1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/src/main/fc/tasks.c
ahmedsalah52 d244239f39
opticalflow mt sensor added (#14038)
* opticalflow mt sensor added

* set the processedFlow to raw when no rotation

* use sin and cos approximations

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/sensors/opticalflow.c

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* refactoring

* not needed anymore

* update

* Update src/main/sensors/opticalflow.c

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/sensors/opticalflow.c

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/drivers/rangefinder/rangefinder_lidarmt.c

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* update

* rm prototype

* clean up

* Update src/main/drivers/opticalflow/opticalflow.h

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/drivers/opticalflow/opticalflow.h

Co-authored-by: Mark Haslinghuis <mark@numloq.nl>

* update flip_y

* Update src/main/drivers/opticalflow/opticalflow.h

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/drivers/rangefinder/rangefinder_lidarmt.c

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/drivers/rangefinder/rangefinder_lidarmt.h

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/sensors/opticalflow.c

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/sensors/opticalflow.c

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>

* Update src/main/sensors/opticalflow.c

Co-authored-by: Mark Haslinghuis <mark@numloq.nl>

* rm casting

* update op rotation

---------

Co-authored-by: Petr Ledvina <ledvinap@gmail.com>
Co-authored-by: Mark Haslinghuis <mark@numloq.nl>
2024-12-21 05:47:36 +11:00

