mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-13 11:29:58 +03:00
added motors off in hardfault handler, so we drop to the ground on hardfault. git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@190 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
477 lines
15 KiB
C
Executable file
477 lines
15 KiB
C
Executable file
#include "board.h"
|
|
#include "mw.h"
|
|
|
|
uint16_t calibratingA = 0; // the calibration is done is the main loop. Calibrating decreases at each cycle down to 0, then we enter in a normal mode.
|
|
uint16_t calibratingG = 0;
|
|
uint16_t acc_1G = 256; // this is the 1G measured acceleration.
|
|
int16_t heading, magHold;
|
|
|
|
extern uint16_t InflightcalibratingA;
|
|
extern int16_t AccInflightCalibrationArmed;
|
|
extern uint16_t AccInflightCalibrationMeasurementDone;
|
|
extern uint16_t AccInflightCalibrationSavetoEEProm;
|
|
extern uint16_t AccInflightCalibrationActive;
|
|
extern uint16_t batteryWarningVoltage;
|
|
extern uint8_t batteryCellCount;
|
|
extern float magneticDeclination;
|
|
|
|
sensor_t acc; // acc access functions
|
|
sensor_t gyro; // gyro access functions
|
|
uint8_t accHardware = ACC_DEFAULT; // which accel chip is used/detected
|
|
|
|
#ifdef FY90Q
|
|
// FY90Q analog gyro/acc
|
|
void sensorsAutodetect(void)
|
|
{
|
|
adcSensorInit(&acc, &gyro);
|
|
}
|
|
#else
|
|
// AfroFlight32 i2c sensors
|
|
void sensorsAutodetect(void)
|
|
{
|
|
int16_t deg, min;
|
|
drv_adxl345_config_t acc_params;
|
|
bool haveMpu6k = false;
|
|
bool havel3g4200d = false;
|
|
|
|
// Autodetect gyro hardware. We have MPU3050 or MPU6050.
|
|
if (mpu6050Detect(&acc, &gyro)) {
|
|
// this filled up acc.* struct with init values
|
|
haveMpu6k = true;
|
|
} else if (l3g4200dDetect(&gyro)) {
|
|
havel3g4200d = true;
|
|
} else if (!mpu3050Detect(&gyro)) {
|
|
// if this fails, we get a beep + blink pattern. we're doomed, no gyro or i2c error.
|
|
failureMode(3);
|
|
}
|
|
|
|
// Accelerometer. Fuck it. Let user break shit.
|
|
retry:
|
|
switch (cfg.acc_hardware) {
|
|
case 0: // autodetect
|
|
case 1: // ADXL345
|
|
acc_params.useFifo = false;
|
|
acc_params.dataRate = 800; // unused currently
|
|
if (adxl345Detect(&acc_params, &acc))
|
|
accHardware = ACC_ADXL345;
|
|
if (cfg.acc_hardware == ACC_ADXL345)
|
|
break;
|
|
; // fallthrough
|
|
case 2: // MPU6050
|
|
if (haveMpu6k) {
|
|
mpu6050Detect(&acc, &gyro); // yes, i'm rerunning it again. re-fill acc struct
|
|
accHardware = ACC_MPU6050;
|
|
if (cfg.acc_hardware == ACC_MPU6050)
|
|
break;
|
|
}
|
|
; // fallthrough
|
|
case 3: // MMA8452
|
|
if (mma8452Detect(&acc)) {
|
|
accHardware = ACC_MMA8452;
|
|
if (cfg.acc_hardware == ACC_MMA8452)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Found anything? Check if user fucked up or ACC is really missing.
|
|
if (accHardware == ACC_DEFAULT) {
|
|
if (cfg.acc_hardware > ACC_DEFAULT) {
|
|
// Nothing was found and we have a forced sensor type. Stupid user probably chose a sensor that isn't present.
