1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-24 16:55:36 +03:00
betaflight/src/main/flight/pid.c

406 lines
16 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include <platform.h>
#include "build_config.h"
#include "debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "drivers/sensor.h"
#include "drivers/gyro_sync.h"
#include "drivers/accgyro.h"
#include "sensors/sensors.h"
#include "sensors/gyro.h"
#include "sensors/acceleration.h"
#include "rx/rx.h"
#include "io/rc_controls.h"
#include "io/gps.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/navigation.h"
#include "flight/gtune.h"
#include "config/runtime_config.h"
extern uint8_t motorCount;
uint32_t targetPidLooptime;
extern float errorLimiter;
extern float angleRate[3], angleRateSmooth[2];
int16_t axisPID[3];
#ifdef BLACKBOX
int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
#endif
// PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
uint8_t PIDweight[3];
static int32_t errorGyroI[3];
#ifndef SKIP_PID_LUXFLOAT
static float errorGyroIf[3];
#endif
static void pidInteger(const pidProfile_t *pidProfile, uint16_t max_angle_inclination,
const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig);
pidControllerFuncPtr pid_controller = pidInteger; // which pid controller are we using
void setTargetPidLooptime(uint8_t pidProcessDenom) {
targetPidLooptime = targetLooptime * pidProcessDenom;
}
uint16_t getDynamicKi(int axis, const pidProfile_t *pidProfile, int32_t angleRate) {
uint16_t dynamicKi;
uint16_t resetRate;
resetRate = (axis == YAW) ? pidProfile->yawItermIgnoreRate : pidProfile->rollPitchItermIgnoreRate;
uint16_t dynamicFactor = (1 << 8) - constrain((ABS(angleRate) << 6) / resetRate, 0, 1 << 8);
dynamicKi = (pidProfile->I8[axis] * dynamicFactor) >> 8;
return dynamicKi;
}
void pidResetErrorGyroState(void)
{
int axis;
for (axis = 0; axis < 3; axis++) {
errorGyroI[axis] = 0;
#ifndef SKIP_PID_LUXFLOAT
errorGyroIf[axis] = 0.0f;
#endif
}
}
float getdT (void) {
static float dT;
if (!dT) dT = (float)targetPidLooptime * 0.000001f;
return dT;
}
const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
static filterStatePt1_t deltaFilterState[3];
static filterStatePt1_t yawFilterState;
#ifndef SKIP_PID_LUXFLOAT
static void pidFloat(const pidProfile_t *pidProfile, uint16_t max_angle_inclination,
const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig)
{
float RateError, gyroRate, RateErrorSmooth;
float ITerm,PTerm,DTerm;
static float lastRateError[2];
float delta;
int axis;
float horizonLevelStrength = 1;
float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float
// Scaling factors for Pids for better tunable range in configurator
static const float luxPTermScale = 1.0f / 128;
static const float luxITermScale = 1000000.0f / 0x1000000;
static const float luxDTermScale = (0.000001f * (float)0xFFFF) / 508;
if (FLIGHT_MODE(HORIZON_MODE)) {
// Figure out the raw stick positions
const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc));
const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc));
const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
// Progressively turn off the horizon self level strength as the stick is banged over
horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection
if(pidProfile->D8[PIDLEVEL] == 0){
horizonLevelStrength = 0;
} else {
horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->D8[PIDLEVEL])) + 1, 0, 1);
}
}
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
// Yaw control is GYRO based, direct sticks control is applied to rate PID
if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) {
// calculate error angle and limit the angle to the max inclination
#ifdef GPS
const float errorAngle = (constrain(2 * rcCommandSmooth[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]); // 16 bits is ok here
#else
const float errorAngle = (constrain(2 * rcCommandSmooth[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]); // 16 bits is ok here
#endif
if (FLIGHT_MODE(ANGLE_MODE)) {
// ANGLE mode - control is angle based, so control loop is needed
angleRate[axis] = errorAngle * pidProfile->P8[PIDLEVEL] / 16.0f;
} else {
// HORIZON mode - direct sticks control is applied to rate PID
// mix up angle error to desired AngleRate to add a little auto-level feel
angleRate[axis] = angleRateSmooth[axis] + (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 16.0f);
}
}
gyroRate = gyroADCf[axis] / 4.0f; // gyro output scaled for easier int conversion
// --------low-level gyro-based PID. ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// -----calculate scaled error.AngleRates
// multiplication of rcCommand corresponds to changing the sticks scaling here
RateError = angleRate[axis] - gyroRate;
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
// Smoothed Error for Derivative when delta from error selected
if (flightModeFlags && axis != YAW)
RateErrorSmooth = RateError;
else
RateErrorSmooth = angleRateSmooth[axis] - gyroRate;
}
// -----calculate P component
PTerm = luxPTermScale * RateError * pidProfile->P8[axis] * tpaFactor;
// Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply
if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) {
PTerm = constrainf(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit);
}
// -----calculate I component.