674 lines
20 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include "platform.h"
#include "build/debug.h"
#include "cli/cli.h"
#include "cms/cms.h"
#include "common/color.h"
#include "common/utils.h"
#include "config/feature.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/camera_control_impl.h"
#include "drivers/compass/compass.h"
#include "drivers/sensor.h"
#include "drivers/serial.h"
#include "drivers/serial_usb_vcp.h"
#include "drivers/stack_check.h"
#include "drivers/transponder_ir.h"
#include "drivers/usb_io.h"
#include "drivers/vtx_common.h"
#include "config/config.h"
#include "fc/core.h"
#include "fc/rc.h"
#include "fc/dispatch.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "flight/alt_hold.h"
#include "flight/gps_rescue.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/position.h"
#include "flight/pos_hold.h"
#include "io/asyncfatfs/asyncfatfs.h"
#include "io/beeper.h"
#include "io/dashboard.h"
#include "io/flashfs.h"
#include "io/gimbal_control.h"
#include "io/gps.h"
#include "io/ledstrip.h"
#include "io/piniobox.h"
#include "io/serial.h"
#include "io/transponder_ir.h"
#include "io/vtx_tramp.h" // Will be gone
#include "io/rcdevice_cam.h"
#include "io/usb_cdc_hid.h"
#include "io/vtx.h"
#include "msp/msp.h"
#include "msp/msp_serial.h"
#include "osd/osd.h"
#include "pg/rx.h"
#include "pg/motor.h"
#include "rx/rx.h"
#include "rx/rc_stats.h"
#include "scheduler/scheduler.h"
#include "sensors/acceleration.h"
#include "sensors/adcinternal.h"
#include "sensors/barometer.h"
#include "sensors/battery.h"
#include "sensors/compass.h"
#include "sensors/esc_sensor.h"
#include "sensors/gyro.h"
#include "sensors/sensors.h"
#include "sensors/rangefinder.h"
#include "sensors/opticalflow.h"
#include "telemetry/telemetry.h"
#include "telemetry/crsf.h"
#ifdef USE_BST
#include "i2c_bst.h"
#endif
#ifdef USE_USB_CDC_HID
#include "io/usb_cdc_hid.h"
#endif
#include "tasks.h"
// taskUpdateRxMain() has occasional peaks in execution time so normal moving average duration estimation doesn't work
// Decay the estimated max task duration by 1/(1 << RX_TASK_DECAY_SHIFT) on every invocation
#define RX_TASK_DECAY_SHIFT 6
// Add a margin to the task duration estimation
#define RX_TASK_MARGIN 1
static void taskMain(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
#ifdef USE_SDCARD
afatfs_poll();
#endif
#ifdef USE_FLASHFS
flashfsEraseAsync();
#endif
}
static void taskHandleSerial(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
#if defined(USE_VCP)
DEBUG_SET(DEBUG_USB, 0, usbCableIsInserted());
DEBUG_SET(DEBUG_USB, 1, usbVcpIsConnected());
#endif
bool evaluateMspData = ARMING_FLAG(ARMED) ? MSP_SKIP_NON_MSP_DATA : MSP_EVALUATE_NON_MSP_DATA;
mspSerialProcess(evaluateMspData, mspFcProcessCommand, mspFcProcessReply);
}
static void taskBatteryAlerts(timeUs_t currentTimeUs)
{
if (!ARMING_FLAG(ARMED)) {
// the battery *might* fall out in flight, but if that happens the FC will likely be off too unless the user has battery backup.
batteryUpdatePresence();
}
batteryUpdateStates(currentTimeUs);
