1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-20 23:05:19 +03:00
betaflight/src/test/unit/telemetry_crsf_unittest.cc
2018-10-24 02:02:59 +13:00

351 lines
12 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <limits.h>
extern "C" {
#include <platform.h>
#include "build/debug.h"
#include "common/axis.h"
#include "common/crc.h"
#include "common/filter.h"
#include "common/gps_conversion.h"
#include "common/maths.h"
#include "common/printf.h"
#include "common/typeconversion.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/rx.h"
#include "drivers/serial.h"
#include "drivers/system.h"
#include "fc/config.h"
#include "fc/runtime_config.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "io/gps.h"
#include "io/serial.h"
#include "rx/rx.h"
#include "rx/crsf.h"
#include "sensors/battery.h"
#include "sensors/sensors.h"
#include "sensors/acceleration.h"
#include "telemetry/crsf.h"
#include "telemetry/telemetry.h"
#include "telemetry/msp_shared.h"
bool airMode;
uint16_t testBatteryVoltage = 0;
int32_t testAmperage = 0;
int32_t testmAhDrawn = 0;
serialPort_t *telemetrySharedPort;
PG_REGISTER(batteryConfig_t, batteryConfig, PG_BATTERY_CONFIG, 0);
PG_REGISTER(telemetryConfig_t, telemetryConfig, PG_TELEMETRY_CONFIG, 0);
PG_REGISTER(systemConfig_t, systemConfig, PG_SYSTEM_CONFIG, 0);
PG_REGISTER(rxConfig_t, rxConfig, PG_RX_CONFIG, 0);
PG_REGISTER(accelerometerConfig_t, accelerometerConfig, PG_ACCELEROMETER_CONFIG, 0);
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
uint8_t crfsCrc(uint8_t *frame, int frameLen)
{
uint8_t crc = 0;
for (int ii = 2; ii < frameLen - 1; ++ii) {
crc = crc8_dvb_s2(crc, frame[ii]);
}
return crc;
}
/*
int32_t Latitude ( degree / 10`000`000 )
int32_t Longitude (degree / 10`000`000 )
uint16_t Groundspeed ( km/h / 10 )
uint16_t GPS heading ( degree / 100 )
uint16 Altitude ( meter ­ 1000m offset )
uint8_t Satellites in use ( counter )
uint16_t GPS_distanceToHome; // distance to home point in meters
*/
#define FRAME_HEADER_FOOTER_LEN 4
TEST(TelemetryCrsfTest, TestGPS)
{
uint8_t frame[CRSF_FRAME_SIZE_MAX];
int frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_GPS);
EXPECT_EQ(CRSF_FRAME_GPS_PAYLOAD_SIZE + FRAME_HEADER_FOOTER_LEN, frameLen);
EXPECT_EQ(CRSF_SYNC_BYTE, frame[0]); // address
EXPECT_EQ(17, frame[1]); // length
EXPECT_EQ(0x02, frame[2]); // type
int32_t lattitude = frame[3] << 24 | frame[4] << 16 | frame[5] << 8 | frame[6];
EXPECT_EQ(0, lattitude);
int32_t longitude = frame[7] << 24 | frame[8] << 16 | frame[9] << 8 | frame[10];
EXPECT_EQ(0, longitude);
uint16_t groundSpeed = frame[11] << 8 | frame[12];
EXPECT_EQ(0, groundSpeed);
uint16_t GPSheading = frame[13] << 8 | frame[14];
EXPECT_EQ(0, GPSheading);
uint16_t altitude = frame[15] << 8 | frame[16];
EXPECT_EQ(1000, altitude);
uint8_t satelliteCount = frame[17];
EXPECT_EQ(0, satelliteCount);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[18]);
gpsSol.llh.lat = 56 * GPS_DEGREES_DIVIDER;
gpsSol.llh.lon = 163 * GPS_DEGREES_DIVIDER;
ENABLE_STATE(GPS_FIX);
gpsSol.llh.altCm = 2345 * 100; // altitude in cm / 100 + 1000m offset, so CRSF value should be 3345
gpsSol.groundSpeed = 1630; // speed in cm/s, 16.3 m/s = 58.68 km/h, so CRSF (km/h *10) value is 587
gpsSol.numSat = 9;
gpsSol.groundCourse = 1479; // degrees * 10
frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_GPS);
lattitude = frame[3] << 24 | frame[4] << 16 | frame[5] << 8 | frame[6];
EXPECT_EQ(560000000, lattitude);
longitude = frame[7] << 24 | frame[8] << 16 | frame[9] << 8 | frame[10];
EXPECT_EQ(1630000000, longitude);
