mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-16 04:45:24 +03:00
1264 lines
42 KiB
C
1264 lines
42 KiB
C
/*
|
|
* This file is part of Cleanflight and Betaflight.
|
|
*
|
|
* Cleanflight and Betaflight are free software. You can redistribute
|
|
* this software and/or modify this software under the terms of the
|
|
* GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* Cleanflight and Betaflight are distributed in the hope that they
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this software.
|
|
*
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "platform.h"
|
|
|
|
#include "build/debug.h"
|
|
|
|
#include "common/axis.h"
|
|
#include "common/maths.h"
|
|
#include "common/filter.h"
|
|
|
|
#include "config/feature.h"
|
|
|
|
#include "pg/pg.h"
|
|
#include "pg/pg_ids.h"
|
|
#include "pg/gyrodev.h"
|
|
|
|
#include "drivers/accgyro/accgyro.h"
|
|
#include "drivers/accgyro/accgyro_fake.h"
|
|
#include "drivers/accgyro/accgyro_mpu.h"
|
|
#include "drivers/accgyro/accgyro_mpu3050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6050.h"
|
|
#include "drivers/accgyro/accgyro_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_spi_bmi160.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm20649.h"
|
|
#include "drivers/accgyro/accgyro_spi_icm20689.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu6000.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_spi_mpu9250.h"
|
|
|
|
#ifdef USE_GYRO_L3GD20
|
|
#include "drivers/accgyro/accgyro_spi_l3gd20.h"
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3G4200D
|
|
#include "drivers/accgyro_legacy/accgyro_l3g4200d.h"
|
|
#endif
|
|
|
|
#include "drivers/accgyro/gyro_sync.h"
|
|
#include "drivers/bus_spi.h"
|
|
#include "drivers/io.h"
|
|
|
|
#include "config/config.h"
|
|
#include "fc/runtime_config.h"
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
#include "flight/gyroanalyse.h"
|
|
#endif
|
|
#include "flight/rpm_filter.h"
|
|
|
|
#include "io/beeper.h"
|
|
#include "io/statusindicator.h"
|
|
|
|
#include "scheduler/scheduler.h"
|
|
|
|
#include "sensors/boardalignment.h"
|
|
#include "sensors/gyro.h"
|
|
#include "sensors/sensors.h"
|
|
|
|
#if ((FLASH_SIZE > 128) && (defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_SPI_MPU6500)))
|
|
#define USE_GYRO_SLEW_LIMITER
|
|
#endif
|
|
|
|
FAST_RAM_ZERO_INIT gyro_t gyro;
|
|
static FAST_RAM_ZERO_INIT uint8_t gyroDebugMode;
|
|
|
|
static FAST_RAM_ZERO_INIT uint8_t gyroToUse;
|
|
static FAST_RAM_ZERO_INIT bool overflowDetected;
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
static FAST_RAM_ZERO_INIT timeUs_t overflowTimeUs;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
static FAST_RAM_ZERO_INIT uint8_t overflowAxisMask;
|
|
#endif
|
|
|
|
#ifdef USE_YAW_SPIN_RECOVERY
|
|
static FAST_RAM_ZERO_INIT bool yawSpinDetected;
|
|
static FAST_RAM_ZERO_INIT timeUs_t yawSpinTimeUs;
|
|
#endif
|
|
|
|
static FAST_RAM_ZERO_INIT float accumulatedMeasurements[XYZ_AXIS_COUNT];
|
|
static FAST_RAM_ZERO_INIT float gyroPrevious[XYZ_AXIS_COUNT];
|
|
static FAST_RAM_ZERO_INIT int accumulatedMeasurementCount;
|
|
|
|
static FAST_RAM_ZERO_INIT int16_t gyroSensorTemperature;
|
|
|
|
static bool gyroHasOverflowProtection = true;
|
|
|
|
static FAST_RAM_ZERO_INIT bool useDualGyroDebugging;
|
|
static FAST_RAM_ZERO_INIT flight_dynamics_index_t gyroDebugAxis;
|
|
|
|
typedef struct gyroCalibration_s {
|
|
float sum[XYZ_AXIS_COUNT];
|
|
stdev_t var[XYZ_AXIS_COUNT];
|
|
int32_t cyclesRemaining;
|
|
} gyroCalibration_t;
|
|
|
|
static bool firstArmingCalibrationWasStarted = false;
|
|
|
|
typedef struct gyroSensor_s {
|
|
gyroDev_t gyroDev;
|
|
gyroCalibration_t calibration;
|
|
} gyroSensor_t;
|
|
|
|
STATIC_UNIT_TESTED FAST_RAM_ZERO_INIT gyroSensor_t gyroSensor1;
|
|
#ifdef USE_MULTI_GYRO
|
|
STATIC_UNIT_TESTED FAST_RAM_ZERO_INIT gyroSensor_t gyroSensor2;
|
|
#endif
|
|
|
|
static gyroDetectionFlags_t gyroDetectionFlags = NO_GYROS_DETECTED;
|
|
|
|
#ifdef UNIT_TEST
|
|
STATIC_UNIT_TESTED gyroSensor_t * const gyroSensorPtr = &gyroSensor1;
|
|
STATIC_UNIT_TESTED gyroDev_t * const gyroDevPtr = &gyroSensor1.gyroDev;
|
|
#endif
|
|
|
|
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor);
|
|
static void gyroInitLowpassFilterLpf(int slot, int type, uint16_t lpfHz);
|
|
|
|
#define DEBUG_GYRO_CALIBRATION 3
|
|
|
|
#ifdef STM32F10X
|
|
#define GYRO_SYNC_DENOM_DEFAULT 8
|
|
#elif defined(USE_GYRO_SPI_MPU6000) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) \
|
|
|| defined(USE_GYRO_SPI_ICM20689)
|
|
#define GYRO_SYNC_DENOM_DEFAULT 1
|
|
#else
|
|
#define GYRO_SYNC_DENOM_DEFAULT 3
|
|
#endif
|
|
|
|
#define GYRO_OVERFLOW_TRIGGER_THRESHOLD 31980 // 97.5% full scale (1950dps for 2000dps gyro)
|
|
#define GYRO_OVERFLOW_RESET_THRESHOLD 30340 // 92.5% full scale (1850dps for 2000dps gyro)
|
|
|
|
PG_REGISTER_WITH_RESET_FN(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 7);
|
|
|
|
#ifndef GYRO_CONFIG_USE_GYRO_DEFAULT
|
|
#define GYRO_CONFIG_USE_GYRO_DEFAULT GYRO_CONFIG_USE_GYRO_1
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
#define DYNAMIC_NOTCH_DEFAULT_CENTER_HZ 350
|
|
#define DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ 300
|
|
#endif
|
|
|
|
void pgResetFn_gyroConfig(gyroConfig_t *gyroConfig)
|
|
{
|
|
gyroConfig->gyroCalibrationDuration = 125; // 1.25 seconds
|
|
gyroConfig->gyroMovementCalibrationThreshold = 48;
|
|
gyroConfig->gyro_sync_denom = GYRO_SYNC_DENOM_DEFAULT;
|
|
gyroConfig->gyro_hardware_lpf = GYRO_HARDWARE_LPF_NORMAL;
|
|
gyroConfig->gyro_lowpass_type = FILTER_PT1;
|
|
gyroConfig->gyro_lowpass_hz = 200; // NOTE: dynamic lpf is enabled by default so this setting is actually
|
|
// overridden and the static lowpass 1 is disabled. We can't set this
|
|
// value to 0 otherwise Configurator versions 10.4 and earlier will also
|
|
// reset the lowpass filter type to PT1 overriding the desired BIQUAD setting.
