1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00
betaflight/src/main/drivers/adc_stm32f30x.c
2014-06-05 00:47:47 +01:00

160 lines
5.6 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#include "system.h"
#include "gpio.h"
#include "sensors/sensors.h" // FIXME dependency into the main code
#include "accgyro.h"
#include "adc.h"
extern adc_config_t adcConfig[ADC_CHANNEL_COUNT];
extern volatile uint16_t adcValues[ADC_CHANNEL_COUNT];
void adcInit(drv_adc_config_t *init)
{
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
uint8_t i;
uint8_t adcChannelCount = 0;
memset(&adcConfig, 0, sizeof(adcConfig));
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
adcConfig[ADC_BATTERY].adcChannel = ADC_Channel_6;
adcConfig[ADC_BATTERY].dmaIndex = adcChannelCount;
adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_BATTERY].enabled = true;
adcChannelCount++;
if (init->enableCurrentMeter) {
GPIO_InitStructure.GPIO_Pin |= GPIO_Pin_1;
adcConfig[ADC_CURRENT].adcChannel = ADC_Channel_7;
adcConfig[ADC_CURRENT].dmaIndex = adcChannelCount;
adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_CURRENT].enabled = true;
adcChannelCount++;
}
if (init->enableRSSI) {
GPIO_InitStructure.GPIO_Pin |= GPIO_Pin_2;
adcConfig[ADC_RSSI].adcChannel = ADC_Channel_8;
adcConfig[ADC_RSSI].dmaIndex = adcChannelCount;
adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_RSSI].enabled = true;
adcChannelCount++;
}
adcConfig[ADC_EXTERNAL1].adcChannel = ADC_Channel_9;
adcConfig[ADC_EXTERNAL1].dmaIndex = adcChannelCount;
adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_EXTERNAL1].enabled = true;
adcChannelCount++;
RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1 | RCC_AHBPeriph_ADC12, ENABLE);
DMA_DeInit(DMA1_Channel1);
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = adcChannelCount;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = adcChannelCount > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel1, ENABLE);
GPIO_Init(GPIOC, &GPIO_InitStructure);
// calibrate
ADC_VoltageRegulatorCmd(ADC1, ENABLE);
delay(10);
ADC_SelectCalibrationMode(ADC1, ADC_CalibrationMode_Single);
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1) != RESET);
ADC_VoltageRegulatorCmd(ADC1, DISABLE);
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_CommonStructInit(&ADC_CommonInitStructure);
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Clock = ADC_Clock_SynClkModeDiv4;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0;
ADC_CommonInit(ADC1, &ADC_CommonInitStructure);
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_ContinuousConvMode = ADC_ContinuousConvMode_Enable;
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0;
ADC_InitStructure.ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_OverrunMode = ADC_OverrunMode_Disable;
ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable;
ADC_InitStructure.ADC_NbrOfRegChannel = adcChannelCount;
ADC_Init(ADC1, &ADC_InitStructure);
uint8_t rank = 1;
for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcConfig[i].enabled) {
continue;
}
ADC_RegularChannelConfig(ADC1, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
}
ADC_Cmd(ADC1, ENABLE);
while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_RDY));
ADC_DMAConfig(ADC1, ADC_DMAMode_Circular);
ADC_DMACmd(ADC1, ENABLE);
ADC_StartConversion(ADC1);
}