1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 11:29:58 +03:00
betaflight/src/test/unit/rc_controls_unittest.cc
2025-01-04 00:43:33 +11:00

674 lines
21 KiB
C++

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <limits.h>
//#define DEBUG_RC_CONTROLS
extern "C" {
#include "platform.h"
#include "common/maths.h"
#include "common/axis.h"
#include "common/bitarray.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/rx.h"
#include "blackbox/blackbox.h"
#include "blackbox/blackbox_fielddefs.h"
#include "drivers/sensor.h"
#include "sensors/sensors.h"
#include "sensors/acceleration.h"
#include "io/beeper.h"
#include "rx/rx.h"
#include "flight/pid.h"
#include "config/config.h"
#include "fc/controlrate_profile.h"
#include "fc/rc_modes.h"
#include "fc/rc_adjustments.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "fc/core.h"
#include "scheduler/scheduler.h"
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
void unsetArmingDisabled(armingDisableFlags_e flag)
{
UNUSED(flag);
}
class RcControlsModesTest : public ::testing::Test {
protected:
virtual void SetUp() {
}
};
TEST_F(RcControlsModesTest, updateActivatedModesWithAllInputsAtMidde)
{
// given
boxBitmask_t mask;
memset(&mask, 0, sizeof(mask));
rcModeUpdate(&mask);
// and
memset(&rxRuntimeState, 0, sizeof(rxRuntimeState_t));
rxRuntimeState.channelCount = MAX_SUPPORTED_RC_CHANNEL_COUNT - NON_AUX_CHANNEL_COUNT;
// and
for (int index = AUX1; index < MAX_SUPPORTED_RC_CHANNEL_COUNT; index++) {
rcData[index] = PWM_RANGE_MIDDLE;
}
// when
analyzeModeActivationConditions();
updateActivatedModes();
// then
for (int index = 0; index < CHECKBOX_ITEM_COUNT; index++) {
#ifdef DEBUG_RC_CONTROLS
printf("iteration: %d\n", index);
#endif
EXPECT_FALSE(IS_RC_MODE_ACTIVE((boxId_e)index));
}
}
TEST_F(RcControlsModesTest, updateActivatedModesUsingValidAuxConfigurationAndRXValues)
{
// given
modeActivationConditionsMutable(0)->modeId = (boxId_e)0;
modeActivationConditionsMutable(0)->auxChannelIndex = AUX1 - NON_AUX_CHANNEL_COUNT;
modeActivationConditionsMutable(0)->range.startStep = CHANNEL_VALUE_TO_STEP(1700);
modeActivationConditionsMutable(0)->range.endStep = CHANNEL_VALUE_TO_STEP(2100);
modeActivationConditionsMutable(1)->modeId = (boxId_e)1;
modeActivationConditionsMutable(1)->auxChannelIndex = AUX2 - NON_AUX_CHANNEL_COUNT;
modeActivationConditionsMutable(1)->range.startStep = CHANNEL_VALUE_TO_STEP(1300);
modeActivationConditionsMutable(1)->range.endStep = CHANNEL_VALUE_TO_STEP(1700);
modeActivationConditionsMutable(2)->modeId = (boxId_e)2;
modeActivationConditionsMutable(2)->auxChannelIndex = AUX3 - NON_AUX_CHANNEL_COUNT;
modeActivationConditionsMutable(2)->range.startStep = CHANNEL_VALUE_TO_STEP(900);
modeActivationConditionsMutable(2)->range.endStep = CHANNEL_VALUE_TO_STEP(1200);
modeActivationConditionsMutable(3)->modeId = (boxId_e)3;
modeActivationConditionsMutable(3)->auxChannelIndex = AUX4 - NON_AUX_CHANNEL_COUNT;
modeActivationConditionsMutable(3)->range.startStep = CHANNEL_VALUE_TO_STEP(900);
modeActivationConditionsMutable(3)->range.endStep = CHANNEL_VALUE_TO_STEP(2100);
modeActivationConditionsMutable(4)->modeId = (boxId_e)4;
