1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 03:20:00 +03:00
betaflight/src/main/drivers/rx/rx_pwm.c
2025-07-09 16:32:00 +08:00

488 lines
14 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#if defined(USE_RX_PWM) || defined(USE_RX_PPM)
#include "build/build_config.h"
#include "build/debug.h"
#include "common/utils.h"
#include "drivers/io.h"
#include "drivers/nvic.h"
#include "drivers/pwm_output.h"
#include "drivers/timer.h"
#include "pg/rx_pwm.h"
#include "rx_pwm.h"
#define DEBUG_PPM_ISR
#define PPM_CAPTURE_COUNT 12
#if PPM_CAPTURE_COUNT > PWM_INPUT_PORT_COUNT
#define PWM_PORTS_OR_PPM_CAPTURE_COUNT PPM_CAPTURE_COUNT
#else
#define PWM_PORTS_OR_PPM_CAPTURE_COUNT PWM_INPUT_PORT_COUNT
#endif
// TODO - change to timer clocks ticks
#define INPUT_FILTER_TO_HELP_WITH_NOISE_FROM_OPENLRS_TELEMETRY_RX 0x03
static inputFilteringMode_e inputFilteringMode;
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity);
typedef enum {
INPUT_MODE_PPM,
INPUT_MODE_PWM
} pwmInputMode_e;
typedef struct {
pwmInputMode_e mode;
uint8_t channel; // only used for pwm, ignored by ppm
uint8_t state;
uint8_t missedEvents;
captureCompare_t rise;
captureCompare_t fall;
captureCompare_t capture;
const timerHardware_t *timerHardware;
timerCCHandlerRec_t edgeCb;
timerOvrHandlerRec_t overflowCb;
} pwmInputPort_t;
static pwmInputPort_t pwmInputPorts[PWM_INPUT_PORT_COUNT];
static uint16_t captures[PWM_PORTS_OR_PPM_CAPTURE_COUNT];
#define PPM_TIMER_PERIOD 0x10000
#define PWM_TIMER_PERIOD 0x10000
static uint8_t ppmFrameCount = 0;
static uint8_t lastPPMFrameCount = 0;
static uint8_t ppmCountDivisor = 1;
typedef struct ppmDevice_s {
//uint32_t previousTime;
uint32_t currentCapture;
uint32_t currentTime;
uint32_t deltaTime;
uint32_t captures[PWM_PORTS_OR_PPM_CAPTURE_COUNT];
uint32_t largeCounter;
uint8_t pulseIndex;
int8_t numChannels;
int8_t numChannelsPrevFrame;
uint8_t stableFramesSeenCount;
bool tracking;
bool overflowed;
} ppmDevice_t;
static ppmDevice_t ppmDev;
#define PPM_IN_MIN_SYNC_PULSE_US 2700 // microseconds
#define PPM_IN_MIN_CHANNEL_PULSE_US 750 // microseconds
#define PPM_IN_MAX_CHANNEL_PULSE_US 2250 // microseconds
#define PPM_STABLE_FRAMES_REQUIRED_COUNT 25
#define PPM_IN_MIN_NUM_CHANNELS 4
#define PPM_IN_MAX_NUM_CHANNELS PWM_PORTS_OR_PPM_CAPTURE_COUNT
bool isPPMDataBeingReceived(void)
{
return (ppmFrameCount != lastPPMFrameCount);
}
void resetPPMDataReceivedState(void)
{
lastPPMFrameCount = ppmFrameCount;
}
#define MIN_CHANNELS_BEFORE_PPM_FRAME_CONSIDERED_VALID 4
typedef enum {
SOURCE_OVERFLOW = 0,
SOURCE_EDGE = 1
} eventSource_e;
static void ppmISREvent(eventSource_e source, uint32_t capture);
#ifdef DEBUG_PPM_ISR
typedef struct ppmISREvent_s {
uint32_t capture;
eventSource_e source;
} ppmISREvent_t;
static ppmISREvent_t ppmEvents[20];
static uint8_t ppmEventIndex = 0;
static void ppmISREvent(eventSource_e source, uint32_t capture)
{
ppmEventIndex = (ppmEventIndex + 1) % ARRAYLEN(ppmEvents);
ppmEvents[ppmEventIndex].source = source;
ppmEvents[ppmEventIndex].capture = capture;
}
#else
