIndex, equalsDefault, dumpMask, cliDumpPrintLinef);
}
if (defaultConfig) {
for (unsigned i = 0; i < MAX_TIMER_PINMAP_COUNT; i++) {
if (!tagsInUse[i] && defaultConfig[i].ioTag) {
headingStr = cliPrintSectionHeading(DO_DIFF, true, headingStr);
printTimerDetails(defaultConfig[i].ioTag, defaultConfig[i].index, false, dumpMask, cliDefaultPrintLinef);
printTimerDetails(defaultConfig[i].ioTag, 0, false, dumpMask, cliDumpPrintLinef);
}
}
}
}
#define TIMER_INDEX_UNDEFINED -1
#define TIMER_AF_STRING_BUFSIZE 5
static void alternateFunctionToString(const ioTag_t ioTag, const int index, char *buf)
{
const timerHardware_t *timer = timerGetByTagAndIndex(ioTag, index + 1);
if (!timer) {
memcpy(buf, "NONE", TIMER_AF_STRING_BUFSIZE);
} else {
tfp_sprintf(buf, "AF%d", timer->alternateFunction);
}
}
static void showTimers(void)
{
cliPrintLinefeed();
#ifdef MINIMAL_CLI
cliPrintLine("Timers:");
#else
cliPrintLine("Currently active Timers:");
cliRepeat('-', 23);
#endif
int8_t timerNumber;
for (int i = 0; (timerNumber = timerGetNumberByIndex(i)); i++) {
cliPrintf("TIM%d:", timerNumber);
bool timerUsed = false;
for (unsigned timerIndex = 0; timerIndex < CC_CHANNELS_PER_TIMER; timerIndex++) {
const resourceOwner_t *timerOwner = timerGetOwner(timerNumber, CC_CHANNEL_FROM_INDEX(timerIndex));
if (timerOwner->owner) {
if (!timerUsed) {
timerUsed = true;
cliPrintLinefeed();
}
if (timerOwner->resourceIndex > 0) {
cliPrintLinef(" CH%d: %s %d", timerIndex + 1, ownerNames[timerOwner->owner], timerOwner->resourceIndex);
} else {
cliPrintLinef(" CH%d: %s", timerIndex + 1, ownerNames[timerOwner->owner]);
}
}
}
if (!timerUsed) {
cliPrintLine(" FREE");
}
}
}
static void cliTimer(const char *cmdName, char *cmdline)
{
int len = strlen(cmdline);
if (len == 0) {
printTimer(DUMP_MASTER, NULL);
return;
} else if (strncasecmp(cmdline, "list", len) == 0) {
cliPrintErrorLinef(cmdName, "NOT IMPLEMENTED YET");
return;
} else if (strncasecmp(cmdline, "show", len) == 0) {
showTimers();
return;
}
char *pch = NULL;
char *saveptr;
ioTag_t ioTag = IO_TAG_NONE;
pch = strtok_r(cmdline, " ", &saveptr);
if (!pch || !strToPin(pch, &ioTag)) {
cliShowParseError(cmdName);
return;
} else if (!IOGetByTag(ioTag)) {
cliPrintErrorLinef(cmdName, "PIN NOT USED ON BOARD.");
return;
}
int timerIOIndex = TIMER_INDEX_UNDEFINED;
bool isExistingTimerOpt = false;
/* find existing entry, or go for next available */
for (unsigned i = 0; i < MAX_TIMER_PINMAP_COUNT; i++) {
if (timerIOConfig(i)->ioTag == ioTag) {
timerIOIndex = i;
isExistingTimerOpt = true;
break;
}
/* first available empty slot */
if (timerIOIndex < 0 && timerIOConfig(i)->ioTag == IO_TAG_NONE) {
timerIOIndex = i;
}
}
if (timerIOIndex < 0) {
cliPrintErrorLinef(cmdName, "PIN TIMER MAP FULL.");
return;
}
pch = strtok_r(NULL, " ", &saveptr);
if (pch) {
int timerIndex = TIMER_INDEX_UNDEFINED;
if (strcasecmp(pch, "list") == 0) {
/* output the list of available options */
const timerHardware_t *timer;
for (unsigned index = 0; (timer = timerGetByTagAndIndex(ioTag, index + 1)); index++) {
cliPrintLinef("# AF%d: TIM%d CH%d%s",
timer->alternateFunction,
timerGetTIMNumber(timer->tim),
CC_INDEX_FROM_CHANNEL(timer->channel) + 1,
timer->output & TIMER_OUTPUT_N_CHANNEL ? "N" : ""
);
}
return;
} else if (strncasecmp(pch, "af", 2) == 0) {
unsigned alternateFunction = atoi(&pch[2]);
const timerHardware_t *timer;
for (unsigned index = 0; (timer = timerGetByTagAndIndex(ioTag, index + 1)); index++) {
if (timer->alternateFunction == alternateFunction) {
timerIndex = index;
break;
}
}
if (!timer) {
cliPrintErrorLinef(cmdName, "INVALID ALTERNATE FUNCTION FOR %c%02d: '%s'", IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag), pch);