|
|
gyroConfig->gyro_lowpass2_type = FILTER_PT1;
|
|
gyroConfig->gyro_lowpass2_hz = 250;
|
|
gyroConfig->gyro_high_fsr = false;
|
|
gyroConfig->gyro_to_use = GYRO_CONFIG_USE_GYRO_DEFAULT;
|
|
gyroConfig->gyro_soft_notch_hz_1 = 0;
|
|
gyroConfig->gyro_soft_notch_cutoff_1 = 0;
|
|
gyroConfig->gyro_soft_notch_hz_2 = 0;
|
|
gyroConfig->gyro_soft_notch_cutoff_2 = 0;
|
|
gyroConfig->checkOverflow = GYRO_OVERFLOW_CHECK_ALL_AXES;
|
|
gyroConfig->gyro_offset_yaw = 0;
|
|
gyroConfig->yaw_spin_recovery = true;
|
|
gyroConfig->yaw_spin_threshold = 1950;
|
|
gyroConfig->dyn_lpf_gyro_min_hz = 200;
|
|
gyroConfig->dyn_lpf_gyro_max_hz = 500;
|
|
gyroConfig->dyn_notch_range = DYN_NOTCH_RANGE_MEDIUM;
|
|
gyroConfig->dyn_notch_width_percent = 8;
|
|
gyroConfig->dyn_notch_q = 120;
|
|
gyroConfig->dyn_notch_min_hz = 150;
|
|
gyroConfig->gyro_filter_debug_axis = FD_ROLL;
|
|
}
|
|
|
|
#ifdef USE_MULTI_GYRO
|
|
#define ACTIVE_GYRO ((gyroToUse == GYRO_CONFIG_USE_GYRO_2) ? &gyroSensor2 : &gyroSensor1)
|
|
#else
|
|
#define ACTIVE_GYRO (&gyroSensor1)
|
|
#endif
|
|
|
|
const busDevice_t *gyroSensorBus(void)
|
|
{
|
|
return &ACTIVE_GYRO->gyroDev.bus;
|
|
}
|
|
|
|
#ifdef USE_GYRO_REGISTER_DUMP
|
|
const busDevice_t *gyroSensorBusByDevice(uint8_t whichSensor)
|
|
{
|
|
#ifdef USE_MULTI_GYRO
|
|
if (whichSensor == GYRO_CONFIG_USE_GYRO_2) {
|
|
return &gyroSensor2.gyroDev.bus;
|
|
}
|
|
#else
|
|
UNUSED(whichSensor);
|
|
#endif
|
|
return &gyroSensor1.gyroDev.bus;
|
|
}
|
|
#endif // USE_GYRO_REGISTER_DUMP
|
|
|
|
const mpuDetectionResult_t *gyroMpuDetectionResult(void)
|
|
{
|
|
return &ACTIVE_GYRO->gyroDev.mpuDetectionResult;
|
|
}
|
|
|
|
STATIC_UNIT_TESTED gyroHardware_e gyroDetect(gyroDev_t *dev)
|
|
{
|
|
gyroHardware_e gyroHardware = GYRO_DEFAULT;
|
|
|
|
switch (gyroHardware) {
|
|
case GYRO_DEFAULT:
|
|
FALLTHROUGH;
|
|
|
|
#ifdef USE_GYRO_MPU6050
|
|
case GYRO_MPU6050:
|
|
if (mpu6050GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6050;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3G4200D
|
|
case GYRO_L3G4200D:
|
|
if (l3g4200dDetect(dev)) {
|
|
gyroHardware = GYRO_L3G4200D;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_MPU3050
|
|
case GYRO_MPU3050:
|
|
if (mpu3050Detect(dev)) {
|
|
gyroHardware = GYRO_MPU3050;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_L3GD20
|
|
case GYRO_L3GD20:
|
|
if (l3gd20GyroDetect(dev)) {
|
|
gyroHardware = GYRO_L3GD20;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_MPU6000
|
|
case GYRO_MPU6000:
|
|
if (mpu6000SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6000;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
|
|
case GYRO_MPU6500:
|
|
case GYRO_ICM20601:
|
|
case GYRO_ICM20602:
|
|
case GYRO_ICM20608G:
|
|
#ifdef USE_GYRO_SPI_MPU6500
|
|
if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev)) {
|
|
#else
|
|
if (mpu6500GyroDetect(dev)) {
|
|
#endif
|
|
switch (dev->mpuDetectionResult.sensor) {
|
|
case MPU_9250_SPI:
|
|
gyroHardware = GYRO_MPU9250;
|
|
break;
|
|
case ICM_20601_SPI:
|
|
gyroHardware = GYRO_ICM20601;
|
|
break;
|
|
case ICM_20602_SPI:
|
|
gyroHardware = GYRO_ICM20602;
|
|
break;
|
|
case ICM_20608_SPI:
|
|
gyroHardware = GYRO_ICM20608G;
|
|
break;
|
|
default:
|
|
gyroHardware = GYRO_MPU6500;
|
|
}
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_MPU9250
|
|
case GYRO_MPU9250:
|
|
if (mpu9250SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU9250;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_ICM20649
|
|
case GYRO_ICM20649:
|
|
if (icm20649SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20649;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_SPI_ICM20689
|
|
case GYRO_ICM20689:
|
|
if (icm20689SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20689;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_ACCGYRO_BMI160
|
|
case GYRO_BMI160:
|
|
if (bmi160SpiGyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI160;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_FAKE_GYRO
|
|
case GYRO_FAKE:
|
|
if (fakeGyroDetect(dev)) {
|
|
gyroHardware = GYRO_FAKE;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
default:
|
|
gyroHardware = GYRO_NONE;
|
|
}
|
|
|
|
if (gyroHardware != GYRO_NONE) {
|
|
sensorsSet(SENSOR_GYRO);
|
|
}
|
|
|
|
|
|
return gyroHardware;
|
|
}
|
|
|
|
static void gyroPreInitSensor(const gyroDeviceConfig_t *config)
|
|
{
|
|
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
|
|
|| defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) || defined(USE_GYRO_SPI_ICM20689)
|
|
mpuPreInit(config);
|
|
#else
|
|
UNUSED(config);
|
|
#endif
|
|
}
|
|
|
|
static bool gyroDetectSensor(gyroSensor_t *gyroSensor, const gyroDeviceConfig_t *config)
|
|
{
|
|
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) \
|
|
|| defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20601) || defined(USE_GYRO_SPI_ICM20649) || defined(USE_GYRO_SPI_ICM20689) || defined(USE_GYRO_L3GD20)
|
|
|
|
bool gyroFound = mpuDetect(&gyroSensor->gyroDev, config);
|
|
|
|
#if !defined(USE_FAKE_GYRO) // Allow resorting to fake accgyro if defined
|
|
if (!gyroFound) {
|
|
return false;
|
|
}
|
|
#else
|
|
UNUSED(gyroFound);
|
|
#endif
|
|
#else
|
|
UNUSED(config);
|
|
#endif
|
|
|
|
const gyroHardware_e gyroHardware = gyroDetect(&gyroSensor->gyroDev);
|
|
gyroSensor->gyroDev.gyroHardware = gyroHardware;
|
|
|
|
return gyroHardware != GYRO_NONE;
|
|
}
|
|
|
|
static void gyroInitSensor(gyroSensor_t *gyroSensor, const gyroDeviceConfig_t *config)
|
|
{
|
|
gyroSensor->gyroDev.gyro_high_fsr = gyroConfig()->gyro_high_fsr;
|
|
gyroSensor->gyroDev.gyroAlign = config->alignment;
|
|
buildRotationMatrixFromAlignment(&config->customAlignment, &gyroSensor->gyroDev.rotationMatrix);
|
|
gyroSensor->gyroDev.mpuIntExtiTag = config->extiTag;
|
|
|
|
// Must set gyro targetLooptime before gyroDev.init and initialisation of filters
|
|
gyro.targetLooptime = gyroSetSampleRate(&gyroSensor->gyroDev, gyroConfig()->gyro_hardware_lpf, gyroConfig()->gyro_sync_denom);
|
|
gyroSensor->gyroDev.hardware_lpf = gyroConfig()->gyro_hardware_lpf;
|
|
gyroSensor->gyroDev.initFn(&gyroSensor->gyroDev);
|
|
|
|
// As new gyros are supported, be sure to add them below based on whether they are subject to the overflow/inversion bug
|
|
// Any gyro not explicitly defined will default to not having built-in overflow protection as a safe alternative.