static void ppmISREvent(eventSource_e source, uint32_t capture) {}
#endif
static void ppmResetDevice(void)
{
ppmDev.pulseIndex = 0;
ppmDev.currentCapture = 0;
ppmDev.currentTime = 0;
ppmDev.deltaTime = 0;
ppmDev.largeCounter = 0;
ppmDev.numChannels = -1;
ppmDev.numChannelsPrevFrame = -1;
ppmDev.stableFramesSeenCount = 0;
ppmDev.tracking = false;
ppmDev.overflowed = false;
}
static void ppmOverflowCallback(timerOvrHandlerRec_t* cbRec, captureCompare_t capture)
{
UNUSED(cbRec);
ppmISREvent(SOURCE_OVERFLOW, capture);
ppmDev.largeCounter += capture + 1;
if (capture == PPM_TIMER_PERIOD - 1) {
ppmDev.overflowed = true;
}
}
static void ppmEdgeCallback(timerCCHandlerRec_t* cbRec, captureCompare_t capture)
{
UNUSED(cbRec);
ppmISREvent(SOURCE_EDGE, capture);
int32_t i;
uint32_t previousTime = ppmDev.currentTime;
uint32_t previousCapture = ppmDev.currentCapture;
/* Grab the new count */
uint32_t currentTime = capture;
/* Convert to 32-bit timer result */
currentTime += ppmDev.largeCounter;
if (capture < previousCapture) {
if (ppmDev.overflowed) {
currentTime += PPM_TIMER_PERIOD;
}
}
// Divide value if Oneshot, Multishot or brushed motors are active and the timer is shared
currentTime = currentTime / ppmCountDivisor;
/* Capture computation */
if (currentTime > previousTime) {
ppmDev.deltaTime = currentTime - (previousTime + (ppmDev.overflowed ? (PPM_TIMER_PERIOD / ppmCountDivisor) : 0));
} else {
ppmDev.deltaTime = (PPM_TIMER_PERIOD / ppmCountDivisor) + currentTime - previousTime;
}
ppmDev.overflowed = false;
/* Store the current measurement */
ppmDev.currentTime = currentTime;
ppmDev.currentCapture = capture;
/* Sync pulse detection */
if (ppmDev.deltaTime > PPM_IN_MIN_SYNC_PULSE_US) {
if (ppmDev.pulseIndex == ppmDev.numChannelsPrevFrame
&& ppmDev.pulseIndex >= PPM_IN_MIN_NUM_CHANNELS
&& ppmDev.pulseIndex <= PPM_IN_MAX_NUM_CHANNELS) {
/* If we see n simultaneous frames of the same
number of channels we save it as our frame size */
if (ppmDev.stableFramesSeenCount < PPM_STABLE_FRAMES_REQUIRED_COUNT) {
ppmDev.stableFramesSeenCount++;
} else {
ppmDev.numChannels = ppmDev.pulseIndex;
}
} else {
ppmDev.stableFramesSeenCount = 0;
}
/* Check if the last frame was well formed */
if (ppmDev.pulseIndex == ppmDev.numChannels && ppmDev.tracking) {
/* The last frame was well formed */
for (i = 0; i < ppmDev.numChannels; i++) {
captures[i] = ppmDev.captures[i];
}
for (i = ppmDev.numChannels; i < PPM_IN_MAX_NUM_CHANNELS; i++) {
captures[i] = PPM_RCVR_TIMEOUT;
}
ppmFrameCount++;
}
ppmDev.tracking = true;
ppmDev.numChannelsPrevFrame = ppmDev.pulseIndex;
ppmDev.pulseIndex = 0;
/* We rely on the supervisor to set captureValue to invalid
if no valid frame is found otherwise we ride over it */
} else if (ppmDev.tracking) {
/* Valid pulse duration 0.75 to 2.5 ms*/
if (ppmDev.deltaTime > PPM_IN_MIN_CHANNEL_PULSE_US
&& ppmDev.deltaTime < PPM_IN_MAX_CHANNEL_PULSE_US
&& ppmDev.pulseIndex < PPM_IN_MAX_NUM_CHANNELS) {
ppmDev.captures[ppmDev.pulseIndex] = ppmDev.deltaTime;
ppmDev.pulseIndex++;
} else {