return;
}
} else if (strcasecmp(pch, "none") != 0) {
cliPrintErrorLinef(cmdName, "INVALID TIMER OPTION FOR %c%02d: '%s'", IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag), pch);
return;
}
int oldTimerIndex = isExistingTimerOpt ? timerIOConfig(timerIOIndex)->index - 1 : -1;
timerIOConfigMutable(timerIOIndex)->ioTag = timerIndex == TIMER_INDEX_UNDEFINED ? IO_TAG_NONE : ioTag;
timerIOConfigMutable(timerIOIndex)->index = timerIndex + 1;
timerIOConfigMutable(timerIOIndex)->dmaopt = DMA_OPT_UNUSED;
char optvalString[DMA_OPT_STRING_BUFSIZE];
alternateFunctionToString(ioTag, timerIndex, optvalString);
char orgvalString[DMA_OPT_STRING_BUFSIZE];
alternateFunctionToString(ioTag, oldTimerIndex, orgvalString);
if (timerIndex == oldTimerIndex) {
cliPrintLinef("# timer %c%02d: no change: %s", IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag), orgvalString);
} else {
cliPrintLinef("# timer %c%02d: changed from %s to %s", IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag), orgvalString, optvalString);
}
return;
} else {
printTimerDetails(ioTag, timerIOConfig(timerIOIndex)->index, false, DUMP_MASTER, cliDumpPrintLinef);
return;
}
}
#endif
#if defined(USE_RESOURCE_MGMT)
static void cliResource(const char *cmdName, char *cmdline)
{
char *pch = NULL;
char *saveptr;
pch = strtok_r(cmdline, " ", &saveptr);
if (!pch) {
printResource(DUMP_MASTER | HIDE_UNUSED, NULL);
return;
} else if (strcasecmp(pch, "show") == 0) {
#ifdef MINIMAL_CLI
cliPrintLine("IO");
#else
cliPrintLine("Currently active IO resource assignments:\r\n(reboot to update)");
cliRepeat('-', 20);
#endif
for (int i = 0; i < DEFIO_IO_USED_COUNT; i++) {
const char* owner;
owner = ownerNames[ioRecs[i].owner];
cliPrintf("%c%02d: %s", IO_GPIOPortIdx(ioRecs + i) + 'A', IO_GPIOPinIdx(ioRecs + i), owner);
if (ioRecs[i].index > 0) {
cliPrintf(" %d", ioRecs[i].index);
}
cliPrintLinefeed();
}
pch = strtok_r(NULL, " ", &saveptr);
if (strcasecmp(pch, "all") == 0) {
#if defined(USE_TIMER_MGMT)
cliTimer(cmdName, "show");
#endif
#if defined(USE_DMA)
cliDma(cmdName, "show");
#endif
}
return;
}
unsigned resourceIndex = 0;
for (; ; resourceIndex++) {
if (resourceIndex >= ARRAYLEN(resourceTable)) {
cliPrintErrorLinef(cmdName, "INVALID RESOURCE NAME: '%s'", pch);
return;
}
const char *resourceName = ownerNames[resourceTable[resourceIndex].owner];
if (strncasecmp(pch, resourceName, strlen(resourceName)) == 0) {
break;
}
}
pch = strtok_r(NULL, " ", &saveptr);
int index = atoi(pch);
if (resourceTable[resourceIndex].maxIndex > 0 || index > 0) {
if (index <= 0 || index > MAX_RESOURCE_INDEX(resourceTable[resourceIndex].maxIndex)) {
cliShowArgumentRangeError(cmdName, "INDEX", 1, MAX_RESOURCE_INDEX(resourceTable[resourceIndex].maxIndex));
return;
}
index -= 1;
pch = strtok_r(NULL, " ", &saveptr);
}
ioTag_t *tag = getIoTag(resourceTable[resourceIndex], index);
if (strlen(pch) > 0) {
if (strToPin(pch, tag)) {
if (*tag == IO_TAG_NONE) {
#ifdef MINIMAL_CLI
cliPrintLine("Freed");
#else
cliPrintLine("Resource is freed");
#endif
return;
} else {
ioRec_t *rec = IO_Rec(IOGetByTag(*tag));
if (rec) {
resourceCheck(resourceIndex, index, *tag);
#ifdef MINIMAL_CLI
cliPrintLinef(" %c%02d set", IO_GPIOPortIdx(rec) + 'A', IO_GPIOPinIdx(rec));
#else
cliPrintLinef("\r\nResource is set to %c%02d", IO_GPIOPortIdx(rec) + 'A', IO_GPIOPinIdx(rec));
#endif
} else {
cliShowParseError(cmdName);
}
return;
}
}
}
cliShowParseError(cmdName);
}
#endif
#ifdef USE_DSHOT_TELEMETRY
static void cliDshotTelemetryInfo(const char *cmdName, char *cmdline)
{
UNUSED(cmdName);
UNUSED(cmdline);
if (useDshotTelemetry) {
cliPrintLinef("Dshot reads: %u", dshotTelemetryState.readCount);