uint16_t kI = (pidProfile->dynamic_pid) ? getDynamicKi(axis, pidProfile, (int32_t)angleRate[axis]) : pidProfile->I8[axis];
errorGyroIf[axis] = constrainf(errorGyroIf[axis] + luxITermScale * errorLimiter * RateError * getdT() * kI, -250.0f, 250.0f);
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
ITerm = errorGyroIf[axis];
//-----calculate D-term
if (axis == YAW) {
if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT());
axisPID[axis] = lrintf(PTerm + ITerm);
if (motorCount >= 4) {
int16_t yaw_jump_prevention_limit = constrain(YAW_JUMP_PREVENTION_LIMIT_HIGH - (pidProfile->D8[axis] << 3), YAW_JUMP_PREVENTION_LIMIT_LOW, YAW_JUMP_PREVENTION_LIMIT_HIGH);
// prevent "yaw jump" during yaw correction
axisPID[YAW] = constrain(axisPID[YAW], -yaw_jump_prevention_limit - ABS(rcCommand[YAW]), yaw_jump_prevention_limit + ABS(rcCommand[YAW]));
}
DTerm = 0.0f; // needed for blackbox
} else {
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
delta = RateErrorSmooth - lastRateError[axis];
lastRateError[axis] = RateErrorSmooth;
} else {
delta = -(gyroRate - lastRateError[axis]);
lastRateError[axis] = gyroRate;
}
// Divide delta by targetLooptime to get differential (ie dr/dt)
delta *= (1.0f / getdT());
// Filter delta
if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1(delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT());
DTerm = constrainf(luxDTermScale * delta * (float)pidProfile->D8[axis] * tpaFactor, -300.0f, 300.0f);
// -----calculate total PID output
axisPID[axis] = constrain(lrintf(PTerm + ITerm + DTerm), -1000, 1000);
}
#ifdef GTUNE
if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
calculate_Gtune(axis);
}
#endif
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
}
#endif
static void pidInteger(const pidProfile_t *pidProfile, uint16_t max_angle_inclination,
const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig)
{
int axis;
int32_t PTerm, ITerm, DTerm, delta;
static int32_t lastRateError[3];
int32_t AngleRateTmp, AngleRateTmpSmooth, RateError, gyroRate, RateErrorSmooth;
int8_t horizonLevelStrength = 100;
if (FLIGHT_MODE(HORIZON_MODE)) {
// Figure out the raw stick positions
const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc));
const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc));
const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
// Progressively turn off the horizon self level strength as the stick is banged over
horizonLevelStrength = (500 - mostDeflectedPos) / 5; // 100 at centre stick, 0 = max stick deflection
// Using Level D as a Sensitivity for Horizon. 0 more level to 255 more rate. Default value of 100 seems to work fine.