/* Not a valid pulse duration */
ppmDev.tracking = false;
for (i = 0; i < PWM_PORTS_OR_PPM_CAPTURE_COUNT; i++) {
ppmDev.captures[i] = PPM_RCVR_TIMEOUT;
}
}
}
}
#define MAX_MISSED_PWM_EVENTS 10
bool isPWMDataBeingReceived(void)
{
int channel;
for (channel = 0; channel < PWM_PORTS_OR_PPM_CAPTURE_COUNT; channel++) {
if (captures[channel] != PPM_RCVR_TIMEOUT) {
return true;
}
}
return false;
}
static void pwmOverflowCallback(timerOvrHandlerRec_t* cbRec, captureCompare_t capture)
{
UNUSED(capture);
pwmInputPort_t *pwmInputPort = container_of(cbRec, pwmInputPort_t, overflowCb);
if (++pwmInputPort->missedEvents > MAX_MISSED_PWM_EVENTS) {
captures[pwmInputPort->channel] = PPM_RCVR_TIMEOUT;
pwmInputPort->missedEvents = 0;
}
}
static void pwmEdgeCallback(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
pwmInputPort_t *pwmInputPort = container_of(cbRec, pwmInputPort_t, edgeCb);
const timerHardware_t *timerHardwarePtr = pwmInputPort->timerHardware;
if (pwmInputPort->state == 0) {
pwmInputPort->rise = capture;
pwmInputPort->state = 1;
#if defined(USE_HAL_DRIVER)
pwmICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPOLARITY_FALLING);
#else
pwmICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPolarity_Falling);
#endif
} else {
pwmInputPort->fall = capture;
// compute and store capture
pwmInputPort->capture = pwmInputPort->fall - pwmInputPort->rise;
captures[pwmInputPort->channel] = pwmInputPort->capture;
// switch state
pwmInputPort->state = 0;
#if defined(USE_HAL_DRIVER)
pwmICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPOLARITY_RISING);
#else
pwmICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPolarity_Rising);
#endif
pwmInputPort->missedEvents = 0;
}
}
#if defined(USE_HAL_DRIVER)
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim);
if (Handle == NULL) return;
TIM_IC_InitTypeDef TIM_ICInitStructure;
TIM_ICInitStructure.ICPolarity = polarity;
TIM_ICInitStructure.ICSelection = TIM_ICSELECTION_DIRECTTI;
TIM_ICInitStructure.ICPrescaler = TIM_ICPSC_DIV1;
if (inputFilteringMode == INPUT_FILTERING_ENABLED) {
TIM_ICInitStructure.ICFilter = INPUT_FILTER_TO_HELP_WITH_NOISE_FROM_OPENLRS_TELEMETRY_RX;
} else {
TIM_ICInitStructure.ICFilter = 0x00;
}
HAL_TIM_IC_ConfigChannel(Handle, &TIM_ICInitStructure, channel);
HAL_TIM_IC_Start_IT(Handle,channel);
}
#elif defined(USE_GDBSP_DRIVER)
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
timer_ic_parameter_struct timer_icinitpara;
timer_channel_input_struct_para_init(&timer_icinitpara);
timer_icinitpara.icselection = TIMER_IC_SELECTION_DIRECTTI;
timer_icinitpara.icprescaler = TIMER_IC_PSC_DIV1;
timer_icinitpara.icpolarity = polarity;
if (inputFilteringMode == INPUT_FILTERING_ENABLED) {
timer_icinitpara.icfilter = INPUT_FILTER_TO_HELP_WITH_NOISE_FROM_OPENLRS_TELEMETRY_RX;
} else {
timer_icinitpara.icfilter = 0x00;
}
timer_input_capture_config((uint32_t)tim, channel, &timer_icinitpara);
}
#else
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICStructInit(&TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = channel;