cliPrintLinef("Dshot invalid pkts: %u", dshotTelemetryState.invalidPacketCount);
uint32_t directionChangeCycles = dshotDMAHandlerCycleCounters.changeDirectionCompletedAt - dshotDMAHandlerCycleCounters.irqAt;
uint32_t directionChangeDurationUs = clockCyclesToMicros(directionChangeCycles);
cliPrintLinef("Dshot directionChange cycles: %u, micros: %u", directionChangeCycles, directionChangeDurationUs);
cliPrintLinefeed();
#ifdef USE_DSHOT_TELEMETRY_STATS
cliPrintLine("Motor eRPM RPM Hz Invalid");
cliPrintLine("===== ======= ====== ===== =======");
#else
cliPrintLine("Motor eRPM RPM Hz");
cliPrintLine("===== ======= ====== =====");
#endif
for (uint8_t i = 0; i < getMotorCount(); i++) {
cliPrintf("%5d %7d %6d %5d ", i,
(int)getDshotTelemetry(i) * 100,
(int)getDshotTelemetry(i) * 100 * 2 / motorConfig()->motorPoleCount,
(int)getDshotTelemetry(i) * 100 * 2 / motorConfig()->motorPoleCount / 60);
#ifdef USE_DSHOT_TELEMETRY_STATS
if (isDshotMotorTelemetryActive(i)) {
const int calcPercent = getDshotTelemetryMotorInvalidPercent(i);
cliPrintLinef("%3d.%02d%%", calcPercent / 100, calcPercent % 100);
} else {
cliPrintLine("NO DATA");
}
#else
cliPrintLinefeed();
#endif
}
cliPrintLinefeed();
const int len = MAX_GCR_EDGES;
#ifdef DEBUG_BBDECODE
extern uint16_t bbBuffer[134];
for (int i = 0; i < 134; i++) {
cliPrintf("%u ", (int)bbBuffer[i]);
}
cliPrintLinefeed();
#endif
for (int i = 0; i < len; i++) {
cliPrintf("%u ", (int)dshotTelemetryState.inputBuffer[i]);
}
cliPrintLinefeed();
for (int i = 1; i < len; i++) {
cliPrintf("%u ", (int)(dshotTelemetryState.inputBuffer[i] - dshotTelemetryState.inputBuffer[i-1]));
}
cliPrintLinefeed();
} else {
cliPrintLine("Dshot telemetry not enabled");
}
}
#endif
static void printConfig(const char *cmdName, char *cmdline, bool doDiff)
{
dumpFlags_t dumpMask = DUMP_MASTER;
char *options;
if ((options = checkCommand(cmdline, "master"))) {
dumpMask = DUMP_MASTER; // only
} else if ((options = checkCommand(cmdline, "profile"))) {
dumpMask = DUMP_PROFILE; // only
} else if ((options = checkCommand(cmdline, "rates"))) {
dumpMask = DUMP_RATES; // only
} else if ((options = checkCommand(cmdline, "hardware"))) {
dumpMask = DUMP_MASTER | HARDWARE_ONLY; // Show only hardware related settings (useful to generate unified target configs).
} else if ((options = checkCommand(cmdline, "all"))) {
dumpMask = DUMP_ALL; // all profiles and rates
} else {
options = cmdline;
}
if (doDiff) {
dumpMask = dumpMask | DO_DIFF;
}
if (checkCommand(options, "defaults")) {
dumpMask = dumpMask | SHOW_DEFAULTS; // add default values as comments for changed values
} else if (checkCommand(options, "bare")) {
dumpMask = dumpMask | BARE; // show the diff / dump without extra commands and board specific data
}
backupAndResetConfigs((dumpMask & BARE) == 0);
#ifdef USE_CLI_BATCH
bool batchModeEnabled = false;
#endif
if ((dumpMask & DUMP_MASTER) || (dumpMask & DUMP_ALL)) {
cliPrintHashLine("version");
cliVersion(cmdName, "");
if (!(dumpMask & BARE)) {
#ifdef USE_CLI_BATCH
cliPrintHashLine("start the command batch");
cliPrintLine("batch start");
batchModeEnabled = true;
#endif
if ((dumpMask & (DUMP_ALL | DO_DIFF)) == (DUMP_ALL | DO_DIFF)) {
cliPrintHashLine("reset configuration to default settings");
cliPrintLine("defaults nosave");
}
}
#if defined(USE_BOARD_INFO)
cliPrintLinefeed();
printBoardName(dumpMask);
printManufacturerId(dumpMask);
#endif
if ((dumpMask & DUMP_ALL) && !(dumpMask & BARE)) {
cliMcuId(cmdName, "");
#if defined(USE_SIGNATURE)
cliSignature(cmdName, "");
#endif
}
if (!(dumpMask & HARDWARE_ONLY)) {
printName(dumpMask, &pilotConfig_Copy);
}
#ifdef USE_RESOURCE_MGMT
printResource(dumpMask, "resources");
#if defined(USE_TIMER_MGMT)