modeActivationConditionsMutable(4)->auxChannelIndex = AUX5 - NON_AUX_CHANNEL_COUNT;
modeActivationConditionsMutable(4)->range.startStep = CHANNEL_VALUE_TO_STEP(900);
modeActivationConditionsMutable(4)->range.endStep = CHANNEL_VALUE_TO_STEP(925);
EXPECT_EQ(0, modeActivationConditions(4)->range.startStep);
EXPECT_EQ(1, modeActivationConditions(4)->range.endStep);
modeActivationConditionsMutable(5)->modeId = (boxId_e)5;
modeActivationConditionsMutable(5)->auxChannelIndex = AUX6 - NON_AUX_CHANNEL_COUNT;
modeActivationConditionsMutable(5)->range.startStep = CHANNEL_VALUE_TO_STEP(2075);
modeActivationConditionsMutable(5)->range.endStep = CHANNEL_VALUE_TO_STEP(2100);
EXPECT_EQ(47, modeActivationConditions(5)->range.startStep);
EXPECT_EQ(48, modeActivationConditions(5)->range.endStep);
modeActivationConditionsMutable(6)->modeId = (boxId_e)6;
modeActivationConditionsMutable(6)->auxChannelIndex = AUX7 - NON_AUX_CHANNEL_COUNT;
modeActivationConditionsMutable(6)->range.startStep = CHANNEL_VALUE_TO_STEP(925);
modeActivationConditionsMutable(6)->range.endStep = CHANNEL_VALUE_TO_STEP(950);
EXPECT_EQ(1, modeActivationConditions(6)->range.startStep);
EXPECT_EQ(2, modeActivationConditions(6)->range.endStep);
// and
boxBitmask_t mask;
memset(&mask, 0, sizeof(mask));
rcModeUpdate(&mask);
// and
memset(&rxRuntimeState, 0, sizeof(rxRuntimeState_t));
rxRuntimeState.channelCount = MAX_SUPPORTED_RC_CHANNEL_COUNT - NON_AUX_CHANNEL_COUNT;
// and
for (int index = AUX1; index < MAX_SUPPORTED_RC_CHANNEL_COUNT; index++) {
rcData[index] = PWM_RANGE_MIDDLE;
}
rcData[AUX1] = PWM_RANGE_MAX;
rcData[AUX2] = PWM_RANGE_MIDDLE;
rcData[AUX3] = PWM_RANGE_MIN;
rcData[AUX4] = PWM_RANGE_MAX;
rcData[AUX5] = 899; // value lower that range minimum should be treated the same as the lowest range value
rcData[AUX6] = 2101; // value higher than the range maximum should be treated the same as the highest range value
rcData[AUX7] = 950; // value equal to range step upper boundary should not activate the mode
// and
boxBitmask_t activeBoxIds;
memset(&activeBoxIds, 0, sizeof(boxBitmask_t));
bitArraySet(&activeBoxIds, 0);
bitArraySet(&activeBoxIds, 1);
bitArraySet(&activeBoxIds, 2);
bitArraySet(&activeBoxIds, 3);
bitArraySet(&activeBoxIds, 4);
bitArraySet(&activeBoxIds, 5);
// when
analyzeModeActivationConditions();
updateActivatedModes();
// then
for (int index = 0; index < CHECKBOX_ITEM_COUNT; index++) {
#ifdef DEBUG_RC_CONTROLS
printf("iteration: %d, %d\n", index, (bool)(bitArrayGet(&activeBoxIds, index)));
#endif
EXPECT_EQ((bool)(bitArrayGet(&activeBoxIds, index)), IS_RC_MODE_ACTIVE((boxId_e)index));
}
}
enum {
COUNTER_QUEUE_CONFIRMATION_BEEP,
COUNTER_CHANGE_CONTROL_RATE_PROFILE
};
#define CALL_COUNT_ITEM_COUNT 2
static int callCounts[CALL_COUNT_ITEM_COUNT];
#define CALL_COUNTER(item) (callCounts[item])
extern "C" {
void beeperConfirmationBeeps(uint8_t)
{
callCounts[COUNTER_QUEUE_CONFIRMATION_BEEP]++;
}
void beeper(beeperMode_e mode)
{
UNUSED(mode);
}
void changeControlRateProfile(uint8_t)
{
callCounts[COUNTER_CHANGE_CONTROL_RATE_PROFILE]++;
}
}
void resetCallCounters(void)
{
memset(&callCounts, 0, sizeof(callCounts));
}
uint32_t fixedMillis;
extern "C" {
uint32_t millis(void)
{
return fixedMillis;
}