|
|
cfg.acc_hardware = ACC_DEFAULT;
|
|
goto retry;
|
|
} else {
|
|
// We're really screwed
|
|
sensorsClear(SENSOR_ACC);
|
|
}
|
|
}
|
|
|
|
// Detect what else is available
|
|
if (!bmp085Init())
|
|
sensorsClear(SENSOR_BARO);
|
|
if (!hmc5883lDetect())
|
|
sensorsClear(SENSOR_MAG);
|
|
|
|
// Now time to init them, acc first
|
|
if (sensors(SENSOR_ACC))
|
|
acc.init();
|
|
if (sensors(SENSOR_BARO))
|
|
bmp085Init();
|
|
// this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
|
|
gyro.init();
|
|
|
|
// todo: this is driver specific :(
|
|
if (havel3g4200d) {
|
|
l3g4200dConfig(cfg.gyro_lpf);
|
|
} else {
|
|
if (!haveMpu6k)
|
|
mpu3050Config(cfg.gyro_lpf);
|
|
}
|
|
|
|
// calculate magnetic declination
|
|
deg = cfg.mag_declination / 100;
|
|
min = cfg.mag_declination % 100;
|
|
magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
|
|
}
|
|
#endif
|
|
|
|
uint16_t batteryAdcToVoltage(uint16_t src)
|
|
{
|
|
// calculate battery voltage based on ADC reading
|
|
// result is Vbatt in 0.1V steps. 3.3V = ADC Vref, 4095 = 12bit adc, 110 = 11:1 voltage divider (10k:1k) * 10 for 0.1V
|
|
return (((src) * 3.3f) / 4095) * cfg.vbatscale;
|
|
}
|
|
|
|
void batteryInit(void)
|
|
{
|
|
uint32_t i;
|
|
uint32_t voltage = 0;
|
|
|
|
// average up some voltage readings
|
|
for (i = 0; i < 32; i++) {
|
|
voltage += adcGetBattery();
|
|
delay(10);
|
|
}
|
|
|
|
voltage = batteryAdcToVoltage((uint16_t)(voltage / 32));
|
|
|
|
// autodetect cell count, going from 2S..6S
|
|
for (i = 2; i < 6; i++) {
|
|
if (voltage < i * cfg.vbatmaxcellvoltage)
|
|
break;
|
|
}
|
|
batteryCellCount = i;
|
|
batteryWarningVoltage = i * cfg.vbatmincellvoltage; // 3.3V per cell minimum, configurable in CLI
|
|
}
|
|
|
|
static void ACC_Common(void)
|
|
{
|
|
static int32_t a[3];
|
|
int axis;
|
|
|
|
if (calibratingA > 0) {
|
|
for (axis = 0; axis < 3; axis++) {
|
|
// Reset a[axis] at start of calibration
|
|
if (calibratingA == 400)
|
|
a[axis] = 0;
|
|
// Sum up 400 readings
|
|
a[axis] += accADC[axis];
|
|
// Clear global variables for next reading
|
|
accADC[axis] = 0;
|
|
cfg.accZero[axis] = 0;
|
|
}
|
|
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
|
|
if (calibratingA == 1) {
|
|
cfg.accZero[ROLL] = a[ROLL] / 400;
|
|
cfg.accZero[PITCH] = a[PITCH] / 400;
|
|
cfg.accZero[YAW] = a[YAW] / 400 - acc_1G; // for nunchuk 200=1G
|
|
cfg.angleTrim[ROLL] = 0;
|
|
cfg.angleTrim[PITCH] = 0;
|
|
writeParams(1); // write accZero in EEPROM
|
|
}
|
|
calibratingA--;
|
|
}
|
|
|
|
if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
|
|
static int32_t b[3];
|
|
static int16_t accZero_saved[3] = { 0, 0, 0 };
|
|
static int16_t angleTrim_saved[2] = { 0, 0 };