printTimer(dumpMask, "timer");
#endif
#ifdef USE_DMA_SPEC
printDmaopt(dumpMask, "dma");
#endif
#endif
if (!(dumpMask & HARDWARE_ONLY)) {
#ifndef USE_QUAD_MIXER_ONLY
const char *mixerHeadingStr = "mixer";
const bool equalsDefault = mixerConfig_Copy.mixerMode == mixerConfig()->mixerMode;
mixerHeadingStr = cliPrintSectionHeading(dumpMask, !equalsDefault, mixerHeadingStr);
const char *formatMixer = "mixer %s";
cliDefaultPrintLinef(dumpMask, equalsDefault, formatMixer, mixerNames[mixerConfig()->mixerMode - 1]);
cliDumpPrintLinef(dumpMask, equalsDefault, formatMixer, mixerNames[mixerConfig_Copy.mixerMode - 1]);
cliDumpPrintLinef(dumpMask, customMotorMixer(0)->throttle == 0.0f, "\r\nmmix reset\r\n");
printMotorMix(dumpMask, customMotorMixer_CopyArray, customMotorMixer(0), mixerHeadingStr);
#ifdef USE_SERVOS
printServo(dumpMask, servoParams_CopyArray, servoParams(0), "servo");
const char *servoMixHeadingStr = "servo mixer";
if (!(dumpMask & DO_DIFF) || customServoMixers(0)->rate != 0) {
cliPrintHashLine(servoMixHeadingStr);
cliPrintLine("smix reset\r\n");
servoMixHeadingStr = NULL;
}
printServoMix(dumpMask, customServoMixers_CopyArray, customServoMixers(0), servoMixHeadingStr);
#endif
#endif
printFeature(dumpMask, featureConfig_Copy.enabledFeatures, featureConfig()->enabledFeatures, "feature");
#if defined(USE_BEEPER)
printBeeper(dumpMask, beeperConfig_Copy.beeper_off_flags, beeperConfig()->beeper_off_flags, "beeper", BEEPER_ALLOWED_MODES, "beeper");
#if defined(USE_DSHOT)
printBeeper(dumpMask, beeperConfig_Copy.dshotBeaconOffFlags, beeperConfig()->dshotBeaconOffFlags, "beacon", DSHOT_BEACON_ALLOWED_MODES, "beacon");
#endif
#endif // USE_BEEPER
printMap(dumpMask, &rxConfig_Copy, rxConfig(), "map");
printSerial(dumpMask, &serialConfig_Copy, serialConfig(), "serial");
#ifdef USE_LED_STRIP_STATUS_MODE
printLed(dumpMask, ledStripStatusModeConfig_Copy.ledConfigs, ledStripStatusModeConfig()->ledConfigs, "led");
printColor(dumpMask, ledStripStatusModeConfig_Copy.colors, ledStripStatusModeConfig()->colors, "color");
printModeColor(dumpMask, &ledStripStatusModeConfig_Copy, ledStripStatusModeConfig(), "mode_color");
#endif
printAux(dumpMask, modeActivationConditions_CopyArray, modeActivationConditions(0), "aux");
printAdjustmentRange(dumpMask, adjustmentRanges_CopyArray, adjustmentRanges(0), "adjrange");
printRxRange(dumpMask, rxChannelRangeConfigs_CopyArray, rxChannelRangeConfigs(0), "rxrange");
#ifdef USE_VTX_TABLE
printVtxTable(dumpMask, &vtxTableConfig_Copy, vtxTableConfig(), "vtxtable");
#endif
#ifdef USE_VTX_CONTROL
printVtx(dumpMask, &vtxConfig_Copy, vtxConfig(), "vtx");
#endif
printRxFailsafe(dumpMask, rxFailsafeChannelConfigs_CopyArray, rxFailsafeChannelConfigs(0), "rxfail");
}
if (dumpMask & HARDWARE_ONLY) {
dumpAllValues(cmdName, HARDWARE_VALUE, dumpMask, "master");
} else {
dumpAllValues(cmdName, MASTER_VALUE, dumpMask, "master");
if (dumpMask & DUMP_ALL) {
for (uint32_t pidProfileIndex = 0; pidProfileIndex < PID_PROFILE_COUNT; pidProfileIndex++) {
cliDumpPidProfile(cmdName, pidProfileIndex, dumpMask);
}
pidProfileIndexToUse = systemConfig_Copy.pidProfileIndex;
if (!(dumpMask & BARE)) {
cliPrintHashLine("restore original profile selection");
cliProfile(cmdName, "");
}
pidProfileIndexToUse = CURRENT_PROFILE_INDEX;
for (uint32_t rateIndex = 0; rateIndex < CONTROL_RATE_PROFILE_COUNT; rateIndex++) {
cliDumpRateProfile(cmdName, rateIndex, dumpMask);
}
rateProfileIndexToUse = systemConfig_Copy.activeRateProfile;
if (!(dumpMask & BARE)) {
cliPrintHashLine("restore original rateprofile selection");
cliRateProfile(cmdName, "");
cliPrintHashLine("save configuration");
cliPrint("save");
#ifdef USE_CLI_BATCH
batchModeEnabled = false;