|
|
switch (gyroSensor->gyroDev.gyroHardware) {
|
|
case GYRO_NONE: // Won't ever actually get here, but included to account for all gyro types
|
|
case GYRO_DEFAULT:
|
|
case GYRO_FAKE:
|
|
case GYRO_MPU6050:
|
|
case GYRO_L3G4200D:
|
|
case GYRO_MPU3050:
|
|
case GYRO_L3GD20:
|
|
case GYRO_BMI160:
|
|
case GYRO_MPU6000:
|
|
case GYRO_MPU6500:
|
|
case GYRO_MPU9250:
|
|
gyroSensor->gyroDev.gyroHasOverflowProtection = true;
|
|
break;
|
|
|
|
case GYRO_ICM20601:
|
|
case GYRO_ICM20602:
|
|
case GYRO_ICM20608G:
|
|
case GYRO_ICM20649: // we don't actually know if this is affected, but as there are currently no flight controllers using it we err on the side of caution
|
|
case GYRO_ICM20689:
|
|
gyroSensor->gyroDev.gyroHasOverflowProtection = false;
|
|
break;
|
|
|
|
default:
|
|
gyroSensor->gyroDev.gyroHasOverflowProtection = false; // default catch for newly added gyros until proven to be unaffected
|
|
break;
|
|
}
|
|
|
|
gyroInitSensorFilters(gyroSensor);
|
|
|
|
}
|
|
|
|
void gyroPreInit(void)
|
|
{
|
|
gyroPreInitSensor(gyroDeviceConfig(0));
|
|
#ifdef USE_MULTI_GYRO
|
|
gyroPreInitSensor(gyroDeviceConfig(1));
|
|
#endif
|
|
}
|
|
|
|
bool gyroInit(void)
|
|
{
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_YAW) {
|
|
overflowAxisMask = GYRO_OVERFLOW_Z;
|
|
} else if (gyroConfig()->checkOverflow == GYRO_OVERFLOW_CHECK_ALL_AXES) {
|
|
overflowAxisMask = GYRO_OVERFLOW_X | GYRO_OVERFLOW_Y | GYRO_OVERFLOW_Z;
|
|
} else {
|
|
overflowAxisMask = 0;
|
|
}
|
|
#endif
|
|
|
|
gyroDebugMode = DEBUG_NONE;
|
|
useDualGyroDebugging = false;
|
|
|
|
switch (debugMode) {
|
|
case DEBUG_FFT:
|
|
case DEBUG_FFT_FREQ:
|
|
case DEBUG_GYRO_RAW:
|
|
case DEBUG_GYRO_SCALED:
|
|
case DEBUG_GYRO_FILTERED:
|
|
case DEBUG_DYN_LPF:
|
|
gyroDebugMode = debugMode;
|
|
break;
|
|
case DEBUG_DUAL_GYRO_DIFF:
|
|
case DEBUG_DUAL_GYRO_RAW:
|
|
case DEBUG_DUAL_GYRO_SCALED:
|
|
useDualGyroDebugging = true;
|
|
break;
|
|
}
|
|
firstArmingCalibrationWasStarted = false;
|
|
|
|
gyroDetectionFlags = NO_GYROS_DETECTED;
|
|
|
|
gyroToUse = gyroConfig()->gyro_to_use;
|
|
gyroDebugAxis = gyroConfig()->gyro_filter_debug_axis;
|
|
|
|
if (gyroDetectSensor(&gyroSensor1, gyroDeviceConfig(0))) {
|
|
gyroDetectionFlags |= DETECTED_GYRO_1;
|
|
}
|
|
|
|
#if defined(USE_MULTI_GYRO)
|
|
if (gyroDetectSensor(&gyroSensor2, gyroDeviceConfig(1))) {
|
|
gyroDetectionFlags |= DETECTED_GYRO_2;
|
|
}
|
|
#endif
|
|
|
|
if (gyroDetectionFlags == NO_GYROS_DETECTED) {
|
|
return false;
|
|
}
|
|
|
|
#if defined(USE_MULTI_GYRO)
|
|
if ((gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH && !((gyroDetectionFlags & DETECTED_BOTH_GYROS) == DETECTED_BOTH_GYROS))
|
|
|| (gyroToUse == GYRO_CONFIG_USE_GYRO_1 && !(gyroDetectionFlags & DETECTED_GYRO_1))
|
|
|| (gyroToUse == GYRO_CONFIG_USE_GYRO_2 && !(gyroDetectionFlags & DETECTED_GYRO_2))) {
|
|
if (gyroDetectionFlags & DETECTED_GYRO_1) {
|
|
gyroToUse = GYRO_CONFIG_USE_GYRO_1;
|
|
} else {
|
|
gyroToUse = GYRO_CONFIG_USE_GYRO_2;
|
|
}
|
|
|
|
gyroConfigMutable()->gyro_to_use = gyroToUse;
|
|
}
|
|
|
|
// Only allow using both gyros simultaneously if they are the same hardware type.
|
|
if (((gyroDetectionFlags & DETECTED_BOTH_GYROS) == DETECTED_BOTH_GYROS) && gyroSensor1.gyroDev.gyroHardware == gyroSensor2.gyroDev.gyroHardware) {
|
|
gyroDetectionFlags |= DETECTED_DUAL_GYROS;
|
|
} else if (gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
|
|
// If the user selected "BOTH" and they are not the same type, then reset to using only the first gyro.