groundSpeed = frame[11] << 8 | frame[12];
EXPECT_EQ(587, groundSpeed);
GPSheading = frame[13] << 8 | frame[14];
EXPECT_EQ(14790, GPSheading);
altitude = frame[15] << 8 | frame[16];
EXPECT_EQ(3345, altitude);
satelliteCount = frame[17];
EXPECT_EQ(9, satelliteCount);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[18]);
}
TEST(TelemetryCrsfTest, TestBattery)
{
uint8_t frame[CRSF_FRAME_SIZE_MAX];
testBatteryVoltage = 0; // 0.1V units
int frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_BATTERY_SENSOR);
EXPECT_EQ(CRSF_FRAME_BATTERY_SENSOR_PAYLOAD_SIZE + FRAME_HEADER_FOOTER_LEN, frameLen);
EXPECT_EQ(CRSF_SYNC_BYTE, frame[0]); // address
EXPECT_EQ(10, frame[1]); // length
EXPECT_EQ(0x08, frame[2]); // type
uint16_t voltage = frame[3] << 8 | frame[4]; // mV * 100
EXPECT_EQ(0, voltage);
uint16_t current = frame[5] << 8 | frame[6]; // mA * 100
EXPECT_EQ(0, current);
uint32_t capacity = frame[7] << 16 | frame[8] << 8 | frame [9]; // mAh
EXPECT_EQ(0, capacity);
uint16_t remaining = frame[10]; // percent
EXPECT_EQ(67, remaining);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[11]);
testBatteryVoltage = 33; // 3.3V = 3300 mv
testAmperage = 2960; // = 29.60A = 29600mA - amperage is in 0.01A steps
testmAhDrawn = 1234;
frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_BATTERY_SENSOR);
voltage = frame[3] << 8 | frame[4]; // mV * 100
EXPECT_EQ(33, voltage);
current = frame[5] << 8 | frame[6]; // mA * 100
EXPECT_EQ(296, current);
capacity = frame[7] << 16 | frame[8] << 8 | frame [9]; // mAh
EXPECT_EQ(1234, capacity);
remaining = frame[10]; // percent
EXPECT_EQ(67, remaining);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[11]);
}
TEST(TelemetryCrsfTest, TestAttitude)
{
uint8_t frame[CRSF_FRAME_SIZE_MAX];
attitude.values.pitch = 0;
attitude.values.roll = 0;
attitude.values.yaw = 0;
int frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_ATTITUDE);
EXPECT_EQ(CRSF_FRAME_ATTITUDE_PAYLOAD_SIZE + FRAME_HEADER_FOOTER_LEN, frameLen);
EXPECT_EQ(CRSF_SYNC_BYTE, frame[0]); // address
EXPECT_EQ(8, frame[1]); // length
EXPECT_EQ(0x1e, frame[2]); // type
int16_t pitch = frame[3] << 8 | frame[4]; // rad / 10000
EXPECT_EQ(0, pitch);
int16_t roll = frame[5] << 8 | frame[6];
EXPECT_EQ(0, roll);
int16_t yaw = frame[7] << 8 | frame[8];
EXPECT_EQ(0, yaw);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[9]);
attitude.values.pitch = 678; // decidegrees == 1.183333232852155 rad
attitude.values.roll = 1495; // 2.609267231731523 rad
attitude.values.yaw = -1799; //3.139847324337799 rad
frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_ATTITUDE);
pitch = frame[3] << 8 | frame[4]; // rad / 10000
EXPECT_EQ(11833, pitch);
roll = frame[5] << 8 | frame[6];
EXPECT_EQ(26092, roll);
yaw = frame[7] << 8 | frame[8];
EXPECT_EQ(-31398, yaw);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[9]);
}
TEST(TelemetryCrsfTest, TestFlightMode)
{
uint8_t frame[CRSF_FRAME_SIZE_MAX];
// nothing set, so ACRO mode
airMode = false;
int frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_FLIGHT_MODE);
EXPECT_EQ(5 + FRAME_HEADER_FOOTER_LEN, frameLen);
EXPECT_EQ(CRSF_SYNC_BYTE, frame[0]); // address
EXPECT_EQ(7, frame[1]); // length
EXPECT_EQ(0x21, frame[2]); // type
EXPECT_EQ('A', frame[3]);
EXPECT_EQ('C', frame[4]);
EXPECT_EQ('R', frame[5]);
EXPECT_EQ('O', frame[6]);
EXPECT_EQ(0, frame[7]);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[8]);
enableFlightMode(ANGLE_MODE);
EXPECT_EQ(ANGLE_MODE, FLIGHT_MODE(ANGLE_MODE));
frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_FLIGHT_MODE);
EXPECT_EQ(5 + FRAME_HEADER_FOOTER_LEN, frameLen);