uint32_t micros(void)
{
return fixedMillis * 1000;
}
}
void resetMillis(void)
{
fixedMillis = 0;
}
#define DEFAULT_MIN_CHECK 1100
#define DEFAULT_MAX_CHECK 1900
extern "C" {
PG_REGISTER(rxConfig_t, rxConfig, PG_RX_CONFIG, 0);
extern int stepwiseAdjustmentCount;
extern timedAdjustmentState_t stepwiseAdjustments[MAX_ADJUSTMENT_RANGE_COUNT];
extern int continuosAdjustmentCount;
extern continuosAdjustmentState_t continuosAdjustments[MAX_ADJUSTMENT_RANGE_COUNT];
}
class RcControlsAdjustmentsTest : public ::testing::Test {
protected:
controlRateConfig_t controlRateConfig = {
.thrMid8 = 0,
.thrExpo8 = 0,
.rates_type = RATES_TYPE_BETAFLIGHT,
.rcRates = {[FD_ROLL] = 90, [FD_PITCH] = 90},
.rcExpo = {[FD_ROLL] = 0, [FD_PITCH] = 0, [FD_YAW] = 0},
.rates = {0, 0, 0},
.throttle_limit_type = THROTTLE_LIMIT_TYPE_OFF,
.throttle_limit_percent = 100,
.rate_limit = {0, 0, 0},
.profileName = "default",
.quickRatesRcExpo = 0,
};
channelRange_t fullRange = {
.startStep = MIN_MODE_RANGE_STEP,
.endStep = MAX_MODE_RANGE_STEP
};
int adjustmentRangesIndex;
virtual void SetUp() {
PG_RESET(rxConfig);
rxConfigMutable()->mincheck = DEFAULT_MIN_CHECK;
rxConfigMutable()->maxcheck = DEFAULT_MAX_CHECK;
rxConfigMutable()->midrc = 1500;
controlRateConfig.rcRates[FD_ROLL] = 90;
controlRateConfig.rcRates[FD_PITCH] = 90;
controlRateConfig.rcExpo[FD_ROLL] = 0;
controlRateConfig.rcExpo[FD_PITCH] = 0;
controlRateConfig.thrMid8 = 0;
controlRateConfig.thrExpo8 = 0;
controlRateConfig.rcExpo[FD_YAW] = 0;
controlRateConfig.rates[0] = 0;
controlRateConfig.rates[1] = 0;
controlRateConfig.rates[2] = 0;
PG_RESET(adjustmentRanges);
adjustmentRangesIndex = 0;
stepwiseAdjustmentCount = 0;
continuosAdjustmentCount = 0;
}
int configureAdjustmentRange(uint8_t switchChannelIndex, uint8_t adjustmentConfigIndex) {
adjustmentRange_t *adjustmentRange = adjustmentRangesMutable(adjustmentRangesIndex);
adjustmentRange->auxChannelIndex = AUX1 - NON_AUX_CHANNEL_COUNT;
adjustmentRange->range = fullRange;
adjustmentRange->adjustmentConfig = adjustmentConfigIndex;
adjustmentRange->auxSwitchChannelIndex = switchChannelIndex;
return adjustmentRangesIndex++;
}
timedAdjustmentState_t *configureStepwiseAdjustment(uint8_t switchChannelIndex, uint8_t adjustmentConfigIndex) {
int adjustmentRangeIndex = configureAdjustmentRange(switchChannelIndex, adjustmentConfigIndex);
timedAdjustmentState_t *adjustmentState = &stepwiseAdjustments[stepwiseAdjustmentCount++];
adjustmentState->adjustmentRangeIndex = adjustmentRangeIndex;
adjustmentState->timeoutAt = 0;
adjustmentState->ready = true;
return adjustmentState;
}
void configureContinuosAdjustment(uint8_t switchChannelIndex, uint8_t adjustmentConfigIndex) {
int adjustmentRangeIndex = configureAdjustmentRange(switchChannelIndex, adjustmentConfigIndex);
continuosAdjustmentState_t *adjustmentState = &continuosAdjustments[continuosAdjustmentCount++];
adjustmentState->adjustmentRangeIndex = adjustmentRangeIndex;
adjustmentState->lastRcData = 0;
}
};
#define ADJUSTMENT_CONFIG_RATE_INDEX 1
TEST_F(RcControlsAdjustmentsTest, processRcAdjustmentsSticksInMiddle)
{
// given
const timedAdjustmentState_t *adjustmentState = configureStepwiseAdjustment(AUX3 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_CONFIG_RATE_INDEX);