batteryUpdateAlarms();
}
#ifdef USE_ACC
static void taskUpdateAccelerometer(timeUs_t currentTimeUs)
{
accUpdate(currentTimeUs);
}
#endif
typedef enum {
RX_STATE_CHECK,
RX_STATE_MODES,
RX_STATE_UPDATE,
RX_STATE_COUNT
} rxState_e;
static rxState_e rxState = RX_STATE_CHECK;
bool taskUpdateRxMainInProgress(void)
{
return (rxState != RX_STATE_CHECK);
}
static void taskUpdateRxMain(timeUs_t currentTimeUs)
{
static timeDelta_t rxStateDurationFractionUs[RX_STATE_COUNT];
timeDelta_t executeTimeUs;
rxState_e oldRxState = rxState;
timeDelta_t anticipatedExecutionTime;
// Where we are using a state machine call schedulerIgnoreTaskExecRate() for all states bar one
if (rxState != RX_STATE_UPDATE) {
schedulerIgnoreTaskExecRate();
}
switch (rxState) {
default:
case RX_STATE_CHECK:
if (!processRx(currentTimeUs)) {
rxState = RX_STATE_CHECK;
break;
}
rxState = RX_STATE_MODES;
break;
case RX_STATE_MODES:
processRxModes(currentTimeUs);
rxState = RX_STATE_UPDATE;
break;
case RX_STATE_UPDATE:
// updateRcCommands sets rcCommand, which is needed by updateAltHold and updateSonarAltHoldState
updateRcCommands();
updateArmingStatus();
#ifdef USE_USB_CDC_HID
if (!ARMING_FLAG(ARMED)) {
sendRcDataToHid();
}
#endif
rxState = RX_STATE_CHECK;
break;
}
if (!schedulerGetIgnoreTaskExecTime()) {
executeTimeUs = micros() - currentTimeUs + RX_TASK_MARGIN;
// If the scheduler has reduced the anticipatedExecutionTime due to task aging, pick that up
anticipatedExecutionTime = schedulerGetNextStateTime();
if (anticipatedExecutionTime != (rxStateDurationFractionUs[oldRxState] >> RX_TASK_DECAY_SHIFT)) {
rxStateDurationFractionUs[oldRxState] = anticipatedExecutionTime << RX_TASK_DECAY_SHIFT;
}
if (executeTimeUs > (rxStateDurationFractionUs[oldRxState] >> RX_TASK_DECAY_SHIFT)) {
rxStateDurationFractionUs[oldRxState] = executeTimeUs << RX_TASK_DECAY_SHIFT;
} else {
// Slowly decay the max time
rxStateDurationFractionUs[oldRxState]--;
}
}
if (debugMode == DEBUG_RX_STATE_TIME) {
debug[oldRxState] = rxStateDurationFractionUs[oldRxState] >> RX_TASK_DECAY_SHIFT;
}
schedulerSetNextStateTime(rxStateDurationFractionUs[rxState] >> RX_TASK_DECAY_SHIFT);
}
#ifdef USE_GPS_RESCUE
static void taskGpsRescue(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
if (gpsRescueIsConfigured()) {
gpsRescueUpdate();
}
}
#endif
#ifdef USE_BARO
static void taskUpdateBaro(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
if (sensors(SENSOR_BARO)) {
const uint32_t newDeadline = baroUpdate(currentTimeUs);
if (newDeadline != 0) {
rescheduleTask(TASK_SELF, newDeadline);
}
}
}
#endif
#ifdef USE_MAG
static void taskUpdateMag(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
if (sensors(SENSOR_MAG)) {
const uint32_t newDeadline = compassUpdate(currentTimeUs);
if (newDeadline != 0) {
rescheduleTask(TASK_SELF, newDeadline);
}
}
}
#endif
#if defined(USE_BARO) || defined(USE_GPS)
static void taskCalculateAltitude(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
calculateEstimatedAltitude();
}
#endif // USE_BARO || USE_GPS