// For more rate mode increase D and slower flips and rolls will be possible
horizonLevelStrength = constrain((10 * (horizonLevelStrength - 100) * (10 * pidProfile->D8[PIDLEVEL] / 80) / 100) + 100, 0, 100);
}
// ----------PID controller----------
for (axis = 0; axis < 3; axis++) {
// -----Get the desired angle rate depending on flight mode
AngleRateTmp = (int32_t)angleRate[axis];
if (axis != YAW) AngleRateTmpSmooth = (int32_t)angleRateSmooth[axis];
if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) {
// calculate error angle and limit the angle to max configured inclination
#ifdef GPS
const int32_t errorAngle = constrain(2 * rcCommandSmooth[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#else
const int32_t errorAngle = constrain(2 * rcCommandSmooth[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#endif
if (FLIGHT_MODE(ANGLE_MODE)) {
// ANGLE mode - control is angle based, so control loop is needed
AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4;
} else {
// HORIZON mode - mix up angle error to desired AngleRateTmp to add a little auto-level feel,
// horizonLevelStrength is scaled to the stick input
AngleRateTmp = AngleRateTmpSmooth + ((errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 100) >> 4);
}
}
// --------low-level gyro-based PID. ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// -----calculate scaled error.AngleRates
// multiplication of rcCommand corresponds to changing the sticks scaling here
gyroRate = gyroADC[axis] / 4;
RateError = AngleRateTmp - gyroRate;
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
// Smoothed Error for Derivative when delta from error selected
if (flightModeFlags && axis != YAW)
RateErrorSmooth = RateError;
else
RateErrorSmooth = AngleRateTmpSmooth - gyroRate;
}
// -----calculate P component
PTerm = (RateError * pidProfile->P8[axis] * PIDweight[axis] / 100) >> 7;
// Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply
if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) {
PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit);
}
// -----calculate I component
// there should be no division before accumulating the error to integrator, because the precision would be reduced.
// Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
// Time correction (to avoid different I scaling for different builds based on average cycle time)
// is normalized to cycle time = 2048.
uint16_t kI = (pidProfile->dynamic_pid) ? getDynamicKi(axis, pidProfile, AngleRateTmp) : pidProfile->I8[axis];
int32_t rateErrorLimited = errorLimiter * RateError;
errorGyroI[axis] = errorGyroI[axis] + ((rateErrorLimited * (uint16_t)targetPidLooptime) >> 11) * kI;
// limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
// I coefficient (I8) moved before integration to make limiting independent from PID settings
errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13);
ITerm = errorGyroI[axis] >> 13;
//-----calculate D-term
if (axis == YAW) {
if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT());
axisPID[axis] = PTerm + ITerm;
if (motorCount >= 4) {
int16_t yaw_jump_prevention_limit = constrain(YAW_JUMP_PREVENTION_LIMIT_HIGH - (pidProfile->D8[axis] << 3), YAW_JUMP_PREVENTION_LIMIT_LOW, YAW_JUMP_PREVENTION_LIMIT_HIGH);
// prevent "yaw jump" during yaw correction
axisPID[YAW] = constrain(axisPID[YAW], -yaw_jump_prevention_limit - ABS(rcCommand[YAW]), yaw_jump_prevention_limit + ABS(rcCommand[YAW]));
}
DTerm = 0; // needed for blackbox
} else {
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
delta = RateErrorSmooth - lastRateError[axis];
lastRateError[axis] = RateErrorSmooth;
} else {
delta = -(gyroRate - lastRateError[axis]);
lastRateError[axis] = gyroRate;
}
// Divide delta by targetLooptime to get differential (ie dr/dt)
delta = (delta * ((uint16_t) 0xFFFF / ((uint16_t)targetPidLooptime >> 4))) >> 5;
// Filter delta
if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1((float)delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT());
DTerm = (delta * pidProfile->D8[axis] * PIDweight[axis] / 100) >> 8;
// -----calculate total PID output
axisPID[axis] = PTerm + ITerm + DTerm;
}
#ifdef GTUNE
if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
calculate_Gtune(axis);
}
#endif
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
}
void pidSetController(pidControllerType_e type)
{
switch (type) {
default:
case PID_CONTROLLER_INTEGER:
pid_controller = pidInteger;
break;
#ifndef SKIP_PID_LUXFLOAT
case PID_CONTROLLER_FLOAT:
pid_controller = pidFloat;
#endif
}
}