#endif
}
rateProfileIndexToUse = CURRENT_PROFILE_INDEX;
} else {
cliDumpPidProfile(cmdName, systemConfig_Copy.pidProfileIndex, dumpMask);
cliDumpRateProfile(cmdName, systemConfig_Copy.activeRateProfile, dumpMask);
}
}
} else if (dumpMask & DUMP_PROFILE) {
cliDumpPidProfile(cmdName, systemConfig_Copy.pidProfileIndex, dumpMask);
} else if (dumpMask & DUMP_RATES) {
cliDumpRateProfile(cmdName, systemConfig_Copy.activeRateProfile, dumpMask);
}
#ifdef USE_CLI_BATCH
if (batchModeEnabled) {
cliPrintHashLine("end the command batch");
cliPrintLine("batch end");
}
#endif
// restore configs from copies
restoreConfigs();
}
static void cliDump(const char *cmdName, char *cmdline)
{
printConfig(cmdName, cmdline, false);
}
static void cliDiff(const char *cmdName, char *cmdline)
{
printConfig(cmdName, cmdline, true);
}
#if defined(USE_USB_MSC)
static void cliMsc(const char *cmdName, char *cmdline)
{
if (mscCheckFilesystemReady()) {
#ifdef USE_RTC_TIME
int timezoneOffsetMinutes = timeConfig()->tz_offsetMinutes;
if (!isEmpty(cmdline)) {
timezoneOffsetMinutes = atoi(cmdline);
if ((timezoneOffsetMinutes < TIMEZONE_OFFSET_MINUTES_MIN) || (timezoneOffsetMinutes > TIMEZONE_OFFSET_MINUTES_MAX)) {
cliPrintErrorLinef(cmdName, "INVALID TIMEZONE OFFSET");
return;
}
}
#else
int timezoneOffsetMinutes = 0;
UNUSED(cmdline);
#endif
cliPrintHashLine("Restarting in mass storage mode");
cliPrint("\r\nRebooting");
cliWriterFlush();
waitForSerialPortToFinishTransmitting(cliPort);
motorShutdown();
systemResetToMsc(timezoneOffsetMinutes);
} else {
cliPrintHashLine("Storage not present or failed to initialize!");
}
}
#endif
typedef void cliCommandFn(const char* name, char *cmdline);
typedef struct {
const char *name;
#ifndef MINIMAL_CLI
const char *description;
const char *args;
#endif
cliCommandFn *cliCommand;
} clicmd_t;
#ifndef MINIMAL_CLI
#define CLI_COMMAND_DEF(name, description, args, cliCommand) \
{ \
name , \
description , \
args , \
cliCommand \
}
#else
#define CLI_COMMAND_DEF(name, description, args, cliCommand) \
{ \
name, \
cliCommand \
}
#endif
static void cliHelp(const char *cmdName, char *cmdline);
// should be sorted a..z for bsearch()
const clicmd_t cmdTable[] = {
CLI_COMMAND_DEF("adjrange", "configure adjustment ranges", "<index> <unused> <range channel> <start> <end> <function> <select channel> [<center> <scale>]", cliAdjustmentRange),
CLI_COMMAND_DEF("aux", "configure modes", "<index> <mode> <aux> <start> <end> <logic>", cliAux),
#ifdef USE_CLI_BATCH
CLI_COMMAND_DEF("batch", "start or end a batch of commands", "start | end", cliBatch),
#endif
#if defined(USE_BEEPER)
#if defined(USE_DSHOT)
CLI_COMMAND_DEF("beacon", "enable/disable Dshot beacon for a condition", "list\r\n"
"\t<->[name]", cliBeacon),
#endif
CLI_COMMAND_DEF("beeper", "enable/disable beeper for a condition", "list\r\n"
"\t<->[name]", cliBeeper),
#endif // USE_BEEPER
#if defined(USE_RX_BIND)
CLI_COMMAND_DEF("bind_rx", "initiate binding for RX SPI or SRXL2", NULL, cliRxBind),
#endif
#if defined(USE_FLASH_BOOT_LOADER)
CLI_COMMAND_DEF("bl", "reboot into bootloader", "[flash|rom]", cliBootloader),
#else
CLI_COMMAND_DEF("bl", "reboot into bootloader", "[rom]", cliBootloader),
#endif
#if defined(USE_BOARD_INFO)
CLI_COMMAND_DEF("board_name", "get / set the name of the board model", "[board name]", cliBoardName),
#endif
#ifdef USE_LED_STRIP_STATUS_MODE
CLI_COMMAND_DEF("color", "configure colors", NULL, cliColor),
#endif
#if defined(USE_CUSTOM_DEFAULTS)
CLI_COMMAND_DEF("defaults", "reset to defaults and reboot", "[nosave|bare|show]", cliDefaults),
#else
CLI_COMMAND_DEF("defaults", "reset to defaults and reboot", "[nosave|show]", cliDefaults),
#endif
