mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-18 22:05:17 +03:00
329 lines
12 KiB
C
329 lines
12 KiB
C
/*
|
|
* This file is part of Cleanflight.
|
|
*
|
|
* Cleanflight is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Cleanflight is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "platform.h"
|
|
|
|
#ifdef USE_ADC
|
|
|
|
#include "drivers/accgyro/accgyro.h"
|
|
#include "drivers/system.h"
|
|
|
|
#include "drivers/io.h"
|
|
#include "io_impl.h"
|
|
#include "rcc.h"
|
|
#include "dma.h"
|
|
|
|
#include "drivers/sensor.h"
|
|
|
|
#include "adc.h"
|
|
#include "adc_impl.h"
|
|
|
|
#include "pg/adc.h"
|
|
|
|
|
|
#ifndef ADC_INSTANCE
|
|
#define ADC_INSTANCE ADC1
|
|
#endif
|
|
|
|
#ifndef ADC1_DMA_STREAM
|
|
#define ADC1_DMA_STREAM DMA2_Stream4
|
|
#endif
|
|
|
|
// Copied from stm32f7xx_ll_adc.h
|
|
|
|
#define VREFINT_CAL_VREF ( 3300U) /* Analog voltage reference (Vref+) value with which temperature sensor has been calibrated in production (tolerance: +-10 mV) (unit: mV). */
|
|
#define TEMPSENSOR_CAL1_TEMP (( int32_t) 30) /* Internal temperature sensor, temperature at which temperature sensor has been calibrated in production for data into TEMPSENSOR_CAL1_ADDR (tolerance: +-5 DegC) (unit: DegC). */
|
|
#define TEMPSENSOR_CAL2_TEMP (( int32_t) 110) /* Internal temperature sensor, temperature at which temperature sensor has been calibrated in production for data into TEMPSENSOR_CAL2_ADDR (tolerance: +-5 DegC) (unit: DegC). */
|
|
#define TEMPSENSOR_CAL_VREFANALOG ( 3300U) /* Analog voltage reference (Vref+) voltage with which temperature sensor has been calibrated in production (+-10 mV) (unit: mV). */
|
|
|
|
// These addresses are incorrectly defined in stm32f7xx_ll_adc.h
|
|
|
|
#if defined(STM32F745xx) || defined(STM32F746xx)
|
|
// F745xx_F746xx
|
|
#define VREFINT_CAL_ADDR ((uint16_t*) (0x1FF0F44A))
|
|
#define TEMPSENSOR_CAL1_ADDR ((uint16_t*) (0x1FF0F44C))
|
|
#define TEMPSENSOR_CAL2_ADDR ((uint16_t*) (0x1FF0F44E))
|
|
#elif defined(STM32F722xx)
|
|
// F72x_F73x
|
|
#define VREFINT_CAL_ADDR ((uint16_t*) (0x1FF07A2A))
|
|
#define TEMPSENSOR_CAL1_ADDR ((uint16_t*) (0x1FF07A2C))
|
|
#define TEMPSENSOR_CAL2_ADDR ((uint16_t*) (0x1FF07A2E))
|
|
#endif
|
|
|
|
const adcDevice_t adcHardware[] = {
|
|
{ .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), .DMAy_Streamx = ADC1_DMA_STREAM, .channel = DMA_CHANNEL_0 },
|
|