|
|
// Saving old zeropoints before measurement
|
|
if (InflightcalibratingA == 50) {
|
|
accZero_saved[ROLL] = cfg.accZero[ROLL];
|
|
accZero_saved[PITCH] = cfg.accZero[PITCH];
|
|
accZero_saved[YAW] = cfg.accZero[YAW];
|
|
angleTrim_saved[ROLL] = cfg.angleTrim[ROLL];
|
|
angleTrim_saved[PITCH] = cfg.angleTrim[PITCH];
|
|
}
|
|
if (InflightcalibratingA > 0) {
|
|
for (axis = 0; axis < 3; axis++) {
|
|
// Reset a[axis] at start of calibration
|
|
if (InflightcalibratingA == 50)
|
|
b[axis] = 0;
|
|
// Sum up 50 readings
|
|
b[axis] += accADC[axis];
|
|
// Clear global variables for next reading
|
|
accADC[axis] = 0;
|
|
cfg.accZero[axis] = 0;
|
|
}
|
|
// all values are measured
|
|
if (InflightcalibratingA == 1) {
|
|
AccInflightCalibrationActive = 0;
|
|
AccInflightCalibrationMeasurementDone = 1;
|
|
toggleBeep = 2; // buzzer for indicatiing the end of calibration
|
|
// recover saved values to maintain current flight behavior until new values are transferred
|
|
cfg.accZero[ROLL] = accZero_saved[ROLL];
|
|
cfg.accZero[PITCH] = accZero_saved[PITCH];
|
|
cfg.accZero[YAW] = accZero_saved[YAW];
|
|
cfg.angleTrim[ROLL] = angleTrim_saved[ROLL];
|
|
cfg.angleTrim[PITCH] = angleTrim_saved[PITCH];
|
|
}
|
|
InflightcalibratingA--;
|
|
}
|
|
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
|
|
if (AccInflightCalibrationSavetoEEProm == 1) { // the copter is landed, disarmed and the combo has been done again
|
|
AccInflightCalibrationSavetoEEProm = 0;
|
|
cfg.accZero[ROLL] = b[ROLL] / 50;
|
|
cfg.accZero[PITCH] = b[PITCH] / 50;
|
|
cfg.accZero[YAW] = b[YAW] / 50 - acc_1G; // for nunchuk 200=1G
|
|
cfg.angleTrim[ROLL] = 0;
|
|
cfg.angleTrim[PITCH] = 0;
|
|
writeParams(1); // write accZero in EEPROM
|
|
}
|
|
}
|
|
|
|
accADC[ROLL] -= cfg.accZero[ROLL];
|
|
accADC[PITCH] -= cfg.accZero[PITCH];
|
|
accADC[YAW] -= cfg.accZero[YAW];
|
|
}
|
|
|
|
void ACC_getADC(void)
|
|
{
|
|
acc.read(accADC);
|
|
acc.align(accADC);
|
|
|
|
ACC_Common();
|
|
}
|
|
|
|
#ifdef BARO
|
|
static uint32_t baroDeadline = 0;
|
|
static uint8_t baroState = 0;
|
|
static uint16_t baroUT = 0;
|
|
static uint32_t baroUP = 0;
|
|
|
|
void Baro_update(void)
|
|
{
|
|
int32_t pressure;
|
|
|
|
if (currentTime < baroDeadline)
|
|
return;
|
|
|
|
baroDeadline = currentTime;
|
|
|
|
switch (baroState) {
|
|
case 0:
|
|
bmp085_start_ut();
|
|
baroState++;
|
|
baroDeadline += 4600;
|
|
break;
|
|
case 1:
|
|
baroUT = bmp085_get_ut();
|
|
baroState++;
|
|
break;
|
|
case 2:
|
|
bmp085_start_up();
|
|
baroState++;
|
|
baroDeadline += 26000;
|
|
break;
|
|
case 3:
|
|
baroUP = bmp085_get_up();
|
|
bmp085_get_temperature(baroUT);
|
|
pressure = bmp085_get_pressure(baroUP);
|
|