|
|
gyroToUse = GYRO_CONFIG_USE_GYRO_1;
|
|
gyroConfigMutable()->gyro_to_use = gyroToUse;
|
|
}
|
|
|
|
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
|
|
gyroInitSensor(&gyroSensor2, gyroDeviceConfig(1));
|
|
gyroHasOverflowProtection = gyroHasOverflowProtection && gyroSensor2.gyroDev.gyroHasOverflowProtection;
|
|
detectedSensors[SENSOR_INDEX_GYRO] = gyroSensor2.gyroDev.gyroHardware;
|
|
}
|
|
#endif
|
|
|
|
if (gyroToUse == GYRO_CONFIG_USE_GYRO_1 || gyroToUse == GYRO_CONFIG_USE_GYRO_BOTH) {
|
|
gyroInitSensor(&gyroSensor1, gyroDeviceConfig(0));
|
|
gyroHasOverflowProtection = gyroHasOverflowProtection && gyroSensor1.gyroDev.gyroHasOverflowProtection;
|
|
detectedSensors[SENSOR_INDEX_GYRO] = gyroSensor1.gyroDev.gyroHardware;
|
|
}
|
|
|
|
// Copy the sensor's scale to the high-level gyro object. If running in "BOTH" mode
|
|
// then logic above requires both sensors to be the same so we'll use sensor1's scale.
|
|
// This will need to be revised if we ever allow different sensor types to be used simultaneously.
|
|
// Likewise determine the appropriate raw data for use in DEBUG_GYRO_RAW
|
|
gyro.scale = gyroSensor1.gyroDev.scale;
|
|
gyro.rawSensorDev = &gyroSensor1.gyroDev;
|
|
#if defined(USE_MULTI_GYRO)
|
|
if (gyroToUse == GYRO_CONFIG_USE_GYRO_2) {
|
|
gyro.scale = gyroSensor2.gyroDev.scale;
|
|
gyro.rawSensorDev = &gyroSensor2.gyroDev;
|
|
}
|
|
#endif
|
|
|
|
gyroInitFilters();
|
|
return true;
|
|
}
|
|
|
|
gyroDetectionFlags_t getGyroDetectionFlags(void)
|
|
{
|
|
return gyroDetectionFlags;
|
|
}
|
|
|
|
#ifdef USE_DYN_LPF
|
|
static FAST_RAM uint8_t dynLpfFilter = DYN_LPF_NONE;
|
|
static FAST_RAM_ZERO_INIT uint16_t dynLpfMin;
|
|
static FAST_RAM_ZERO_INIT uint16_t dynLpfMax;
|
|
|
|
static void dynLpfFilterInit()
|
|
{
|
|
if (gyroConfig()->dyn_lpf_gyro_min_hz > 0) {
|
|
switch (gyroConfig()->gyro_lowpass_type) {
|
|
case FILTER_PT1:
|
|
dynLpfFilter = DYN_LPF_PT1;
|
|
break;
|
|
case FILTER_BIQUAD:
|
|
dynLpfFilter = DYN_LPF_BIQUAD;
|
|
break;
|
|
default:
|
|
dynLpfFilter = DYN_LPF_NONE;
|
|
break;
|
|
}
|
|
} else {
|
|
dynLpfFilter = DYN_LPF_NONE;
|
|
}
|
|
dynLpfMin = gyroConfig()->dyn_lpf_gyro_min_hz;
|
|
dynLpfMax = gyroConfig()->dyn_lpf_gyro_max_hz;
|
|
}
|
|
#endif
|
|
|
|
void gyroInitLowpassFilterLpf(int slot, int type, uint16_t lpfHz)
|
|
{
|
|
filterApplyFnPtr *lowpassFilterApplyFn;
|
|
gyroLowpassFilter_t *lowpassFilter = NULL;
|
|
|
|
switch (slot) {
|
|
case FILTER_LOWPASS:
|
|
lowpassFilterApplyFn = &gyro.lowpassFilterApplyFn;
|
|
lowpassFilter = gyro.lowpassFilter;
|
|
break;
|
|
|
|
case FILTER_LOWPASS2:
|
|
lowpassFilterApplyFn = &gyro.lowpass2FilterApplyFn;
|
|
lowpassFilter = gyro.lowpass2Filter;
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
// Establish some common constants
|
|
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
|
|
const float gyroDt = gyro.targetLooptime * 1e-6f;
|
|
|
|
// Gain could be calculated a little later as it is specific to the pt1/bqrcf2/fkf branches
|
|
const float gain = pt1FilterGain(lpfHz, gyroDt);
|
|
|
|
// Dereference the pointer to null before checking valid cutoff and filter
|
|
// type. It will be overridden for positive cases.
|
|
*lowpassFilterApplyFn = nullFilterApply;
|
|
|
|
// If lowpass cutoff has been specified and is less than the Nyquist frequency
|
|
if (lpfHz && lpfHz <= gyroFrequencyNyquist) {
|
|
switch (type) {
|
|
case FILTER_PT1:
|
|
*lowpassFilterApplyFn = (filterApplyFnPtr) pt1FilterApply;
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
pt1FilterInit(&lowpassFilter[axis].pt1FilterState, gain);
|
|
}
|
|
break;
|
|
case FILTER_BIQUAD:
|
|
#ifdef USE_DYN_LPF
|
|
*lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApplyDF1;
|
|
#else
|
|
*lowpassFilterApplyFn = (filterApplyFnPtr) biquadFilterApply;
|
|
#endif
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInitLPF(&lowpassFilter[axis].biquadFilterState, lpfHz, gyro.targetLooptime);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t calculateNyquistAdjustedNotchHz(uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
const uint32_t gyroFrequencyNyquist = 1000000 / 2 / gyro.targetLooptime;
|
|
if (notchHz > gyroFrequencyNyquist) {
|
|
if (notchCutoffHz < gyroFrequencyNyquist) {
|
|
notchHz = gyroFrequencyNyquist;
|
|
} else {
|
|
notchHz = 0;
|
|
}
|
|
}
|
|
|
|
return notchHz;
|
|
}
|
|
|
|
#if defined(USE_GYRO_SLEW_LIMITER)
|
|
void gyroInitSlewLimiter(gyroSensor_t *gyroSensor) {
|
|
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
gyroSensor->gyroDev.gyroADCRawPrevious[axis] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void gyroInitFilterNotch1(uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
gyro.notchFilter1ApplyFn = nullFilterApply;
|
|
|
|
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
|
|
|
|
if (notchHz != 0 && notchCutoffHz != 0) {
|
|
gyro.notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInit(&gyro.notchFilter1[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gyroInitFilterNotch2(uint16_t notchHz, uint16_t notchCutoffHz)
|
|
{
|
|
gyro.notchFilter2ApplyFn = nullFilterApply;
|
|
|
|
notchHz = calculateNyquistAdjustedNotchHz(notchHz, notchCutoffHz);
|
|
|
|
if (notchHz != 0 && notchCutoffHz != 0) {
|
|
gyro.notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
const float notchQ = filterGetNotchQ(notchHz, notchCutoffHz);