EXPECT_EQ(CRSF_SYNC_BYTE, frame[0]); // address
EXPECT_EQ(7, frame[1]); // length
EXPECT_EQ(0x21, frame[2]); // type
EXPECT_EQ('S', frame[3]);
EXPECT_EQ('T', frame[4]);
EXPECT_EQ('A', frame[5]);
EXPECT_EQ('B', frame[6]);
EXPECT_EQ(0, frame[7]);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[8]);
disableFlightMode(ANGLE_MODE);
enableFlightMode(HORIZON_MODE);
EXPECT_EQ(HORIZON_MODE, FLIGHT_MODE(HORIZON_MODE));
frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_FLIGHT_MODE);
EXPECT_EQ(4 + FRAME_HEADER_FOOTER_LEN, frameLen);
EXPECT_EQ(CRSF_SYNC_BYTE, frame[0]); // address
EXPECT_EQ(6, frame[1]); // length
EXPECT_EQ(0x21, frame[2]); // type
EXPECT_EQ('H', frame[3]);
EXPECT_EQ('O', frame[4]);
EXPECT_EQ('R', frame[5]);
EXPECT_EQ(0, frame[6]);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[7]);
disableFlightMode(HORIZON_MODE);
airMode = true;
frameLen = getCrsfFrame(frame, CRSF_FRAMETYPE_FLIGHT_MODE);
EXPECT_EQ(4 + FRAME_HEADER_FOOTER_LEN, frameLen);
EXPECT_EQ(CRSF_SYNC_BYTE, frame[0]); // address
EXPECT_EQ(6, frame[1]); // length
EXPECT_EQ(0x21, frame[2]); // type
EXPECT_EQ('A', frame[3]);
EXPECT_EQ('I', frame[4]);
EXPECT_EQ('R', frame[5]);
EXPECT_EQ(0, frame[6]);
EXPECT_EQ(crfsCrc(frame, frameLen), frame[7]);
}
// STUBS
extern "C" {
int16_t debug[DEBUG16_VALUE_COUNT];
const uint32_t baudRates[] = {0, 9600, 19200, 38400, 57600, 115200, 230400, 250000, 400000}; // see baudRate_e
uint16_t batteryWarningVoltage;
uint8_t useHottAlarmSoundPeriod (void) { return 0; }
attitudeEulerAngles_t attitude = { { 0, 0, 0 } }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
uint16_t GPS_distanceToHome; // distance to home point in meters
gpsSolutionData_t gpsSol;
void beeperConfirmationBeeps(uint8_t beepCount) {UNUSED(beepCount);}
uint32_t micros(void) {return 0;}
bool featureIsEnabled(uint32_t) {return true;}
uint32_t serialRxBytesWaiting(const serialPort_t *) {return 0;}
uint32_t serialTxBytesFree(const serialPort_t *) {return 0;}
uint8_t serialRead(serialPort_t *) {return 0;}
void serialWrite(serialPort_t *, uint8_t) {}
void serialWriteBuf(serialPort_t *, const uint8_t *, int) {}
void serialSetMode(serialPort_t *, portMode_e) {}
serialPort_t *openSerialPort(serialPortIdentifier_e, serialPortFunction_e, serialReceiveCallbackPtr, void *, uint32_t, portMode_e, portOptions_e) {return NULL;}
void closeSerialPort(serialPort_t *) {}
bool isSerialTransmitBufferEmpty(const serialPort_t *) { return true; }
serialPortConfig_t *findSerialPortConfig(serialPortFunction_e) {return NULL;}
bool telemetryDetermineEnabledState(portSharing_e) {return true;}
bool telemetryCheckRxPortShared(const serialPortConfig_t *) {return true;}
portSharing_e determinePortSharing(const serialPortConfig_t *, serialPortFunction_e) {return PORTSHARING_NOT_SHARED;}
bool airmodeIsEnabled(void) {return airMode;}
int32_t getAmperage(void) {
return testAmperage;
}
uint16_t getBatteryVoltage(void) {
return testBatteryVoltage;
}
uint16_t getBatteryAverageCellVoltage(void) {
return 0;
}
batteryState_e getBatteryState(void) {
return BATTERY_OK;
}
uint8_t calculateBatteryPercentageRemaining(void) {
return 67;
}
int32_t getEstimatedAltitudeCm(void) {
return gpsSol.llh.altCm; // function returns cm not m.
}
int32_t getMAhDrawn(void){
return testmAhDrawn;
}
bool sendMspReply(uint8_t, mspResponseFnPtr) { return false; }
bool handleMspFrame(uint8_t *, int) { return false; }
void crsfScheduleMspResponse(void) {};
bool isBatteryVoltageConfigured(void) { return true; }
bool isAmperageConfigured(void) { return true; }
}