{ .ADCx = ADC2, .rccADC = RCC_APB2(ADC2), .DMAy_Streamx = ADC2_DMA_STREAM, .channel = DMA_CHANNEL_1 },
|
|
{ .ADCx = ADC3, .rccADC = RCC_APB2(ADC3), .DMAy_Streamx = ADC3_DMA_STREAM, .channel = DMA_CHANNEL_2 }
|
|
};
|
|
|
|
/* note these could be packed up for saving space */
|
|
const adcTagMap_t adcTagMap[] = {
|
|
/*
|
|
{ DEFIO_TAG_E__PF3, ADC_DEVICES_3, ADC_CHANNEL_9 },
|
|
{ DEFIO_TAG_E__PF4, ADC_DEVICES_3, ADC_CHANNEL_14 },
|
|
{ DEFIO_TAG_E__PF5, ADC_DEVICES_3, ADC_CHANNEL_15 },
|
|
{ DEFIO_TAG_E__PF6, ADC_DEVICES_3, ADC_CHANNEL_4 },
|
|
{ DEFIO_TAG_E__PF7, ADC_DEVICES_3, ADC_CHANNEL_5 },
|
|
{ DEFIO_TAG_E__PF8, ADC_DEVICES_3, ADC_CHANNEL_6 },
|
|
{ DEFIO_TAG_E__PF9, ADC_DEVICES_3, ADC_CHANNEL_7 },
|
|
{ DEFIO_TAG_E__PF10,ADC_DEVICES_3, ADC_CHANNEL_8 },
|
|
*/
|
|
{ DEFIO_TAG_E__PC0, ADC_DEVICES_123, ADC_CHANNEL_10 },
|
|
{ DEFIO_TAG_E__PC1, ADC_DEVICES_123, ADC_CHANNEL_11 },
|
|
{ DEFIO_TAG_E__PC2, ADC_DEVICES_123, ADC_CHANNEL_12 },
|
|
{ DEFIO_TAG_E__PC3, ADC_DEVICES_123, ADC_CHANNEL_13 },
|
|
{ DEFIO_TAG_E__PC4, ADC_DEVICES_12, ADC_CHANNEL_14 },
|
|
{ DEFIO_TAG_E__PC5, ADC_DEVICES_12, ADC_CHANNEL_15 },
|
|
{ DEFIO_TAG_E__PB0, ADC_DEVICES_12, ADC_CHANNEL_8 },
|
|
{ DEFIO_TAG_E__PB1, ADC_DEVICES_12, ADC_CHANNEL_9 },
|
|
{ DEFIO_TAG_E__PA0, ADC_DEVICES_123, ADC_CHANNEL_0 },
|
|
{ DEFIO_TAG_E__PA1, ADC_DEVICES_123, ADC_CHANNEL_1 },
|
|
{ DEFIO_TAG_E__PA2, ADC_DEVICES_123, ADC_CHANNEL_2 },
|
|
{ DEFIO_TAG_E__PA3, ADC_DEVICES_123, ADC_CHANNEL_3 },
|
|
{ DEFIO_TAG_E__PA4, ADC_DEVICES_12, ADC_CHANNEL_4 },
|
|
{ DEFIO_TAG_E__PA5, ADC_DEVICES_12, ADC_CHANNEL_5 },
|
|
{ DEFIO_TAG_E__PA6, ADC_DEVICES_12, ADC_CHANNEL_6 },
|
|
{ DEFIO_TAG_E__PA7, ADC_DEVICES_12, ADC_CHANNEL_7 },
|
|
};
|
|
|
|
void adcInitDevice(adcDevice_t *adcdev, int channelCount)
|
|
{
|
|
adcdev->ADCHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
|
|
adcdev->ADCHandle.Init.ContinuousConvMode = ENABLE;
|
|
adcdev->ADCHandle.Init.Resolution = ADC_RESOLUTION_12B;
|
|
adcdev->ADCHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
|
|
adcdev->ADCHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
|
|
adcdev->ADCHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
|
adcdev->ADCHandle.Init.NbrOfConversion = channelCount;
|
|
#ifdef USE_ADC_INTERNAL
|
|
// Multiple injected channel seems to require scan conversion mode to be
|
|
// enabled even if main (non-injected) channel count is 1.