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInit(&gyro.notchFilter2[axis], notchHz, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
static bool isDynamicFilterActive(void)
|
|
{
|
|
return featureIsEnabled(FEATURE_DYNAMIC_FILTER);
|
|
}
|
|
|
|
static void gyroInitFilterDynamicNotch()
|
|
{
|
|
gyro.notchFilterDynApplyFn = nullFilterApply;
|
|
gyro.notchFilterDynApplyFn2 = nullFilterApply;
|
|
|
|
if (isDynamicFilterActive()) {
|
|
gyro.notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
|
if(gyroConfig()->dyn_notch_width_percent != 0) {
|
|
gyro.notchFilterDynApplyFn2 = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
|
}
|
|
const float notchQ = filterGetNotchQ(DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ); // any defaults OK here
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterInit(&gyro.notchFilterDyn[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
biquadFilterInit(&gyro.notchFilterDyn2[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor)
|
|
{
|
|
#if defined(USE_GYRO_SLEW_LIMITER)
|
|
gyroInitSlewLimiter(gyroSensor);
|
|
#else
|
|
UNUSED(gyroSensor);
|
|
#endif
|
|
}
|
|
|
|
void gyroInitFilters(void)
|
|
{
|
|
uint16_t gyro_lowpass_hz = gyroConfig()->gyro_lowpass_hz;
|
|
|
|
#ifdef USE_DYN_LPF
|
|
if (gyroConfig()->dyn_lpf_gyro_min_hz > 0) {
|
|
gyro_lowpass_hz = gyroConfig()->dyn_lpf_gyro_min_hz;
|
|
}
|
|
#endif
|
|
|
|
gyroInitLowpassFilterLpf(
|
|
FILTER_LOWPASS,
|
|
gyroConfig()->gyro_lowpass_type,
|
|
gyro_lowpass_hz
|
|
);
|
|
|
|
gyroInitLowpassFilterLpf(
|
|
FILTER_LOWPASS2,
|
|
gyroConfig()->gyro_lowpass2_type,
|
|
gyroConfig()->gyro_lowpass2_hz
|
|
);
|
|
|
|
gyroInitFilterNotch1(gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1);
|
|
gyroInitFilterNotch2(gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2);
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroInitFilterDynamicNotch();
|
|
#endif
|
|
#ifdef USE_DYN_LPF
|
|
dynLpfFilterInit();
|
|
#endif
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
gyroDataAnalyseStateInit(&gyro.gyroAnalyseState, gyro.targetLooptime);
|
|
#endif
|
|
}
|
|
|
|
FAST_CODE bool isGyroSensorCalibrationComplete(const gyroSensor_t *gyroSensor)
|
|
{
|
|
return gyroSensor->calibration.cyclesRemaining == 0;
|
|
}
|
|
|
|
FAST_CODE bool gyroIsCalibrationComplete(void)
|
|
{
|
|
switch (gyroToUse) {
|
|
default:
|
|
case GYRO_CONFIG_USE_GYRO_1: {
|
|
return isGyroSensorCalibrationComplete(&gyroSensor1);
|
|
}
|
|
#ifdef USE_MULTI_GYRO
|
|
case GYRO_CONFIG_USE_GYRO_2: {
|
|
return isGyroSensorCalibrationComplete(&gyroSensor2);
|
|
}
|
|
case GYRO_CONFIG_USE_GYRO_BOTH: {
|
|
return isGyroSensorCalibrationComplete(&gyroSensor1) && isGyroSensorCalibrationComplete(&gyroSensor2);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static bool isOnFinalGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
|
|
{
|
|
return gyroCalibration->cyclesRemaining == 1;
|
|
}
|
|
|
|
static int32_t gyroCalculateCalibratingCycles(void)
|
|
{
|
|
return (gyroConfig()->gyroCalibrationDuration * 10000) / gyro.targetLooptime;
|
|
}
|
|
|
|
static bool isOnFirstGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
|
|
{
|
|
return gyroCalibration->cyclesRemaining == gyroCalculateCalibratingCycles();
|
|
}
|
|
|
|
static void gyroSetCalibrationCycles(gyroSensor_t *gyroSensor)
|
|
{
|
|
#if defined(USE_FAKE_GYRO) && !defined(UNIT_TEST)
|
|
if (gyroSensor->gyroDev.gyroHardware == GYRO_FAKE) {
|
|
gyroSensor->calibration.cyclesRemaining = 0;
|
|
return;
|
|
}
|
|
#endif
|
|
gyroSensor->calibration.cyclesRemaining = gyroCalculateCalibratingCycles();
|
|
}
|
|
|
|
void gyroStartCalibration(bool isFirstArmingCalibration)
|
|
{
|
|
if (isFirstArmingCalibration && firstArmingCalibrationWasStarted) {
|
|
return;
|
|
}
|
|
|
|
gyroSetCalibrationCycles(&gyroSensor1);
|
|
#ifdef USE_MULTI_GYRO
|
|
gyroSetCalibrationCycles(&gyroSensor2);
|
|
#endif
|
|
|
|
if (isFirstArmingCalibration) {
|
|
firstArmingCalibrationWasStarted = true;
|
|
}
|
|
}
|
|
|
|
bool isFirstArmingGyroCalibrationRunning(void)
|
|
{
|
|
return firstArmingCalibrationWasStarted && !gyroIsCalibrationComplete();
|
|
}
|
|
|
|
STATIC_UNIT_TESTED void performGyroCalibration(gyroSensor_t *gyroSensor, uint8_t gyroMovementCalibrationThreshold)
|
|
{
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
// Reset g[axis] at start of calibration
|
|
if (isOnFirstGyroCalibrationCycle(&gyroSensor->calibration)) {
|
|
gyroSensor->calibration.sum[axis] = 0.0f;
|
|
devClear(&gyroSensor->calibration.var[axis]);
|
|
// gyroZero is set to zero until calibration complete
|
|
gyroSensor->gyroDev.gyroZero[axis] = 0.0f;
|
|
}
|
|
|
|
// Sum up CALIBRATING_GYRO_TIME_US readings
|
|
gyroSensor->calibration.sum[axis] += gyroSensor->gyroDev.gyroADCRaw[axis];
|
|
devPush(&gyroSensor->calibration.var[axis], gyroSensor->gyroDev.gyroADCRaw[axis]);
|
|
|
|
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
|
|
const float stddev = devStandardDeviation(&gyroSensor->calibration.var[axis]);
|
|
// DEBUG_GYRO_CALIBRATION records the standard deviation of roll
|
|
// into the spare field - debug[3], in DEBUG_GYRO_RAW
|
|
if (axis == X) {
|
|
DEBUG_SET(DEBUG_GYRO_RAW, DEBUG_GYRO_CALIBRATION, lrintf(stddev));
|
|
}
|
|
|
|
// check deviation and startover in case the model was moved
|
|
if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) {
|
|
gyroSetCalibrationCycles(gyroSensor);
|
|
return;
|
|
}
|
|
|
|
// please take care with exotic boardalignment !!