CLI_COMMAND_DEF("diff", "list configuration changes from default", "[master|profile|rates|hardware|all] {defaults|bare}", cliDiff),
#ifdef USE_RESOURCE_MGMT
#ifdef USE_DMA
#ifdef USE_DMA_SPEC
CLI_COMMAND_DEF("dma", "show/set DMA assignments", "<> | <device> <index> list | <device> <index> [<option>|none] | list | show", cliDma),
#else
CLI_COMMAND_DEF("dma", "show DMA assignments", "show", cliDma),
#endif
#endif
#endif
#ifdef USE_DSHOT_TELEMETRY
CLI_COMMAND_DEF("dshot_telemetry_info", "display dshot telemetry info and stats", NULL, cliDshotTelemetryInfo),
#endif
#ifdef USE_DSHOT
CLI_COMMAND_DEF("dshotprog", "program DShot ESC(s)", "<index> <command>+", cliDshotProg),
#endif
CLI_COMMAND_DEF("dump", "dump configuration",
"[master|profile|rates|hardware|all] {defaults|bare}", cliDump),
#ifdef USE_ESCSERIAL
CLI_COMMAND_DEF("escprog", "passthrough esc to serial", "<mode [sk/bl/ki/cc]> <index>", cliEscPassthrough),
#endif
CLI_COMMAND_DEF("exit", NULL, NULL, cliExit),
CLI_COMMAND_DEF("feature", "configure features",
"list\r\n"
"\t<->[name]", cliFeature),
#ifdef USE_FLASHFS
CLI_COMMAND_DEF("flash_erase", "erase flash chip", NULL, cliFlashErase),
CLI_COMMAND_DEF("flash_info", "show flash chip info", NULL, cliFlashInfo),
#ifdef USE_FLASH_TOOLS
CLI_COMMAND_DEF("flash_read", NULL, "<length> <address>", cliFlashRead),
CLI_COMMAND_DEF("flash_scan", "scan flash device for errors", NULL, cliFlashVerify),
CLI_COMMAND_DEF("flash_write", NULL, "<address> <message>", cliFlashWrite),
#endif
#endif
CLI_COMMAND_DEF("get", "get variable value", "[name]", cliGet),
#ifdef USE_GPS
CLI_COMMAND_DEF("gpspassthrough", "passthrough gps to serial", NULL, cliGpsPassthrough),
#endif
#if defined(USE_GYRO_REGISTER_DUMP) && !defined(SIMULATOR_BUILD)
CLI_COMMAND_DEF("gyroregisters", "dump gyro config registers contents", NULL, cliDumpGyroRegisters),
#endif
CLI_COMMAND_DEF("help", "display command help", "[search string]", cliHelp),
#ifdef USE_LED_STRIP_STATUS_MODE
CLI_COMMAND_DEF("led", "configure leds", NULL, cliLed),
#endif
#if defined(USE_BOARD_INFO)
CLI_COMMAND_DEF("manufacturer_id", "get / set the id of the board manufacturer", "[manufacturer id]", cliManufacturerId),
#endif
CLI_COMMAND_DEF("map", "configure rc channel order", "[<map>]", cliMap),
CLI_COMMAND_DEF("mcu_id", "id of the microcontroller", NULL, cliMcuId),
#ifndef USE_QUAD_MIXER_ONLY
CLI_COMMAND_DEF("mixer", "configure mixer", "list\r\n\t<name>", cliMixer),
#endif
CLI_COMMAND_DEF("mmix", "custom motor mixer", NULL, cliMotorMix),
#ifdef USE_LED_STRIP_STATUS_MODE
CLI_COMMAND_DEF("mode_color", "configure mode and special colors", NULL, cliModeColor),
#endif
CLI_COMMAND_DEF("motor", "get/set motor", "<index> [<value>]", cliMotor),
#ifdef USE_USB_MSC
#ifdef USE_RTC_TIME
CLI_COMMAND_DEF("msc", "switch into msc mode", "[<timezone offset minutes>]", cliMsc),
#else
CLI_COMMAND_DEF("msc", "switch into msc mode", NULL, cliMsc),
#endif
#endif
#ifndef MINIMAL_CLI
CLI_COMMAND_DEF("play_sound", NULL, "[<index>]", cliPlaySound),
#endif
CLI_COMMAND_DEF("profile", "change profile", "[<index>]", cliProfile),
CLI_COMMAND_DEF("rateprofile", "change rate profile", "[<index>]", cliRateProfile),
#ifdef USE_RC_SMOOTHING_FILTER
CLI_COMMAND_DEF("rc_smoothing_info", "show rc_smoothing operational settings", NULL, cliRcSmoothing),
#endif // USE_RC_SMOOTHING_FILTER
#ifdef USE_RESOURCE_MGMT
CLI_COMMAND_DEF("resource", "show/set resources", "<> | <resource name> <index> [<pin>|none] | show [all]", cliResource),
#endif
CLI_COMMAND_DEF("rxfail", "show/set rx failsafe settings", NULL, cliRxFailsafe),
CLI_COMMAND_DEF("rxrange", "configure rx channel ranges", NULL, cliRxRange),
CLI_COMMAND_DEF("save", "save and reboot", NULL, cliSave),