BaroAlt = (1.0f - pow(pressure / 101325.0f, 0.190295f)) * 4433000.0f; // centimeter
|
|
baroState = 0;
|
|
baroDeadline += 5000;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* BARO */
|
|
|
|
static void GYRO_Common(void)
|
|
{
|
|
static int16_t previousGyroADC[3] = { 0, 0, 0 };
|
|
static int32_t g[3];
|
|
int axis;
|
|
|
|
if (calibratingG > 0) {
|
|
for (axis = 0; axis < 3; axis++) {
|
|
// Reset g[axis] at start of calibration
|
|
if (calibratingG == 1000)
|
|
g[axis] = 0;
|
|
// Sum up 1000 readings
|
|
g[axis] += gyroADC[axis];
|
|
// g[axis] += (1000 - calibratingG) >> 1;
|
|
// Clear global variables for next reading
|
|
gyroADC[axis] = 0;
|
|
gyroZero[axis] = 0;
|
|
if (calibratingG == 1) {
|
|
gyroZero[axis] = g[axis] / 1000;
|
|
blinkLED(10, 15, 1);
|
|
}
|
|
}
|
|
calibratingG--;
|
|
}
|
|
for (axis = 0; axis < 3; axis++) {
|
|
gyroADC[axis] -= gyroZero[axis];
|
|
//anti gyro glitch, limit the variation between two consecutive readings
|
|
gyroADC[axis] = constrain(gyroADC[axis], previousGyroADC[axis] - 800, previousGyroADC[axis] + 800);
|
|
previousGyroADC[axis] = gyroADC[axis];
|
|
}
|
|
}
|
|
|
|
void Gyro_getADC(void)
|
|
{
|
|
// range: +/- 8192; +/- 2000 deg/sec
|
|
gyro.read(gyroADC);
|
|
gyro.align(gyroADC);
|
|
|
|
GYRO_Common();
|
|
}
|
|
|
|
#ifdef MAG
|
|
static float magCal[3] = { 1.0, 1.0, 1.0 }; // gain for each axis, populated at sensor init
|
|
static uint8_t magInit = 0;
|
|
|
|
static void Mag_getRawADC(void)
|
|
{
|
|
static int16_t rawADC[3];
|
|
hmc5883lRead(rawADC);
|
|
|
|
// no way? is THIS finally the proper orientation?? (by GrootWitBaas)
|
|
magADC[ROLL] = rawADC[2]; // X
|
|
magADC[PITCH] = -rawADC[0]; // Y
|
|
magADC[YAW] = -rawADC[1]; // Z
|
|
}
|
|
|
|
void Mag_init(void)
|
|
{
|
|
uint8_t calibration_gain = 0x60; // HMC5883
|
|
#if 1
|
|
uint32_t numAttempts = 0, good_count = 0;
|
|
bool success = false;
|
|
uint16_t expected_x = 766; // default values for HMC5883
|
|
uint16_t expected_yz = 713;
|
|
float gain_multiple = 660.0f / 1090.0f; // adjustment for runtime vs calibration gain
|
|
float cal[3];
|
|
|
|
// initial calibration
|
|
hmc5883lInit();
|
|
|
|
magCal[0] = 0;
|
|
magCal[1] = 0;
|
|
magCal[2] = 0;
|
|
|
|
while (success == false && numAttempts < 20 && good_count < 5) {
|
|
// record number of attempts at initialisation
|
|
numAttempts++;
|
|
// enter calibration mode
|
|
hmc5883lCal(calibration_gain);
|
|
delay(100);
|
|
Mag_getRawADC();
|
|
delay(10);
|
|
|
|
cal[0] = fabsf(expected_x / (float)magADC[ROLL]);
|
|
cal[1] = fabsf(expected_yz / (float)magADC[PITCH]);
|
|
cal[2] = fabsf(expected_yz / (float)magADC[ROLL]);
|
|
|
|