|
|
gyroSensor->gyroDev.gyroZero[axis] = gyroSensor->calibration.sum[axis] / gyroCalculateCalibratingCycles();
|
|
if (axis == Z) {
|
|
gyroSensor->gyroDev.gyroZero[axis] -= ((float)gyroConfig()->gyro_offset_yaw / 100);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
|
|
schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics
|
|
if (!firstArmingCalibrationWasStarted || (getArmingDisableFlags() & ~ARMING_DISABLED_CALIBRATING) == 0) {
|
|
beeper(BEEPER_GYRO_CALIBRATED);
|
|
}
|
|
}
|
|
|
|
--gyroSensor->calibration.cyclesRemaining;
|
|
}
|
|
|
|
#if defined(USE_GYRO_SLEW_LIMITER)
|
|
FAST_CODE int32_t gyroSlewLimiter(gyroSensor_t *gyroSensor, int axis)
|
|
{
|
|
int32_t ret = (int32_t)gyroSensor->gyroDev.gyroADCRaw[axis];
|
|
if (gyroConfig()->checkOverflow || gyroHasOverflowProtection) {
|
|
// don't use the slew limiter if overflow checking is on or gyro is not subject to overflow bug
|
|
return ret;
|
|
}
|
|
if (abs(ret - gyroSensor->gyroDev.gyroADCRawPrevious[axis]) > (1<<14)) {
|
|
// there has been a large change in value, so assume overflow has occurred and return the previous value
|
|
ret = gyroSensor->gyroDev.gyroADCRawPrevious[axis];
|
|
} else {
|
|
gyroSensor->gyroDev.gyroADCRawPrevious[axis] = ret;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
static FAST_CODE_NOINLINE void handleOverflow(timeUs_t currentTimeUs)
|
|
{
|
|
// This will need to be revised if we ever allow different sensor types to be
|
|
// used simultaneously. In that case the scale might be different between sensors.
|
|
// It's complicated by the fact that we're using filtered gyro data here which is
|
|
// after both sensors are scaled and averaged.
|
|
const float gyroOverflowResetRate = GYRO_OVERFLOW_RESET_THRESHOLD * gyro.scale;
|
|
|
|
if ((fabsf(gyro.gyroADCf[X]) < gyroOverflowResetRate)
|
|
&& (fabsf(gyro.gyroADCf[Y]) < gyroOverflowResetRate)
|
|
&& (fabsf(gyro.gyroADCf[Z]) < gyroOverflowResetRate)) {
|
|
// if we have 50ms of consecutive OK gyro vales, then assume yaw readings are OK again and reset overflowDetected
|
|
// reset requires good OK values on all axes
|
|
if (cmpTimeUs(currentTimeUs, overflowTimeUs) > 50000) {
|
|
overflowDetected = false;
|
|
}
|
|
} else {
|
|
// not a consecutive OK value, so reset the overflow time
|
|
overflowTimeUs = currentTimeUs;
|
|
}
|
|
}
|
|
|
|
static FAST_CODE void checkForOverflow(timeUs_t currentTimeUs)
|
|
{
|
|
// check for overflow to handle Yaw Spin To The Moon (YSTTM)
|
|
// ICM gyros are specified to +/- 2000 deg/sec, in a crash they can go out of spec.
|
|
// This can cause an overflow and sign reversal in the output.
|
|
// Overflow and sign reversal seems to result in a gyro value of +1996 or -1996.
|
|
if (overflowDetected) {
|
|
handleOverflow(currentTimeUs);
|
|
} else {
|
|
#ifndef SIMULATOR_BUILD
|
|
// check for overflow in the axes set in overflowAxisMask
|
|
gyroOverflow_e overflowCheck = GYRO_OVERFLOW_NONE;
|
|
|
|
// This will need to be revised if we ever allow different sensor types to be
|
|
// used simultaneously. In that case the scale might be different between sensors.
|
|
// It's complicated by the fact that we're using filtered gyro data here which is
|
|
// after both sensors are scaled and averaged.
|
|
const float gyroOverflowTriggerRate = GYRO_OVERFLOW_TRIGGER_THRESHOLD * gyro.scale;
|
|
|
|
if (fabsf(gyro.gyroADCf[X]) > gyroOverflowTriggerRate) {
|
|
overflowCheck |= GYRO_OVERFLOW_X;
|
|
}
|
|
if (fabsf(gyro.gyroADCf[Y]) > gyroOverflowTriggerRate) {
|
|
overflowCheck |= GYRO_OVERFLOW_Y;
|
|
}
|
|
if (fabsf(gyro.gyroADCf[Z]) > gyroOverflowTriggerRate) {
|
|
overflowCheck |= GYRO_OVERFLOW_Z;
|
|
}
|
|
if (overflowCheck & overflowAxisMask) {
|
|
overflowDetected = true;
|
|
overflowTimeUs = currentTimeUs;
|
|
#ifdef USE_YAW_SPIN_RECOVERY
|
|
yawSpinDetected = false;
|
|
#endif // USE_YAW_SPIN_RECOVERY
|
|
}
|
|
#endif // SIMULATOR_BUILD
|
|
}
|
|
}
|
|
#endif // USE_GYRO_OVERFLOW_CHECK
|
|
|
|
#ifdef USE_YAW_SPIN_RECOVERY
|
|
static FAST_CODE_NOINLINE void handleYawSpin(timeUs_t currentTimeUs)
|
|
{
|
|
const float yawSpinResetRate = gyroConfig()->yaw_spin_threshold - 100.0f;
|
|
if (fabsf(gyro.gyroADCf[Z]) < yawSpinResetRate) {
|
|
// testing whether 20ms of consecutive OK gyro yaw values is enough
|
|
if (cmpTimeUs(currentTimeUs, yawSpinTimeUs) > 20000) {
|
|
yawSpinDetected = false;
|
|
}
|
|
} else {
|
|
// reset the yaw spin time
|
|
yawSpinTimeUs = currentTimeUs;
|
|
}
|
|
}
|
|
|
|
static FAST_CODE void checkForYawSpin(timeUs_t currentTimeUs)
|
|
{
|
|
// if not in overflow mode, handle yaw spins above threshold
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
if (overflowDetected) {
|
|
yawSpinDetected = false;
|
|
return;
|
|
}
|
|
#endif // USE_GYRO_OVERFLOW_CHECK
|
|
|
|
if (yawSpinDetected) {
|
|
handleYawSpin(currentTimeUs);
|
|
} else {
|
|
#ifndef SIMULATOR_BUILD
|
|
// check for spin on yaw axis only
|
|
if (abs((int)gyro.gyroADCf[Z]) > gyroConfig()->yaw_spin_threshold) {
|
|
yawSpinDetected = true;
|
|
yawSpinTimeUs = currentTimeUs;
|
|
}
|
|
#endif // SIMULATOR_BUILD
|
|
}
|
|
}
|
|
#endif // USE_YAW_SPIN_RECOVERY
|
|
|
|