|
|
adcdev->ADCHandle.Init.ScanConvMode = ENABLE;
|
|
#else
|
|
adcdev->ADCHandle.Init.ScanConvMode = channelCount > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group
|
|
#endif
|
|
adcdev->ADCHandle.Init.DiscontinuousConvMode = DISABLE;
|
|
adcdev->ADCHandle.Init.NbrOfDiscConversion = 0;
|
|
adcdev->ADCHandle.Init.DMAContinuousRequests = ENABLE;
|
|
adcdev->ADCHandle.Init.EOCSelection = DISABLE;
|
|
adcdev->ADCHandle.Instance = adcdev->ADCx;
|
|
|
|
if (HAL_ADC_Init(&adcdev->ADCHandle) != HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
}
|
|
}
|
|
|
|
static adcDevice_t adc;
|
|
|
|
#ifdef USE_ADC_INTERNAL
|
|
|
|
static adcDevice_t adcInternal;
|
|
static ADC_HandleTypeDef *adcInternalHandle;
|
|
|
|
void adcInitInternalInjected(adcDevice_t *adcdev)
|
|
{
|
|
adcInternalHandle = &adcdev->ADCHandle;
|
|
|
|
ADC_InjectionConfTypeDef iConfig;
|
|
|
|
iConfig.InjectedChannel = ADC_CHANNEL_VREFINT;
|
|
iConfig.InjectedRank = 1;
|
|
iConfig.InjectedSamplingTime = ADC_SAMPLETIME_480CYCLES;
|
|
iConfig.InjectedOffset = 0;
|
|
iConfig.InjectedNbrOfConversion = 2;
|
|
iConfig.InjectedDiscontinuousConvMode = DISABLE;
|
|
iConfig.AutoInjectedConv = DISABLE;
|
|
iConfig.ExternalTrigInjecConv = 0; // Don't care
|
|
iConfig.ExternalTrigInjecConvEdge = 0; // Don't care
|
|
|
|
if (HAL_ADCEx_InjectedConfigChannel(adcInternalHandle, &iConfig) != HAL_OK) {
|
|
/* Channel Configuration Error */
|
|
}
|
|
|
|
iConfig.InjectedChannel = ADC_CHANNEL_TEMPSENSOR;
|
|
iConfig.InjectedRank = 2;
|
|
|
|
if (HAL_ADCEx_InjectedConfigChannel(adcInternalHandle, &iConfig) != HAL_OK) {
|
|
/* Channel Configuration Error */
|
|
}
|
|
|
|
adcVREFINTCAL = *(uint16_t *)VREFINT_CAL_ADDR;
|
|
adcTSCAL1 = *TEMPSENSOR_CAL1_ADDR;
|
|
adcTSCAL2 = *TEMPSENSOR_CAL2_ADDR;
|
|
adcTSSlopeK = (TEMPSENSOR_CAL2_TEMP - TEMPSENSOR_CAL1_TEMP) * 1000 / (adcTSCAL2 - adcTSCAL1);
|
|
}
|
|
|
|
// Note on sampling time for temperature sensor and vrefint:
|
|
// Both sources have minimum sample time of 10us.
|
|
// With prescaler = 8:
|
|
// 168MHz : fAPB2 = 84MHz, fADC = 10.5MHz, tcycle = 0.090us, 10us = 105cycle < 144cycle
|
|
// 240MHz : fAPB2 = 120MHz, fADC = 15.0MHz, tcycle = 0.067usk 10us = 150cycle < 480cycle
|
|
//
|
|
// 480cycles@15.0MHz = 32us
|
|
|
|
static bool adcInternalConversionInProgress = false;
|
|
|
|
bool adcInternalIsBusy(void)
|
|
{
|
|
if (adcInternalConversionInProgress) {
|
|
if (HAL_ADCEx_InjectedPollForConversion(adcInternalHandle, 0) == HAL_OK) {
|
|
adcInternalConversionInProgress = false;
|
|
}
|
|
}
|
|
|
|
return adcInternalConversionInProgress;
|
|
}
|
|
|
|
void adcInternalStartConversion(void)
|
|
{
|
|
HAL_ADCEx_InjectedStart(adcInternalHandle);
|
|
|
|
adcInternalConversionInProgress = true;
|
|
}
|
|
|
|
uint16_t adcInternalReadVrefint(void)
|
|
{
|
|
return HAL_ADCEx_InjectedGetValue(adcInternalHandle, ADC_INJECTED_RANK_1);
|
|
}
|
|
|
|
uint16_t adcInternalReadTempsensor(void)
|
|
{
|
|
return HAL_ADCEx_InjectedGetValue(adcInternalHandle, ADC_INJECTED_RANK_2);
|
|
}
|
|
#endif
|
|
|
|
void adcInit(const adcConfig_t *config)
|
|
{
|
|
uint8_t i;
|
|
uint8_t configuredAdcChannels = 0;
|
|
|
|
memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));
|
|
|
|
if (config->vbat.enabled) {
|
|
adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
|
|
}
|
|
|
|
if (config->rssi.enabled) {