#if defined(USE_RANGEFINDER)
void taskUpdateRangefinder(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
if (!sensors(SENSOR_RANGEFINDER)) {
return;
}
rangefinderUpdate();
rangefinderProcess(getCosTiltAngle());
}
#endif
#ifdef USE_OPTICALFLOW
void taskUpdateOpticalflow(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
if (!sensors(SENSOR_OPTICALFLOW)) {
return;
}
opticalflowUpdate();
opticalflowProcess();
}
#endif
#ifdef USE_TELEMETRY
static void taskTelemetry(timeUs_t currentTimeUs)
{
if (!cliMode && featureIsEnabled(FEATURE_TELEMETRY)) {
subTaskTelemetryPollSensors(currentTimeUs);
telemetryProcess(currentTimeUs);
}
}
#endif
#ifdef USE_CAMERA_CONTROL
static void taskCameraControl(uint32_t currentTime)
{
if (ARMING_FLAG(ARMED)) {
return;
}
cameraControlProcess(currentTime);
}
#endif
#define DEFINE_TASK(taskNameParam, subTaskNameParam, checkFuncParam, taskFuncParam, desiredPeriodParam, staticPriorityParam) { \
.taskName = taskNameParam, \
.subTaskName = subTaskNameParam, \
.checkFunc = checkFuncParam, \
.taskFunc = taskFuncParam, \
.desiredPeriodUs = desiredPeriodParam, \
.staticPriority = staticPriorityParam \
}
// Task info in .bss (unitialised data)
task_t tasks[TASK_COUNT];
// Task ID data in .data (initialised data)
task_attribute_t task_attributes[TASK_COUNT] = {
[TASK_SYSTEM] = DEFINE_TASK("SYSTEM", "LOAD", NULL, taskSystemLoad, TASK_PERIOD_HZ(10), TASK_PRIORITY_MEDIUM_HIGH),
[TASK_MAIN] = DEFINE_TASK("SYSTEM", "UPDATE", NULL, taskMain, TASK_PERIOD_HZ(1000), TASK_PRIORITY_MEDIUM_HIGH),
[TASK_SERIAL] = DEFINE_TASK("SERIAL", NULL, NULL, taskHandleSerial, TASK_PERIOD_HZ(100), TASK_PRIORITY_LOW), // 100 Hz should be enough to flush up to 115 bytes @ 115200 baud
[TASK_BATTERY_ALERTS] = DEFINE_TASK("BATTERY_ALERTS", NULL, NULL, taskBatteryAlerts, TASK_PERIOD_HZ(5), TASK_PRIORITY_MEDIUM),
[TASK_BATTERY_VOLTAGE] = DEFINE_TASK("BATTERY_VOLTAGE", NULL, NULL, batteryUpdateVoltage, TASK_PERIOD_HZ(SLOW_VOLTAGE_TASK_FREQ_HZ), TASK_PRIORITY_MEDIUM), // Freq may be updated in tasksInit
[TASK_BATTERY_CURRENT] = DEFINE_TASK("BATTERY_CURRENT", NULL, NULL, batteryUpdateCurrentMeter, TASK_PERIOD_HZ(50), TASK_PRIORITY_MEDIUM),
#ifdef USE_TRANSPONDER
[TASK_TRANSPONDER] = DEFINE_TASK("TRANSPONDER", NULL, NULL, transponderUpdate, TASK_PERIOD_HZ(250), TASK_PRIORITY_LOW),
#endif
#ifdef USE_STACK_CHECK
[TASK_STACK_CHECK] = DEFINE_TASK("STACKCHECK", NULL, NULL, taskStackCheck, TASK_PERIOD_HZ(10), TASK_PRIORITY_LOWEST),
#endif
[TASK_GYRO] = DEFINE_TASK("GYRO", NULL, NULL, taskGyroSample, TASK_GYROPID_DESIRED_PERIOD, TASK_PRIORITY_REALTIME),
[TASK_FILTER] = DEFINE_TASK("FILTER", NULL, NULL, taskFiltering, TASK_GYROPID_DESIRED_PERIOD, TASK_PRIORITY_REALTIME),
[TASK_PID] = DEFINE_TASK("PID", NULL, NULL, taskMainPidLoop, TASK_GYROPID_DESIRED_PERIOD, TASK_PRIORITY_REALTIME),
#ifdef USE_ACC
[TASK_ACCEL] = DEFINE_TASK("ACC", NULL, NULL, taskUpdateAccelerometer, TASK_PERIOD_HZ(1000), TASK_PRIORITY_MEDIUM),
[TASK_ATTITUDE] = DEFINE_TASK("ATTITUDE", NULL, NULL, imuUpdateAttitude, TASK_PERIOD_HZ(100), TASK_PRIORITY_MEDIUM),