static FAST_CODE FAST_CODE_NOINLINE void gyroUpdateSensor(gyroSensor_t *gyroSensor)
|
|
{
|
|
if (!gyroSensor->gyroDev.readFn(&gyroSensor->gyroDev)) {
|
|
return;
|
|
}
|
|
gyroSensor->gyroDev.dataReady = false;
|
|
|
|
if (isGyroSensorCalibrationComplete(gyroSensor)) {
|
|
// move 16-bit gyro data into 32-bit variables to avoid overflows in calculations
|
|
|
|
#if defined(USE_GYRO_SLEW_LIMITER)
|
|
gyroSensor->gyroDev.gyroADC[X] = gyroSlewLimiter(gyroSensor, X) - gyroSensor->gyroDev.gyroZero[X];
|
|
gyroSensor->gyroDev.gyroADC[Y] = gyroSlewLimiter(gyroSensor, Y) - gyroSensor->gyroDev.gyroZero[Y];
|
|
gyroSensor->gyroDev.gyroADC[Z] = gyroSlewLimiter(gyroSensor, Z) - gyroSensor->gyroDev.gyroZero[Z];
|
|
#else
|
|
gyroSensor->gyroDev.gyroADC[X] = gyroSensor->gyroDev.gyroADCRaw[X] - gyroSensor->gyroDev.gyroZero[X];
|
|
gyroSensor->gyroDev.gyroADC[Y] = gyroSensor->gyroDev.gyroADCRaw[Y] - gyroSensor->gyroDev.gyroZero[Y];
|
|
gyroSensor->gyroDev.gyroADC[Z] = gyroSensor->gyroDev.gyroADCRaw[Z] - gyroSensor->gyroDev.gyroZero[Z];
|
|
#endif
|
|
|
|
if (gyroSensor->gyroDev.gyroAlign == ALIGN_CUSTOM) {
|
|
alignSensorViaMatrix(gyroSensor->gyroDev.gyroADC, &gyroSensor->gyroDev.rotationMatrix);
|
|
} else {
|
|
alignSensorViaRotation(gyroSensor->gyroDev.gyroADC, gyroSensor->gyroDev.gyroAlign);
|
|
}
|
|
} else {
|
|
performGyroCalibration(gyroSensor, gyroConfig()->gyroMovementCalibrationThreshold);
|
|
}
|
|
}
|
|
|
|
#define GYRO_FILTER_FUNCTION_NAME filterGyro
|
|
#define GYRO_FILTER_DEBUG_SET(mode, index, value) { UNUSED(mode); UNUSED(index); UNUSED(value); }
|
|
#include "gyro_filter_impl.c"
|
|
#undef GYRO_FILTER_FUNCTION_NAME
|
|
#undef GYRO_FILTER_DEBUG_SET
|
|
|
|
#define GYRO_FILTER_FUNCTION_NAME filterGyroDebug
|
|
#define GYRO_FILTER_DEBUG_SET DEBUG_SET
|
|
#include "gyro_filter_impl.c"
|
|
#undef GYRO_FILTER_FUNCTION_NAME
|
|
#undef GYRO_FILTER_DEBUG_SET
|
|
|
|
FAST_CODE void gyroUpdate(timeUs_t currentTimeUs)
|
|
{
|
|
|
|
switch (gyroToUse) {
|
|
case GYRO_CONFIG_USE_GYRO_1:
|
|
gyroUpdateSensor(&gyroSensor1);
|
|
if (isGyroSensorCalibrationComplete(&gyroSensor1)) {
|
|
gyro.gyroADC[X] = gyroSensor1.gyroDev.gyroADC[X] * gyroSensor1.gyroDev.scale;
|
|
gyro.gyroADC[Y] = gyroSensor1.gyroDev.gyroADC[Y] * gyroSensor1.gyroDev.scale;
|
|
gyro.gyroADC[Z] = gyroSensor1.gyroDev.gyroADC[Z] * gyroSensor1.gyroDev.scale;
|
|
}
|
|
break;
|
|
#ifdef USE_MULTI_GYRO
|
|
case GYRO_CONFIG_USE_GYRO_2:
|
|
gyroUpdateSensor(&gyroSensor2);
|
|
if (isGyroSensorCalibrationComplete(&gyroSensor2)) {
|
|
gyro.gyroADC[X] = gyroSensor2.gyroDev.gyroADC[X] * gyroSensor2.gyroDev.scale;
|
|
gyro.gyroADC[Y] = gyroSensor2.gyroDev.gyroADC[Y] * gyroSensor2.gyroDev.scale;
|
|
gyro.gyroADC[Z] = gyroSensor2.gyroDev.gyroADC[Z] * gyroSensor2.gyroDev.scale;
|
|
}
|
|
break;
|
|
case GYRO_CONFIG_USE_GYRO_BOTH:
|
|
gyroUpdateSensor(&gyroSensor1);
|
|
gyroUpdateSensor(&gyroSensor2);
|
|
if (isGyroSensorCalibrationComplete(&gyroSensor1) && isGyroSensorCalibrationComplete(&gyroSensor2)) {
|
|
gyro.gyroADC[X] = ((gyroSensor1.gyroDev.gyroADC[X] * gyroSensor1.gyroDev.scale) + (gyroSensor2.gyroDev.gyroADC[X] * gyroSensor2.gyroDev.scale)) / 2.0f;
|
|
gyro.gyroADC[Y] = ((gyroSensor1.gyroDev.gyroADC[Y] * gyroSensor1.gyroDev.scale) + (gyroSensor2.gyroDev.gyroADC[Y] * gyroSensor2.gyroDev.scale)) / 2.0f;
|
|
gyro.gyroADC[Z] = ((gyroSensor1.gyroDev.gyroADC[Z] * gyroSensor1.gyroDev.scale) + (gyroSensor2.gyroDev.gyroADC[Z] * gyroSensor2.gyroDev.scale)) / 2.0f;
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (gyroDebugMode == DEBUG_NONE) {
|
|
filterGyro();
|
|
} else {
|
|
filterGyroDebug();
|
|
}
|
|
|
|
#ifdef USE_GYRO_DATA_ANALYSE
|
|
if (isDynamicFilterActive()) {
|
|
gyroDataAnalyse(&gyro.gyroAnalyseState, gyro.notchFilterDyn, gyro.notchFilterDyn2);
|
|
}
|
|
#endif
|
|
|
|
if (useDualGyroDebugging) {
|
|
switch (gyroToUse) {
|
|
case GYRO_CONFIG_USE_GYRO_1:
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyroSensor1.gyroDev.gyroADCRaw[X]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyroSensor1.gyroDev.gyroADCRaw[Y]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 0, lrintf(gyroSensor1.gyroDev.gyroADC[X] * gyroSensor1.gyroDev.scale));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 1, lrintf(gyroSensor1.gyroDev.gyroADC[Y] * gyroSensor1.gyroDev.scale));
|
|
break;
|
|
|
|
#ifdef USE_MULTI_GYRO
|
|
case GYRO_CONFIG_USE_GYRO_2:
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyroSensor2.gyroDev.gyroADCRaw[X]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyroSensor2.gyroDev.gyroADCRaw[Y]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 2, lrintf(gyroSensor2.gyroDev.gyroADC[X] * gyroSensor2.gyroDev.scale));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 3, lrintf(gyroSensor2.gyroDev.gyroADC[Y] * gyroSensor2.gyroDev.scale));
|
|
break;
|
|
|
|
case GYRO_CONFIG_USE_GYRO_BOTH:
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 0, gyroSensor1.gyroDev.gyroADCRaw[X]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 1, gyroSensor1.gyroDev.gyroADCRaw[Y]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 2, gyroSensor2.gyroDev.gyroADCRaw[X]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_RAW, 3, gyroSensor2.gyroDev.gyroADCRaw[Y]);