// and
for (int index = AUX1; index < MAX_SUPPORTED_RC_CHANNEL_COUNT; index++) {
rcData[index] = PWM_RANGE_MIDDLE;
}
// and
resetCallCounters();
resetMillis();
// when
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(90, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(90, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_EQ(0, CALL_COUNTER(COUNTER_QUEUE_CONFIRMATION_BEEP));
EXPECT_TRUE(adjustmentState->ready);
}
TEST_F(RcControlsAdjustmentsTest, processRcAdjustmentsWithRcRateFunctionSwitchUp)
{
// given
controlRateConfig_t controlRateConfig = {
.thrMid8 = 0,
.thrExpo8 = 0,
.rates_type = RATES_TYPE_BETAFLIGHT,
.rcRates = {[FD_ROLL] = 90, [FD_PITCH] = 90},
.rcExpo = {[FD_ROLL] = 0, [FD_PITCH] = 0, [FD_YAW] = 0},
.rates = {0, 0, 0},
.throttle_limit_type = THROTTLE_LIMIT_TYPE_OFF,
.throttle_limit_percent = 100,
.rate_limit = {0, 0, 0},
.profileName = "default",
.quickRatesRcExpo = 0,
};
// and
PG_RESET(rxConfig);
rxConfigMutable()->mincheck = DEFAULT_MIN_CHECK;
rxConfigMutable()->maxcheck = DEFAULT_MAX_CHECK;
rxConfigMutable()->midrc = 1500;
// and
const timedAdjustmentState_t *adjustmentState = configureStepwiseAdjustment(AUX3 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_CONFIG_RATE_INDEX);
// and
for (int index = AUX1; index < MAX_SUPPORTED_RC_CHANNEL_COUNT; index++) {
rcData[index] = PWM_RANGE_MIDDLE;
}
// and
resetCallCounters();
resetMillis();
// and
rcData[AUX3] = PWM_RANGE_MAX;
// and
fixedMillis = 496;
// when
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(91, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(91, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_EQ(1, CALL_COUNTER(COUNTER_QUEUE_CONFIRMATION_BEEP));
EXPECT_FALSE(adjustmentState->ready);
//
// now pretend a short amount of time has passed, but not enough time to allow the value to have been increased
//
// given
fixedMillis = 497;
// when
processRcAdjustments(&controlRateConfig);
EXPECT_EQ(91, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(91, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_FALSE(adjustmentState->ready);
//
// moving the switch back to the middle should immediately reset the state flag without increasing the value
//
// given
rcData[AUX3] = PWM_RANGE_MIDDLE;
// and
fixedMillis = 498;
// when
processRcAdjustments(&controlRateConfig);
EXPECT_EQ(91, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(91, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_TRUE(adjustmentState->ready);
//
// flipping the switch again, before the state reset would have occurred, allows the value to be increased again
// given
rcData[AUX3] = PWM_RANGE_MAX;
// and
fixedMillis = 499;
// when
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(92, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(92, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_EQ(2, CALL_COUNTER(COUNTER_QUEUE_CONFIRMATION_BEEP));
EXPECT_FALSE(adjustmentState->ready);
//
// leaving the switch up, after the original timer would have reset the state should now NOT cause
// the rate to increase, it should only increase after another 500ms from when the state was reset.