#ifdef USE_SDCARD
CLI_COMMAND_DEF("sd_info", "sdcard info", NULL, cliSdInfo),
#endif
CLI_COMMAND_DEF("serial", "configure serial ports", NULL, cliSerial),
#if defined(USE_SERIAL_PASSTHROUGH)
#if defined(USE_PINIO)
CLI_COMMAND_DEF("serialpassthrough", "passthrough serial data data from port 1 to VCP / port 2", "<id1> [<baud1>] [<mode>1] [none|<dtr pinio>|reset] [<id2>] [<baud2>] [<mode2>]", cliSerialPassthrough),
#else
CLI_COMMAND_DEF("serialpassthrough", "passthrough serial data from port 1 to VCP / port 2", "<id1> [<baud1>] [<mode1>] [none|reset] [<id2>] [<baud2>] [<mode2>]", cliSerialPassthrough),
#endif
#endif
#ifdef USE_SERVOS
CLI_COMMAND_DEF("servo", "configure servos", NULL, cliServo),
#endif
CLI_COMMAND_DEF("set", "change setting", "[<name>=<value>]", cliSet),
#if defined(USE_SIGNATURE)
CLI_COMMAND_DEF("signature", "get / set the board type signature", "[signature]", cliSignature),
#endif
#ifdef USE_SERVOS
CLI_COMMAND_DEF("smix", "servo mixer", "<rule> <servo> <source> <rate> <speed> <min> <max> <box>\r\n"
"\treset\r\n"
"\tload <mixer>\r\n"
"\treverse <servo> <source> r|n", cliServoMix),
#endif
CLI_COMMAND_DEF("status", "show status", NULL, cliStatus),
#if defined(USE_TASK_STATISTICS)
CLI_COMMAND_DEF("tasks", "show task stats", NULL, cliTasks),
#endif
#ifdef USE_TIMER_MGMT
CLI_COMMAND_DEF("timer", "show/set timers", "<> | <pin> list | <pin> [af<alternate function>|none|<option(deprecated)>] | list | show", cliTimer),
#endif
CLI_COMMAND_DEF("version", "show version", NULL, cliVersion),
#ifdef USE_VTX_CONTROL
#ifdef MINIMAL_CLI
CLI_COMMAND_DEF("vtx", "vtx channels on switch", NULL, cliVtx),
#else
CLI_COMMAND_DEF("vtx", "vtx channels on switch", "<index> <aux_channel> <vtx_band> <vtx_channel> <vtx_power> <start_range> <end_range>", cliVtx),
#endif
#endif
#ifdef USE_VTX_TABLE
CLI_COMMAND_DEF("vtx_info", "vtx power config dump", NULL, cliVtxInfo),
CLI_COMMAND_DEF("vtxtable", "vtx frequency table", "<band> <bandname> <bandletter> [FACTORY|CUSTOM] <freq> ... <freq>\r\n", cliVtxTable),
#endif
};
static void cliHelp(const char *cmdName, char *cmdline)
{
bool anyMatches = false;
for (uint32_t i = 0; i < ARRAYLEN(cmdTable); i++) {
bool printEntry = false;
if (isEmpty(cmdline)) {
printEntry = true;
} else {
if (strcasestr(cmdTable[i].name, cmdline)
#ifndef MINIMAL_CLI
|| strcasestr(cmdTable[i].description, cmdline)
#endif
) {
printEntry = true;
}
}
if (printEntry) {
anyMatches = true;
cliPrint(cmdTable[i].name);
#ifndef MINIMAL_CLI
if (cmdTable[i].description) {
cliPrintf(" - %s", cmdTable[i].description);
}
if (cmdTable[i].args) {
cliPrintf("\r\n\t%s", cmdTable[i].args);
}
#endif
cliPrintLinefeed();
}
}
if (!isEmpty(cmdline) && !anyMatches) {
cliPrintErrorLinef(cmdName, "NO MATCHES FOR '%s'", cmdline);
}
}
static void processCharacter(const char c)
{
if (bufferIndex && (c == '\n' || c == '\r')) {
// enter pressed
cliPrintLinefeed();
#if defined(USE_CUSTOM_DEFAULTS) && defined(DEBUG_CUSTOM_DEFAULTS)
if (processingCustomDefaults) {
cliPrint("d: ");
}
#endif
// Strip comment starting with # from line
char *p = cliBuffer;
p = strchr(p, '#');
if (NULL != p) {
bufferIndex = (uint32_t)(p - cliBuffer);
}
// Strip trailing whitespace
while (bufferIndex > 0 && cliBuffer[bufferIndex - 1] == ' ') {
bufferIndex--;
}
// Process non-empty lines
if (bufferIndex > 0) {
cliBuffer[bufferIndex] = 0; // null terminate
const clicmd_t *cmd;
char *options;
for (cmd = cmdTable; cmd < cmdTable + ARRAYLEN(cmdTable); cmd++) {
if ((options = checkCommand(cliBuffer, cmd->name))) {
break;
}
}
if (cmd < cmdTable + ARRAYLEN(cmdTable)) {
cmd->cliCommand(cmd->name, options);
} else {
cliPrintError("input", "UNKNOWN COMMAND, TRY 'HELP'");