TIM_ICInitStructure.TIM_ICPolarity = polarity;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
if (inputFilteringMode == INPUT_FILTERING_ENABLED) {
TIM_ICInitStructure.TIM_ICFilter = INPUT_FILTER_TO_HELP_WITH_NOISE_FROM_OPENLRS_TELEMETRY_RX;
} else {
TIM_ICInitStructure.TIM_ICFilter = 0x00;
}
TIM_ICInit(tim, &TIM_ICInitStructure);
}
#endif
void pwmRxInit(const pwmConfig_t *pwmConfig)
{
inputFilteringMode = pwmConfig->inputFilteringMode;
for (int channel = 0; channel < PWM_INPUT_PORT_COUNT; channel++) {
pwmInputPort_t *port = &pwmInputPorts[channel];
const timerHardware_t *timer = timerAllocate(pwmConfig->ioTags[channel], OWNER_PWMINPUT, RESOURCE_INDEX(channel));
if (!timer) {
/* TODO: maybe fail here if not enough channels? */
continue;
}
port->state = 0;
port->missedEvents = 0;
port->channel = channel;
port->mode = INPUT_MODE_PWM;
port->timerHardware = timer;
IO_t io = IOGetByTag(pwmConfig->ioTags[channel]);
IOInit(io, OWNER_PWMINPUT, RESOURCE_INDEX(channel));
IOConfigGPIOAF(io, IOCFG_AF_PP, timer->alternateFunction);
timerConfigure(timer, (uint16_t)PWM_TIMER_PERIOD, PWM_TIMER_1MHZ);
timerChCCHandlerInit(&port->edgeCb, pwmEdgeCallback);
timerChOvrHandlerInit(&port->overflowCb, pwmOverflowCallback);
timerChConfigCallbacks(timer, &port->edgeCb, &port->overflowCb);
#if defined(USE_HAL_DRIVER)
pwmICConfig(timer->tim, timer->channel, TIM_ICPOLARITY_RISING);
#else
pwmICConfig(timer->tim, timer->channel, TIM_ICPolarity_Rising);
#endif
}
}
#define FIRST_PWM_PORT 0
#ifdef USE_PWM_OUTPUT
static void ppmAvoidPWMTimerClash(TIM_TypeDef *pwmTimer)
{
pwmOutputPort_t *motors = pwmGetMotors();
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS; motorIndex++) {
if (!motors[motorIndex].enabled || motors[motorIndex].channel.tim != pwmTimer) {
continue;
}
#if defined(USE_GDBSP_DRIVER)
ppmCountDivisor = timerClock(pwmTimer) / timerPrescaler(pwmTimer);
#else
ppmCountDivisor = timerClock(pwmTimer) / (pwmTimer->PSC + 1);
#endif
return;
}
}
#endif
void ppmRxInit(const ppmConfig_t *ppmConfig)
{
ppmResetDevice();
pwmInputPort_t *port = &pwmInputPorts[FIRST_PWM_PORT];
const timerHardware_t *timer = timerAllocate(ppmConfig->ioTag, OWNER_PPMINPUT, 0);
if (!timer) {
/* TODO: fail here? */
return;
}
#ifdef USE_PWM_OUTPUT
ppmAvoidPWMTimerClash(timer->tim);
#endif
port->mode = INPUT_MODE_PPM;
port->timerHardware = timer;
IO_t io = IOGetByTag(ppmConfig->ioTag);
IOInit(io, OWNER_PPMINPUT, 0);
IOConfigGPIOAF(io, IOCFG_AF_PP, timer->alternateFunction);
timerConfigure(timer, (uint16_t)PPM_TIMER_PERIOD, PWM_TIMER_1MHZ);
timerChCCHandlerInit(&port->edgeCb, ppmEdgeCallback);
timerChOvrHandlerInit(&port->overflowCb, ppmOverflowCallback);
timerChConfigCallbacks(timer, &port->edgeCb, &port->overflowCb);
#if defined(USE_HAL_DRIVER)
pwmICConfig(timer->tim, timer->channel, TIM_ICPOLARITY_RISING);
#else
pwmICConfig(timer->tim, timer->channel, TIM_ICPolarity_Rising);
#endif
}
uint16_t ppmRead(uint8_t channel)
{
return captures[channel];
}
uint16_t pwmRead(uint8_t channel)
{
return captures[channel];
}
#endif