//
// given
fixedMillis = 500;
// when
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(92, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(92, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_FALSE(adjustmentState->ready);
//
// should still not be able to be increased
//
// given
fixedMillis = 997;
// when
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(92, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(92, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_FALSE(adjustmentState->ready);
//
// 500ms has now passed since the switch was returned to the middle, now that
// switch is still in the UP position after the timer has elapses it should
// be increased again.
//
// given
fixedMillis = 998;
// when
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(93, controlRateConfig.rcRates[FD_ROLL]);
EXPECT_EQ(93, controlRateConfig.rcRates[FD_PITCH]);
EXPECT_EQ(3, CALL_COUNTER(COUNTER_QUEUE_CONFIRMATION_BEEP));
EXPECT_FALSE(adjustmentState->ready);
}
#define ADJUSTMENT_RATE_PROFILE_INDEX 12
TEST_F(RcControlsAdjustmentsTest, processRcRateProfileAdjustments)
{
// given
configureContinuosAdjustment(AUX4 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_RATE_PROFILE_INDEX);
// and
for (int index = AUX1; index < MAX_SUPPORTED_RC_CHANNEL_COUNT; index++) {
rcData[index] = PWM_RANGE_MIDDLE;
}
// and
resetCallCounters();
resetMillis();
// and
rcData[AUX4] = PWM_RANGE_MAX;
// when
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(1, CALL_COUNTER(COUNTER_QUEUE_CONFIRMATION_BEEP));
EXPECT_EQ(1, CALL_COUNTER(COUNTER_CHANGE_CONTROL_RATE_PROFILE));
}
#define ADJUSTMENT_PITCH_ROLL_P_INDEX 6
#define ADJUSTMENT_PITCH_ROLL_I_INDEX 7
#define ADJUSTMENT_PITCH_ROLL_D_INDEX 8
#define ADJUSTMENT_YAW_P_INDEX 9
#define ADJUSTMENT_YAW_I_INDEX 10
#define ADJUSTMENT_YAW_D_INDEX 11
TEST_F(RcControlsAdjustmentsTest, processPIDIncreasePidController0)
{
// given
pidProfile_t pidProfile;
memset(&pidProfile, 0, sizeof(pidProfile));
pidProfile.pid[PID_PITCH].P = 0;
pidProfile.pid[PID_PITCH].I = 10;
pidProfile.pid[PID_PITCH].D = 20;
pidProfile.pid[PID_ROLL].P = 5;
pidProfile.pid[PID_ROLL].I = 15;
pidProfile.pid[PID_ROLL].D = 25;
pidProfile.pid[PID_YAW].P = 7;
pidProfile.pid[PID_YAW].I = 17;
pidProfile.pid[PID_YAW].D = 27;
// and
controlRateConfig_t controlRateConfig;
memset(&controlRateConfig, 0, sizeof(controlRateConfig));
const timedAdjustmentState_t *adjustmentState1 = configureStepwiseAdjustment(AUX1 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_PITCH_ROLL_P_INDEX);
const timedAdjustmentState_t *adjustmentState2 = configureStepwiseAdjustment(AUX2 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_PITCH_ROLL_I_INDEX);
const timedAdjustmentState_t *adjustmentState3 = configureStepwiseAdjustment(AUX3 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_PITCH_ROLL_D_INDEX);
const timedAdjustmentState_t *adjustmentState4 = configureStepwiseAdjustment(AUX1 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_YAW_P_INDEX);
const timedAdjustmentState_t *adjustmentState5 = configureStepwiseAdjustment(AUX2 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_YAW_I_INDEX);