}
bufferIndex = 0;
}
memset(cliBuffer, 0, sizeof(cliBuffer));
// 'exit' will reset this flag, so we don't need to print prompt again
if (!cliMode) {
return;
}
cliPrompt();
} else if (bufferIndex < sizeof(cliBuffer) && c >= 32 && c <= 126) {
if (!bufferIndex && c == ' ')
return; // Ignore leading spaces
cliBuffer[bufferIndex++] = c;
cliWrite(c);
}
}
static void processCharacterInteractive(const char c)
{
if (c == '\t' || c == '?') {
// do tab completion
const clicmd_t *cmd, *pstart = NULL, *pend = NULL;
uint32_t i = bufferIndex;
for (cmd = cmdTable; cmd < cmdTable + ARRAYLEN(cmdTable); cmd++) {
if (bufferIndex && (strncasecmp(cliBuffer, cmd->name, bufferIndex) != 0)) {
continue;
}
if (!pstart) {
pstart = cmd;
}
pend = cmd;
}
if (pstart) { /* Buffer matches one or more commands */
for (; ; bufferIndex++) {
if (pstart->name[bufferIndex] != pend->name[bufferIndex])
break;
if (!pstart->name[bufferIndex] && bufferIndex < sizeof(cliBuffer) - 2) {
/* Unambiguous -- append a space */
cliBuffer[bufferIndex++] = ' ';
cliBuffer[bufferIndex] = '\0';
break;
}
cliBuffer[bufferIndex] = pstart->name[bufferIndex];
}
}
if (!bufferIndex || pstart != pend) {
/* Print list of ambiguous matches */
cliPrint("\r\n\033[K");
for (cmd = pstart; cmd <= pend; cmd++) {
cliPrint(cmd->name);
cliWrite('\t');
}
cliPrompt();
i = 0; /* Redraw prompt */
}
for (; i < bufferIndex; i++)
cliWrite(cliBuffer[i]);
} else if (!bufferIndex && c == 4) { // CTRL-D
cliExit("", cliBuffer);
return;
} else if (c == 12) { // NewPage / CTRL-L
// clear screen
cliPrint("\033[2J\033[1;1H");
cliPrompt();
} else if (c == 127) {
// backspace
if (bufferIndex) {
cliBuffer[--bufferIndex] = 0;
cliPrint("\010 \010");
}
} else {
processCharacter(c);
}
}
void cliProcess(void)
{
if (!cliWriter) {
return;
}
// Flush the buffer to get rid of any MSP data polls sent by configurator after CLI was invoked
cliWriterFlush();
while (serialRxBytesWaiting(cliPort)) {
uint8_t c = serialRead(cliPort);
processCharacterInteractive(c);
}
}
#if defined(USE_CUSTOM_DEFAULTS)
static bool cliProcessCustomDefaults(bool quiet)
{
if (processingCustomDefaults || !hasCustomDefaults()) {
return false;
}
bufWriter_t *cliWriterTemp = NULL;
if (quiet
#if !defined(DEBUG_CUSTOM_DEFAULTS)
|| true
#endif
) {
cliWriterTemp = cliWriter;
cliWriter = NULL;
}
if (quiet) {
cliErrorWriter = NULL;
}
memcpy(cliBufferTemp, cliBuffer, sizeof(cliBuffer));
uint32_t bufferIndexTemp = bufferIndex;
bufferIndex = 0;
processingCustomDefaults = true;
char *customDefaultsPtr = customDefaultsStart;
while (customDefaultsHasNext(customDefaultsPtr)) {
processCharacter(*customDefaultsPtr++);
}
// Process a newline at the very end so that the last command gets executed,
// even when the file did not contain a trailing newline
processCharacter('\r');
processingCustomDefaults = false;
if (cliWriterTemp) {
cliWriter = cliWriterTemp;
cliErrorWriter = cliWriter;
}
memcpy(cliBuffer, cliBufferTemp, sizeof(cliBuffer));
bufferIndex = bufferIndexTemp;
systemConfigMutable()->configurationState = CONFIGURATION_STATE_DEFAULTS_CUSTOM;
return true;
}
#endif
void cliEnter(serialPort_t *serialPort)
{
cliMode = true;
cliPort = serialPort;
setPrintfSerialPort(cliPort);
cliWriter = bufWriterInit(cliWriteBuffer, sizeof(cliWriteBuffer), (bufWrite_t)serialWriteBufShim, serialPort);
cliErrorWriter = cliWriter;
schedulerSetCalulateTaskStatistics(systemConfig()->task_statistics);
#ifndef MINIMAL_CLI
cliPrintLine("\r\nEntering CLI Mode, type 'exit' to return, or 'help'");
#else
cliPrintLine("\r\nCLI");
#endif
setArmingDisabled(ARMING_DISABLED_CLI);
cliPrompt();
#ifdef USE_CLI_BATCH
resetCommandBatch();
#endif
}
#endif // USE_CLI