1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-14 20:10:18 +03:00
betaflight/src/main/drivers/adc_stm32f10x.c

192 lines
6.9 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#include "build_config.h"
#include "system.h"
#include "sensors/sensors.h" // FIXME dependency into the main code
#include "sensor.h"
#include "accgyro.h"
#include "adc.h"
#include "adc_impl.h"
#include "io.h"
#include "rcc.h"
#ifndef ADC_INSTANCE
#define ADC_INSTANCE ADC1
#endif
const adcDevice_t adcHardware[] = {
{ .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), .rccDMA = RCC_AHB(DMA1), .DMAy_Channelx = DMA1_Channel1 }
};
ADCDevice adcDeviceByInstance(ADC_TypeDef *instance)
{
if (instance == ADC1)
return ADCDEV_1;
/* TODO -- ADC2 available on large 10x devices.
if (instance == ADC2)
return ADCDEV_2;
*/
return ADCINVALID;
}
const adcTagMap_t adcTagMap[] = {
{ DEFIO_TAG_E__PA0, ADC_Channel_0 }, // ADC12
{ DEFIO_TAG_E__PA1, ADC_Channel_1 }, // ADC12
{ DEFIO_TAG_E__PA2, ADC_Channel_2 }, // ADC12
{ DEFIO_TAG_E__PA3, ADC_Channel_3 }, // ADC12
{ DEFIO_TAG_E__PA4, ADC_Channel_4 }, // ADC12
{ DEFIO_TAG_E__PA5, ADC_Channel_5 }, // ADC12
{ DEFIO_TAG_E__PA6, ADC_Channel_6 }, // ADC12
{ DEFIO_TAG_E__PA7, ADC_Channel_7 }, // ADC12
{ DEFIO_TAG_E__PB0, ADC_Channel_8 }, // ADC12
{ DEFIO_TAG_E__PB1, ADC_Channel_9 }, // ADC12
};
// Driver for STM32F103CB onboard ADC
//
// Naze32
// Battery Voltage (VBAT) is connected to PA4 (ADC1_IN4) with 10k:1k divider
// RSSI ADC uses CH2 (PA1, ADC1_IN1)
// Current ADC uses CH8 (PB1, ADC1_IN9)
//
// NAZE rev.5 hardware has PA5 (ADC1_IN5) on breakout pad on bottom of board
//
void adcInit(drv_adc_config_t *init)
{
#if !defined(VBAT_ADC_PIN) && !defined(EXTERNAL1_ADC_PIN) && !defined(RSSI_ADC_PIN) && !defined(CURRENT_METER_ADC_PIN)
UNUSED(init);
#endif
uint8_t i;
uint8_t configuredAdcChannels = 0;
memset(&adcConfig, 0, sizeof(adcConfig));
#ifdef VBAT_ADC_PIN
if (init->enableVBat) {
IOInit(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_BATTERY].adcChannel = adcChannelByTag(IO_TAG(VBAT_ADC_PIN));
adcConfig[ADC_BATTERY].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_BATTERY].enabled = true;
adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_239Cycles5;
}
#endif
#ifdef RSSI_ADC_PIN
if (init->enableRSSI) {
IOInit(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_RSSI].adcChannel = adcChannelByTag(IO_TAG(RSSI_ADC_PIN));
adcConfig[ADC_RSSI].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_RSSI].enabled = true;
adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_239Cycles5;
}
#endif
#ifdef EXTERNAL1_ADC_PIN
if (init->enableExternal1) {
IOInit(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_EXTERNAL1].adcChannel = adcChannelByTag(IO_TAG(EXTERNAL1_ADC_PIN));
adcConfig[ADC_EXTERNAL1].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_EXTERNAL1].enabled = true;
adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_239Cycles5;
}
#endif
#ifdef CURRENT_METER_ADC_PIN
if (init->enableCurrentMeter) {
IOInit(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_CURRENT].adcChannel = adcChannelByTag(IO_TAG(CURRENT_METER_ADC_PIN));
adcConfig[ADC_CURRENT].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_CURRENT].enabled = true;
adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_239Cycles5;
}
#endif
ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
if (device == ADCINVALID)
return;
adcDevice_t adc = adcHardware[device];
RCC_ADCCLKConfig(RCC_PCLK2_Div8); // 9MHz from 72MHz APB2 clock(HSE), 8MHz from 64MHz (HSI)
RCC_ClockCmd(adc.rccADC, ENABLE);
RCC_ClockCmd(adc.rccDMA, ENABLE);
// FIXME ADC driver assumes all the GPIO was already placed in 'AIN' mode
DMA_DeInit(adc.DMAy_Channelx);
DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure);
DMA_Cmd(adc.DMAy_Channelx, ENABLE);
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = configuredAdcChannels > 1 ? ENABLE : DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = configuredAdcChannels;
ADC_Init(adc.ADCx, &ADC_InitStructure);
uint8_t rank = 1;
for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcConfig[i].enabled) {
continue;
}
ADC_RegularChannelConfig(adc.ADCx, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
}
ADC_DMACmd(adc.ADCx, ENABLE);
ADC_Cmd(adc.ADCx, ENABLE);
ADC_ResetCalibration(adc.ADCx);
while (ADC_GetResetCalibrationStatus(adc.ADCx));
ADC_StartCalibration(adc.ADCx);
while (ADC_GetCalibrationStatus(adc.ADCx));
ADC_SoftwareStartConvCmd(adc.ADCx, ENABLE);
}