const timedAdjustmentState_t *adjustmentState6 = configureStepwiseAdjustment(AUX3 - NON_AUX_CHANNEL_COUNT, ADJUSTMENT_YAW_D_INDEX);
// and
for (int index = AUX1; index < MAX_SUPPORTED_RC_CHANNEL_COUNT; index++) {
rcData[index] = PWM_RANGE_MIDDLE;
}
// and
resetCallCounters();
resetMillis();
// and
rcData[AUX1] = PWM_RANGE_MAX;
rcData[AUX2] = PWM_RANGE_MAX;
rcData[AUX3] = PWM_RANGE_MAX;
// when
currentPidProfile = &pidProfile;
rcControlsInit();
processRcAdjustments(&controlRateConfig);
// then
EXPECT_EQ(6, CALL_COUNTER(COUNTER_QUEUE_CONFIRMATION_BEEP));
EXPECT_FALSE(adjustmentState1->ready);
EXPECT_FALSE(adjustmentState2->ready);
EXPECT_FALSE(adjustmentState3->ready);
EXPECT_FALSE(adjustmentState4->ready);
EXPECT_FALSE(adjustmentState5->ready);
EXPECT_FALSE(adjustmentState6->ready);
// and
EXPECT_EQ(1, pidProfile.pid[PID_PITCH].P);
EXPECT_EQ(11, pidProfile.pid[PID_PITCH].I);
EXPECT_EQ(21, pidProfile.pid[PID_PITCH].D);
EXPECT_EQ(6, pidProfile.pid[PID_ROLL].P);
EXPECT_EQ(16, pidProfile.pid[PID_ROLL].I);
EXPECT_EQ(26, pidProfile.pid[PID_ROLL].D);
EXPECT_EQ(8, pidProfile.pid[PID_YAW].P);
EXPECT_EQ(18, pidProfile.pid[PID_YAW].I);
EXPECT_EQ(28, pidProfile.pid[PID_YAW].D);
}
extern "C" {
void setConfigDirty(void) {}
void saveConfigAndNotify(void) {}
void initRcProcessing(void) {}
void changePidProfile(uint8_t) {}
void pidInitConfig(const pidProfile_t *) {}
void accStartCalibration(void) {}
void gyroStartCalibration(bool isFirstArmingCalibration)
{
UNUSED(isFirstArmingCalibration);
}
void applyAccelerometerTrimsDelta(rollAndPitchTrims_t*) {}
void handleInflightCalibrationStickPosition(void) {}
bool featureIsEnabled(uint32_t) { return false;}
bool sensors(uint32_t) { return false;}
void tryArm(void) {}
void disarm(flightLogDisarmReason_e) {}
void dashboardDisablePageCycling() {}
void dashboardEnablePageCycling() {}
bool failsafeIsActive() { return false; }
bool isRxReceivingSignal() { return true; }
bool failsafeIsReceivingRxData() { return true; }
uint8_t getCurrentControlRateProfileIndex(void)
{
return 0;
}
void GPS_reset_home_position(void) {}
void baroSetGroundLevel(void) {}
void blackboxLogEvent(FlightLogEvent, flightLogEventData_t *) {}
bool cmsInMenu = false;
uint8_t armingFlags = 0;
uint16_t flightModeFlags = 0;
int16_t heading;
uint8_t stateFlags = 0;
float rcData[MAX_SUPPORTED_RC_CHANNEL_COUNT];
pidProfile_t *currentPidProfile;
rxRuntimeState_t rxRuntimeState;
PG_REGISTER(blackboxConfig_t, blackboxConfig, PG_BLACKBOX_CONFIG, 0);
PG_REGISTER(systemConfig_t, systemConfig, PG_SYSTEM_CONFIG, 2);
void resetArmingDisabled(void) {}
timeDelta_t getTaskDeltaTimeUs(taskId_e) { return 20000; }
armingDisableFlags_e getArmingDisableFlags(void)
{
return (armingDisableFlags_e) 0;
}
bool isTryingToArm(void) { return false; }
void resetTryingToArm(void) {}
void setLedProfile(uint8_t profile) { UNUSED(profile); }
uint8_t getLedProfile(void) { return 0; }
uint8_t getLedBrightness(void) { return 50; }
void setLedBrightness(uint8_t brightness) { UNUSED(brightness); }
void compassStartCalibration(void) {}
void pinioBoxTaskControl(void) {}
void schedulerIgnoreTaskExecTime(void) {}
}