#endif
[TASK_RX] = DEFINE_TASK("RX", NULL, rxUpdateCheck, taskUpdateRxMain, TASK_PERIOD_HZ(33), TASK_PRIORITY_HIGH), // If event-based scheduling doesn't work, fallback to periodic scheduling
[TASK_DISPATCH] = DEFINE_TASK("DISPATCH", NULL, NULL, dispatchProcess, TASK_PERIOD_HZ(1000), TASK_PRIORITY_HIGH),
#ifdef USE_BEEPER
[TASK_BEEPER] = DEFINE_TASK("BEEPER", NULL, NULL, beeperUpdate, TASK_PERIOD_HZ(100), TASK_PRIORITY_LOW),
#endif
#ifdef USE_GPS
[TASK_GPS] = DEFINE_TASK("GPS", NULL, NULL, gpsUpdate, TASK_PERIOD_HZ(TASK_GPS_RATE), TASK_PRIORITY_MEDIUM), // Required to prevent buffer overruns if running at 115200 baud (115 bytes / period < 256 bytes buffer)
#endif
#ifdef USE_GPS_RESCUE
[TASK_GPS_RESCUE] = DEFINE_TASK("GPS_RESCUE", NULL, NULL, taskGpsRescue, TASK_PERIOD_HZ(TASK_GPS_RESCUE_RATE_HZ), TASK_PRIORITY_MEDIUM),
#endif
#ifdef USE_ALTITUDE_HOLD
[TASK_ALTHOLD] = DEFINE_TASK("ALTHOLD", NULL, NULL, updateAltHold, TASK_PERIOD_HZ(ALTHOLD_TASK_RATE_HZ), TASK_PRIORITY_LOW),
#endif
#ifdef USE_POSITION_HOLD
[TASK_POSHOLD] = DEFINE_TASK("POSHOLD", NULL, NULL, updatePosHold, TASK_PERIOD_HZ(POSHOLD_TASK_RATE_HZ), TASK_PRIORITY_LOW),
#endif
#ifdef USE_MAG
[TASK_COMPASS] = DEFINE_TASK("COMPASS", NULL, NULL, taskUpdateMag, TASK_PERIOD_HZ(TASK_COMPASS_RATE_HZ), TASK_PRIORITY_LOW),
#endif
#ifdef USE_BARO
[TASK_BARO] = DEFINE_TASK("BARO", NULL, NULL, taskUpdateBaro, TASK_PERIOD_HZ(TASK_BARO_RATE_HZ), TASK_PRIORITY_LOW),
#endif
#if defined(USE_BARO) || defined(USE_GPS)
[TASK_ALTITUDE] = DEFINE_TASK("ALTITUDE", NULL, NULL, taskCalculateAltitude, TASK_PERIOD_HZ(TASK_ALTITUDE_RATE_HZ), TASK_PRIORITY_LOW),
#endif
#ifdef USE_DASHBOARD
[TASK_DASHBOARD] = DEFINE_TASK("DASHBOARD", NULL, NULL, dashboardUpdate, TASK_PERIOD_HZ(10), TASK_PRIORITY_LOW),
#endif
#ifdef USE_OSD
[TASK_OSD] = DEFINE_TASK("OSD", NULL, osdUpdateCheck, osdUpdate, TASK_PERIOD_HZ(OSD_FRAMERATE_DEFAULT_HZ), TASK_PRIORITY_LOW),
#endif
#ifdef USE_TELEMETRY
[TASK_TELEMETRY] = DEFINE_TASK("TELEMETRY", NULL, NULL, taskTelemetry, TASK_PERIOD_HZ(250), TASK_PRIORITY_LOW),
#endif
#ifdef USE_LED_STRIP
[TASK_LEDSTRIP] = DEFINE_TASK("LEDSTRIP", NULL, NULL, ledStripUpdate, TASK_PERIOD_HZ(TASK_LEDSTRIP_RATE_HZ), TASK_PRIORITY_LOW),
#endif
#ifdef USE_BST
[TASK_BST_MASTER_PROCESS] = DEFINE_TASK("BST_MASTER_PROCESS", NULL, NULL, taskBstMasterProcess, TASK_PERIOD_HZ(50), TASK_PRIORITY_LOWEST),
#endif
#ifdef USE_ESC_SENSOR
[TASK_ESC_SENSOR] = DEFINE_TASK("ESC_SENSOR", NULL, NULL, escSensorProcess, TASK_PERIOD_HZ(100), TASK_PRIORITY_LOW),
#endif
#ifdef USE_CMS
[TASK_CMS] = DEFINE_TASK("CMS", NULL, NULL, cmsHandler, TASK_PERIOD_HZ(20), TASK_PRIORITY_LOW),
#endif
#ifdef USE_VTX_CONTROL
[TASK_VTXCTRL] = DEFINE_TASK("VTXCTRL", NULL, NULL, vtxUpdate, TASK_PERIOD_HZ(5), TASK_PRIORITY_LOWEST),
#endif
#ifdef USE_RCDEVICE
[TASK_RCDEVICE] = DEFINE_TASK("RCDEVICE", NULL, NULL, rcdeviceUpdate, TASK_PERIOD_HZ(20), TASK_PRIORITY_MEDIUM),
#endif
#ifdef USE_CAMERA_CONTROL
[TASK_CAMCTRL] = DEFINE_TASK("CAMCTRL", NULL, NULL, taskCameraControl, TASK_PERIOD_HZ(5), TASK_PRIORITY_LOW),