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 0, lrintf(gyroSensor1.gyroDev.gyroADC[X] * gyroSensor1.gyroDev.scale));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 1, lrintf(gyroSensor1.gyroDev.gyroADC[Y] * gyroSensor1.gyroDev.scale));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 2, lrintf(gyroSensor2.gyroDev.gyroADC[X] * gyroSensor2.gyroDev.scale));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_SCALED, 3, lrintf(gyroSensor2.gyroDev.gyroADC[Y] * gyroSensor2.gyroDev.scale));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 0, lrintf((gyroSensor1.gyroDev.gyroADC[X] * gyroSensor1.gyroDev.scale) - (gyroSensor2.gyroDev.gyroADC[X] * gyroSensor2.gyroDev.scale)));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 1, lrintf((gyroSensor1.gyroDev.gyroADC[Y] * gyroSensor1.gyroDev.scale) - (gyroSensor2.gyroDev.gyroADC[Y] * gyroSensor2.gyroDev.scale)));
|
|
DEBUG_SET(DEBUG_DUAL_GYRO_DIFF, 2, lrintf((gyroSensor1.gyroDev.gyroADC[Z] * gyroSensor1.gyroDev.scale) - (gyroSensor2.gyroDev.gyroADC[Z] * gyroSensor2.gyroDev.scale)));
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
if (gyroConfig()->checkOverflow && !gyroHasOverflowProtection) {
|
|
checkForOverflow(currentTimeUs);
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_YAW_SPIN_RECOVERY
|
|
if (gyroConfig()->yaw_spin_recovery) {
|
|
checkForYawSpin(currentTimeUs);
|
|
}
|
|
#endif
|
|
|
|
if (!overflowDetected) {
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
// integrate using trapezium rule to avoid bias
|
|
accumulatedMeasurements[axis] += 0.5f * (gyroPrevious[axis] + gyro.gyroADCf[axis]) * gyro.targetLooptime;
|
|
gyroPrevious[axis] = gyro.gyroADCf[axis];
|
|
}
|
|
accumulatedMeasurementCount++;
|
|
}
|
|
|
|
#if !defined(USE_GYRO_OVERFLOW_CHECK) && !defined(USE_YAW_SPIN_RECOVERY)
|
|
UNUSED(currentTimeUs);
|
|
#endif
|
|
}
|
|
|
|
bool gyroGetAccumulationAverage(float *accumulationAverage)
|
|
{
|
|
if (accumulatedMeasurementCount) {
|
|
// If we have gyro data accumulated, calculate average rate that will yield the same rotation
|
|
const timeUs_t accumulatedMeasurementTimeUs = accumulatedMeasurementCount * gyro.targetLooptime;
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
accumulationAverage[axis] = accumulatedMeasurements[axis] / accumulatedMeasurementTimeUs;
|
|
accumulatedMeasurements[axis] = 0.0f;
|
|
}
|
|
accumulatedMeasurementCount = 0;
|
|
return true;
|
|
} else {
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
accumulationAverage[axis] = 0.0f;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int16_t gyroReadSensorTemperature(gyroSensor_t gyroSensor)
|
|
{
|
|
if (gyroSensor.gyroDev.temperatureFn) {
|
|
gyroSensor.gyroDev.temperatureFn(&gyroSensor.gyroDev, &gyroSensor.gyroDev.temperature);
|
|
}
|
|
return gyroSensor.gyroDev.temperature;
|
|
}
|
|
|
|
void gyroReadTemperature(void)
|
|
{
|
|
switch (gyroToUse) {
|
|
case GYRO_CONFIG_USE_GYRO_1:
|
|
gyroSensorTemperature = gyroReadSensorTemperature(gyroSensor1);
|
|
break;
|
|
|
|
#ifdef USE_MULTI_GYRO
|
|
case GYRO_CONFIG_USE_GYRO_2:
|
|
gyroSensorTemperature = gyroReadSensorTemperature(gyroSensor2);
|
|
break;
|
|
|
|
case GYRO_CONFIG_USE_GYRO_BOTH:
|
|
gyroSensorTemperature = MAX(gyroReadSensorTemperature(gyroSensor1), gyroReadSensorTemperature(gyroSensor2));
|
|
break;
|
|
#endif // USE_MULTI_GYRO
|
|
}
|
|
}
|
|
|
|
int16_t gyroGetTemperature(void)
|
|
{
|
|
return gyroSensorTemperature;
|
|
}
|
|
|
|
int16_t gyroRateDps(int axis)
|
|
{
|
|
return lrintf(gyro.gyroADCf[axis] / ACTIVE_GYRO->gyroDev.scale);
|
|
}
|
|
|
|
bool gyroOverflowDetected(void)
|
|
{
|
|
#ifdef USE_GYRO_OVERFLOW_CHECK
|
|
return overflowDetected;
|
|
#else
|
|
return false;
|
|
#endif // USE_GYRO_OVERFLOW_CHECK
|
|
}
|
|
|
|
#ifdef USE_YAW_SPIN_RECOVERY
|
|
bool gyroYawSpinDetected(void)
|
|
{
|
|
return yawSpinDetected;
|
|
}
|
|
#endif // USE_YAW_SPIN_RECOVERY
|
|
|
|
uint16_t gyroAbsRateDps(int axis)
|
|
{
|
|
return fabsf(gyro.gyroADCf[axis]);
|
|
}
|
|
|
|
#ifdef USE_GYRO_REGISTER_DUMP
|
|
uint8_t gyroReadRegister(uint8_t whichSensor, uint8_t reg)
|
|
{
|
|
return mpuGyroReadRegister(gyroSensorBusByDevice(whichSensor), reg);
|
|
}
|
|
#endif // USE_GYRO_REGISTER_DUMP
|
|
|
|
#ifdef USE_DYN_LPF
|
|
|
|
float dynThrottle(float throttle) {
|
|
return throttle * (1 - (throttle * throttle) / 3.0f) * 1.5f;
|
|
}
|
|
|
|
void dynLpfGyroUpdate(float throttle)
|
|
{
|
|
if (dynLpfFilter != DYN_LPF_NONE) {
|
|
const unsigned int cutoffFreq = fmax(dynThrottle(throttle) * dynLpfMax, dynLpfMin);
|
|
|
|
if (dynLpfFilter == DYN_LPF_PT1) {
|
|
DEBUG_SET(DEBUG_DYN_LPF, 2, cutoffFreq);
|
|
const float gyroDt = gyro.targetLooptime * 1e-6f;
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
pt1FilterUpdateCutoff(&gyro.lowpassFilter[axis].pt1FilterState, pt1FilterGain(cutoffFreq, gyroDt));
|
|
}
|
|
} else if (dynLpfFilter == DYN_LPF_BIQUAD) {
|
|
DEBUG_SET(DEBUG_DYN_LPF, 2, cutoffFreq);
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterUpdateLPF(&gyro.lowpassFilter[axis].biquadFilterState, cutoffFreq, gyro.targetLooptime);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|