|
|
adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL;
|
|
}
|
|
|
|
if (config->external1.enabled) {
|
|
adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
|
|
}
|
|
|
|
if (config->current.enabled) {
|
|
adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL;
|
|
}
|
|
|
|
ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
|
|
if (device == ADCINVALID)
|
|
return;
|
|
|
|
adc = adcHardware[device];
|
|
|
|
bool adcActive = false;
|
|
for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
|
|
if (!adcVerifyPin(adcOperatingConfig[i].tag, device)) {
|
|
continue;
|
|
}
|
|
|
|
adcActive = true;
|
|
IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
|
|
IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_MODE_ANALOG, 0, GPIO_NOPULL));
|
|
adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
|
|
adcOperatingConfig[i].dmaIndex = configuredAdcChannels++;
|
|
adcOperatingConfig[i].sampleTime = ADC_SAMPLETIME_480CYCLES;
|
|
adcOperatingConfig[i].enabled = true;
|
|
}
|
|
|
|
#ifndef USE_ADC_INTERNAL
|
|
if (!adcActive) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
RCC_ClockCmd(adc.rccADC, ENABLE);
|
|
|
|
adcInitDevice(&adc, configuredAdcChannels);
|
|
|
|
#ifdef USE_ADC_INTERNAL
|
|
// If device is not ADC1 or there's no active channel, then initialize ADC1 here.
|
|
if (device != ADCDEV_1 || !adcActive) {
|
|
adcInternal = adcHardware[ADCDEV_1];
|
|
RCC_ClockCmd(adcInternal.rccADC, ENABLE);
|
|
adcInitDevice(&adcInternal, 0);
|
|
adcInitInternalInjected(&adcInternal);
|
|
} else {
|
|
adcInitInternalInjected(&adc);
|
|
}
|
|
#endif
|
|
|
|
uint8_t rank = 1;
|
|
for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
|
|
if (!adcOperatingConfig[i].enabled) {
|
|
continue;
|
|
}
|
|
|
|
ADC_ChannelConfTypeDef sConfig;
|
|
|
|
sConfig.Channel = adcOperatingConfig[i].adcChannel;
|
|
sConfig.Rank = rank++;
|
|
sConfig.SamplingTime = adcOperatingConfig[i].sampleTime;
|
|
sConfig.Offset = 0;
|
|
|
|
if (HAL_ADC_ConfigChannel(&adc.ADCHandle, &sConfig) != HAL_OK)
|
|
{
|
|
/* Channel Configuration Error */
|
|
}
|
|
}
|
|
|
|
dmaInit(dmaGetIdentifier(adc.DMAy_Streamx), OWNER_ADC, 0);
|
|
|
|
adc.DmaHandle.Init.Channel = adc.channel;
|
|
adc.DmaHandle.Init.Direction = DMA_PERIPH_TO_MEMORY;
|
|
adc.DmaHandle.Init.PeriphInc = DMA_PINC_DISABLE;
|
|
adc.DmaHandle.Init.MemInc = configuredAdcChannels > 1 ? DMA_MINC_ENABLE : DMA_MINC_DISABLE;
|
|
adc.DmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
|
|
adc.DmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
|
|
adc.DmaHandle.Init.Mode = DMA_CIRCULAR;
|
|
adc.DmaHandle.Init.Priority = DMA_PRIORITY_HIGH;
|
|
adc.DmaHandle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
|
|
adc.DmaHandle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
|
|
adc.DmaHandle.Init.MemBurst = DMA_MBURST_SINGLE;
|
|
adc.DmaHandle.Init.PeriphBurst = DMA_PBURST_SINGLE;
|
|
adc.DmaHandle.Instance = adc.DMAy_Streamx;
|
|
|
|
if (HAL_DMA_Init(&adc.DmaHandle) != HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
}
|
|
|
|
__HAL_LINKDMA(&adc.ADCHandle, DMA_Handle, adc.DmaHandle);
|
|
|
|
//HAL_CLEANINVALIDATECACHE((uint32_t*)&adcValues, configuredAdcChannels);
|
|
|
|
if (HAL_ADC_Start_DMA(&adc.ADCHandle, (uint32_t*)&adcValues, configuredAdcChannels) != HAL_OK)
|
|
{
|
|
/* Start Conversation Error */
|
|
}
|
|
}
|
|
#endif
|