#endif
#ifdef USE_ADC_INTERNAL
[TASK_ADC_INTERNAL] = DEFINE_TASK("ADCINTERNAL", NULL, NULL, adcInternalProcess, TASK_PERIOD_HZ(1), TASK_PRIORITY_LOWEST),
#endif
#ifdef USE_PINIOBOX
[TASK_PINIOBOX] = DEFINE_TASK("PINIOBOX", NULL, NULL, pinioBoxUpdate, TASK_PERIOD_HZ(20), TASK_PRIORITY_LOWEST),
#endif
#ifdef USE_RANGEFINDER
[TASK_RANGEFINDER] = DEFINE_TASK("RANGEFINDER", NULL, NULL, taskUpdateRangefinder, TASK_PERIOD_HZ(10), TASK_PRIORITY_LOWEST),
#endif
#ifdef USE_OPTICALFLOW
[TASK_OPTICALFLOW] = DEFINE_TASK("OPTICALFLOW", NULL, NULL, taskUpdateOpticalflow, TASK_PERIOD_HZ(10), TASK_PRIORITY_LOWEST),
#endif
#ifdef USE_CRSF_V3
[TASK_SPEED_NEGOTIATION] = DEFINE_TASK("SPEED_NEGOTIATION", NULL, NULL, speedNegotiationProcess, TASK_PERIOD_HZ(100), TASK_PRIORITY_LOW),
#endif
#ifdef USE_RC_STATS
[TASK_RC_STATS] = DEFINE_TASK("RC_STATS", NULL, NULL, rcStatsUpdate, TASK_PERIOD_HZ(100), TASK_PRIORITY_LOW),
#endif
#ifdef USE_GIMBAL
[TASK_GIMBAL] = DEFINE_TASK("GIMBAL", NULL, NULL, gimbalUpdate, TASK_PERIOD_HZ(100), TASK_PRIORITY_MEDIUM),
#endif
};
task_t *getTask(unsigned taskId)
{
return &tasks[taskId];
}
// Has to be done before tasksInit() in order to initialize any task data which may be uninitialized at boot
void tasksInitData(void)
{
for (int i = 0; i < TASK_COUNT; i++) {
tasks[i].attribute = &task_attributes[i];
}
}
void tasksInit(void)
{
schedulerInit();
setTaskEnabled(TASK_MAIN, true);
setTaskEnabled(TASK_SERIAL, true);
rescheduleTask(TASK_SERIAL, TASK_PERIOD_HZ(serialConfig()->serial_update_rate_hz));
const bool useBatteryVoltage = batteryConfig()->voltageMeterSource != VOLTAGE_METER_NONE;
setTaskEnabled(TASK_BATTERY_VOLTAGE, useBatteryVoltage);
#if defined(USE_BATTERY_VOLTAGE_SAG_COMPENSATION)
// If vbat motor output compensation is used, use fast vbat samplingTime
if (isSagCompensationConfigured()) {
rescheduleTask(TASK_BATTERY_VOLTAGE, TASK_PERIOD_HZ(FAST_VOLTAGE_TASK_FREQ_HZ));
}
#endif
const bool useBatteryCurrent = batteryConfig()->currentMeterSource != CURRENT_METER_NONE;
setTaskEnabled(TASK_BATTERY_CURRENT, useBatteryCurrent);
const bool useBatteryAlerts = batteryConfig()->useVBatAlerts || batteryConfig()->useConsumptionAlerts || featureIsEnabled(FEATURE_OSD);
setTaskEnabled(TASK_BATTERY_ALERTS, (useBatteryVoltage || useBatteryCurrent) && useBatteryAlerts);
#ifdef USE_STACK_CHECK
setTaskEnabled(TASK_STACK_CHECK, true);
#endif
if (sensors(SENSOR_GYRO)) {
rescheduleTask(TASK_GYRO, gyro.sampleLooptime);
rescheduleTask(TASK_FILTER, gyro.targetLooptime);
rescheduleTask(TASK_PID, gyro.targetLooptime);
setTaskEnabled(TASK_GYRO, true);
setTaskEnabled(TASK_FILTER, true);
setTaskEnabled(TASK_PID, true);
schedulerEnableGyro();
}
#if defined(USE_ACC)
if (sensors(SENSOR_ACC) && acc.sampleRateHz) {
setTaskEnabled(TASK_ACCEL, true);
rescheduleTask(TASK_ACCEL, TASK_PERIOD_HZ(acc.sampleRateHz));
setTaskEnabled(TASK_ATTITUDE, true);
}
#endif
#ifdef USE_RANGEFINDER
if (sensors(SENSOR_RANGEFINDER)) {
setTaskEnabled(TASK_RANGEFINDER, featureIsEnabled(FEATURE_RANGEFINDER));