if (cal[0] > 0.7f && cal[0] < 1.3f && cal[1] > 0.7f && cal[1] < 1.3f && cal[2] > 0.7f && cal[2] < 1.3f) {
|
|
good_count++;
|
|
magCal[0] += cal[0];
|
|
magCal[1] += cal[1];
|
|
magCal[2] += cal[2];
|
|
}
|
|
}
|
|
|
|
if (good_count >= 5) {
|
|
magCal[0] = magCal[0] * gain_multiple / (float)good_count;
|
|
magCal[1] = magCal[1] * gain_multiple / (float)good_count;
|
|
magCal[2] = magCal[2] * gain_multiple / (float)good_count;
|
|
success = true;
|
|
} else {
|
|
/* best guess */
|
|
magCal[0] = 1.0f;
|
|
magCal[1] = 1.0f;
|
|
magCal[2] = 1.0f;
|
|
}
|
|
|
|
hmc5883lFinishCal();
|
|
#else
|
|
// initial calibration
|
|
hmc5883lInit();
|
|
|
|
magCal[0] = 0;
|
|
magCal[1] = 0;
|
|
magCal[2] = 0;
|
|
|
|
// enter calibration mode
|
|
hmc5883lCal(calibration_gain);
|
|
delay(100);
|
|
Mag_getRawADC();
|
|
delay(10);
|
|
|
|
magCal[ROLL] = 1160.0f / abs(magADC[ROLL]);
|
|
magCal[PITCH] = 1160.0f / abs(magADC[PITCH]);
|
|
magCal[YAW] = 1080.0f / abs(magADC[YAW]);
|
|
|
|
hmc5883lFinishCal();
|
|
#endif
|
|
|
|
magInit = 1;
|
|
}
|
|
|
|
void Mag_getADC(void)
|
|
{
|
|
static uint32_t t, tCal = 0;
|
|
static int16_t magZeroTempMin[3];
|
|
static int16_t magZeroTempMax[3];
|
|
uint32_t axis;
|
|
|
|
if (currentTime < t)
|
|
return; //each read is spaced by 100ms
|
|
t = currentTime + 100000;
|
|
|
|
// Read mag sensor
|
|
Mag_getRawADC();
|
|
|
|
magADC[ROLL] = magADC[ROLL] * magCal[ROLL];
|
|
magADC[PITCH] = magADC[PITCH] * magCal[PITCH];
|
|
magADC[YAW] = magADC[YAW] * magCal[YAW];
|
|
|
|
if (f.CALIBRATE_MAG) {
|
|
tCal = t;
|
|
for (axis = 0; axis < 3; axis++) {
|
|
cfg.magZero[axis] = 0;
|
|
magZeroTempMin[axis] = magADC[axis];
|
|
magZeroTempMax[axis] = magADC[axis];
|
|
}
|
|
f.CALIBRATE_MAG = 0;
|
|
}
|
|
|
|
if (magInit) { // we apply offset only once mag calibration is done
|
|
magADC[ROLL] -= cfg.magZero[ROLL];
|
|
magADC[PITCH] -= cfg.magZero[PITCH];
|
|
magADC[YAW] -= cfg.magZero[YAW];
|
|
}
|
|
|
|
if (tCal != 0) {
|
|
if ((t - tCal) < 30000000) { // 30s: you have 30s to turn the multi in all directions
|
|
LED0_TOGGLE;
|
|
for (axis = 0; axis < 3; axis++) {
|
|
if (magADC[axis] < magZeroTempMin[axis])
|
|
magZeroTempMin[axis] = magADC[axis];
|
|
if (magADC[axis] > magZeroTempMax[axis])
|
|
magZeroTempMax[axis] = magADC[axis];
|
|
}
|
|
} else {
|
|
tCal = 0;
|
|
for (axis = 0; axis < 3; axis++)
|
|
cfg.magZero[axis] = (magZeroTempMin[axis] + magZeroTempMax[axis]) / 2; // Calculate offsets
|
|
writeParams(1);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SONAR
|
|
|
|
void Sonar_init(void)
|
|
{
|
|
hcsr04_init(sonar_rc78);
|
|
sensorsSet(SENSOR_SONAR);
|
|
sonarAlt = 0;
|
|
}
|
|
|
|
void Sonar_update(void)
|
|
{
|
|
hcsr04_get_distance(&sonarAlt);
|
|
}
|
|
|
|
#endif
|