}
#endif
#ifdef USE_OPTICALFLOW
if (sensors(SENSOR_OPTICALFLOW)) {
setTaskEnabled(TASK_OPTICALFLOW, featureIsEnabled(FEATURE_OPTICALFLOW));
}
#endif
setTaskEnabled(TASK_RX, true);
setTaskEnabled(TASK_DISPATCH, dispatchIsEnabled());
#ifdef USE_BEEPER
setTaskEnabled(TASK_BEEPER, true);
#endif
#ifdef USE_GPS
setTaskEnabled(TASK_GPS, featureIsEnabled(FEATURE_GPS));
#endif
#ifdef USE_GPS_RESCUE
setTaskEnabled(TASK_GPS_RESCUE, featureIsEnabled(FEATURE_GPS));
#endif
#ifdef USE_ALTITUDE_HOLD
setTaskEnabled(TASK_ALTHOLD, sensors(SENSOR_BARO) || featureIsEnabled(FEATURE_GPS));
#endif
#ifdef USE_POSITION_HOLD
setTaskEnabled(TASK_POSHOLD, featureIsEnabled(FEATURE_GPS));
#endif
#ifdef USE_MAG
setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#endif
#ifdef USE_BARO
setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#if defined(USE_BARO) || defined(USE_GPS)
setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || featureIsEnabled(FEATURE_GPS));
#endif
#ifdef USE_DASHBOARD
setTaskEnabled(TASK_DASHBOARD, featureIsEnabled(FEATURE_DASHBOARD));
#endif
#ifdef USE_TELEMETRY
if (featureIsEnabled(FEATURE_TELEMETRY)) {
setTaskEnabled(TASK_TELEMETRY, true);
if (rxRuntimeState.serialrxProvider == SERIALRX_JETIEXBUS) {
// Reschedule telemetry to 500hz for Jeti Exbus
rescheduleTask(TASK_TELEMETRY, TASK_PERIOD_HZ(500));
} else if (rxRuntimeState.serialrxProvider == SERIALRX_CRSF) {
// Reschedule telemetry to 500hz, 2ms for CRSF
rescheduleTask(TASK_TELEMETRY, TASK_PERIOD_HZ(500));
}
}
#endif
#ifdef USE_LED_STRIP
setTaskEnabled(TASK_LEDSTRIP, featureIsEnabled(FEATURE_LED_STRIP));
#endif
#ifdef USE_TRANSPONDER
setTaskEnabled(TASK_TRANSPONDER, featureIsEnabled(FEATURE_TRANSPONDER));
#endif
#ifdef USE_OSD
rescheduleTask(TASK_OSD, TASK_PERIOD_HZ(osdConfig()->framerate_hz));
setTaskEnabled(TASK_OSD, featureIsEnabled(FEATURE_OSD) && osdGetDisplayPort(NULL));
#endif
#ifdef USE_BST
setTaskEnabled(TASK_BST_MASTER_PROCESS, true);
#endif
#ifdef USE_ESC_SENSOR
setTaskEnabled(TASK_ESC_SENSOR, featureIsEnabled(FEATURE_ESC_SENSOR));
#endif
#ifdef USE_ADC_INTERNAL
setTaskEnabled(TASK_ADC_INTERNAL, true);
#endif
#ifdef USE_PINIOBOX
pinioBoxTaskControl();
#endif
#ifdef USE_CMS
#ifdef USE_MSP_DISPLAYPORT
setTaskEnabled(TASK_CMS, true);
#else
setTaskEnabled(TASK_CMS, featureIsEnabled(FEATURE_OSD) || featureIsEnabled(FEATURE_DASHBOARD));
#endif
#endif
#ifdef USE_VTX_CONTROL
#if defined(USE_VTX_RTC6705) || defined(USE_VTX_SMARTAUDIO) || defined(USE_VTX_TRAMP) || defined(USE_VTX_MSP)
setTaskEnabled(TASK_VTXCTRL, true);
#endif
#endif
#ifdef USE_CAMERA_CONTROL
setTaskEnabled(TASK_CAMCTRL, true);
#endif
#ifdef USE_RCDEVICE
setTaskEnabled(TASK_RCDEVICE, rcdeviceIsEnabled());
#endif
#ifdef USE_CRSF_V3
const bool useCRSF = rxRuntimeState.serialrxProvider == SERIALRX_CRSF;
setTaskEnabled(TASK_SPEED_NEGOTIATION, useCRSF);
#endif
#ifdef SIMULATOR_MULTITHREAD
rescheduleTask(TASK_RX, 1);
#endif
#ifdef USE_RC_STATS
setTaskEnabled(TASK_RC_STATS, true);
#endif
#ifdef USE_GIMBAL
setTaskEnabled(TASK_GIMBAL, true);
#endif
}