1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-15 04:15:44 +03:00
betaflight/src/test/unit/osd_unittest.cc
2022-12-04 13:56:24 +01:00

1413 lines
37 KiB
C++

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
extern "C" {
#include "platform.h"
#include "build/debug.h"
#include "blackbox/blackbox.h"
#include "blackbox/blackbox_io.h"
#include "common/time.h"
#include "config/config.h"
#include "config/feature.h"
#include "drivers/osd_symbols.h"
#include "drivers/persistent.h"
#include "drivers/serial.h"
#include "fc/core.h"
#include "fc/rc_controls.h"
#include "fc/rc_modes.h"
#include "fc/runtime_config.h"
#include "flight/gps_rescue.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "io/beeper.h"
#include "io/gps.h"
#include "osd/osd.h"
#include "osd/osd_elements.h"
#include "osd/osd_warnings.h"
#include "pg/pg.h"
#include "pg/pg_ids.h"
#include "pg/rx.h"
#include "sensors/acceleration.h"
#include "sensors/battery.h"
#include "rx/rx.h"
void osdUpdate(timeUs_t currentTimeUs);
void osdFormatTime(char * buff, osd_timer_precision_e precision, timeUs_t time);
int osdConvertTemperatureToSelectedUnit(int tempInDegreesCelcius);
uint16_t rssi;
attitudeEulerAngles_t attitude;
float rMat[3][3];
pidProfile_t *currentPidProfile;
int16_t debug[DEBUG16_VALUE_COUNT];
float rcData[MAX_SUPPORTED_RC_CHANNEL_COUNT];
uint8_t GPS_numSat;
uint16_t GPS_distanceToHome;
int16_t GPS_directionToHome;
uint32_t GPS_distanceFlownInCm;
int32_t GPS_coord[2];
gpsSolutionData_t gpsSol;
float motor[8];
linkQualitySource_e linkQualitySource;
acc_t acc;
PG_REGISTER(batteryConfig_t, batteryConfig, PG_BATTERY_CONFIG, 0);
PG_REGISTER(blackboxConfig_t, blackboxConfig, PG_BLACKBOX_CONFIG, 0);
PG_REGISTER(systemConfig_t, systemConfig, PG_SYSTEM_CONFIG, 0);
PG_REGISTER(pilotConfig_t, pilotConfig, PG_PILOT_CONFIG, 0);
PG_REGISTER(gpsRescueConfig_t, gpsRescueConfig, PG_GPS_RESCUE, 0);
PG_REGISTER(imuConfig_t, imuConfig, PG_IMU_CONFIG, 0);
PG_REGISTER(gpsConfig_t, gpsConfig, PG_GPS_CONFIG, 0);
timeUs_t simulationTime = 0;
batteryState_e simulationBatteryState;
uint8_t simulationBatteryCellCount;
uint16_t simulationBatteryVoltage;
uint32_t simulationBatteryAmperage;
uint32_t simulationMahDrawn;
float simulationWhDrawn;
int32_t simulationAltitude;
int32_t simulationVerticalSpeed;
uint16_t simulationCoreTemperature;
bool simulationGpsHealthy;
}
uint32_t simulationFeatureFlags = FEATURE_GPS;
/* #define DEBUG_OSD */
#include "unittest_macros.h"
#include "unittest_displayport.h"
#include "gtest/gtest.h"
void setDefaultSimulationState()
{
memset(osdElementConfigMutable(), 0, sizeof(osdElementConfig_t));
osdConfigMutable()->enabled_stats = 0;
osdConfigMutable()->framerate_hz = 12;
rssi = 1024;
simulationBatteryState = BATTERY_OK;
simulationBatteryCellCount = 4;
simulationBatteryVoltage = 1680;
simulationBatteryAmperage = 0;
simulationMahDrawn = 0;
simulationWhDrawn = 0;
simulationAltitude = 0;
simulationVerticalSpeed = 0;
simulationCoreTemperature = 0;
simulationGpsHealthy = false;
rcData[PITCH] = 1500;
osdFlyTime = 0;
DISABLE_ARMING_FLAG(ARMED);
}
void osdRefresh()
{
while (osdUpdateCheck(simulationTime, 0)) {
osdUpdate(simulationTime);
simulationTime += 10;
}
simulationTime += 0.1e6;
}
/*
* Performs a test of the OSD actions on arming.
* (reused throughout the test suite)
*/
void doTestArm(bool testEmpty = true)
{
// given
// craft has been armed
ENABLE_ARMING_FLAG(ARMED);
simulationTime += 5e6;
// when
// sufficient OSD updates have been called
osdRefresh();
// then
// arming alert displayed
displayPortTestBufferSubstring(12, 7, "ARMED");
// given
// armed alert times out (0.5 seconds)
simulationTime += 0.5e6;
// when
// sufficient OSD updates have been called
osdRefresh();
// then
// arming alert disappears
#ifdef DEBUG_OSD
displayPortTestPrint();
#endif
if (testEmpty) {
displayPortTestBufferIsEmpty();
}
}
/*
* Auxiliary function. Test is there're stats that must be shown
*/
bool isSomeStatEnabled(void)
{
return (osdConfigMutable()->enabled_stats != 0);
}
/*
* Performs a test of the OSD actions on disarming.
* (reused throughout the test suite)
*/
void doTestDisarm()
{
// given
// craft is disarmed after having been armed
DISABLE_ARMING_FLAG(ARMED);
// when
// sufficient OSD updates have been called
osdRefresh();
// then
// post flight statistics displayed
if (isSomeStatEnabled()) {
unsigned enabledStats = osdConfigMutable()->enabled_stats;
unsigned count = 0;
while (enabledStats) {
count += enabledStats & 1;
enabledStats >>= 1;
}
displayPortTestBufferSubstring(2, 7 - count / 2, " --- STATS ---");
}
}
void setupStats(void)
{
// this set of enabled post flight statistics
osdStatSetState(OSD_STAT_MAX_SPEED, true);
osdStatSetState(OSD_STAT_MIN_BATTERY, true);
osdStatSetState(OSD_STAT_MIN_RSSI, true);
osdStatSetState(OSD_STAT_MAX_CURRENT, false);
osdStatSetState(OSD_STAT_USED_MAH, false);
osdStatSetState(OSD_STAT_MAX_ALTITUDE, true);
osdStatSetState(OSD_STAT_BLACKBOX, false);
osdStatSetState(OSD_STAT_END_BATTERY, true);
osdStatSetState(OSD_STAT_RTC_DATE_TIME, true);
osdStatSetState(OSD_STAT_MAX_DISTANCE, true);
osdStatSetState(OSD_STAT_FLIGHT_DISTANCE, true);
osdStatSetState(OSD_STAT_BLACKBOX_NUMBER, false);
osdStatSetState(OSD_STAT_MAX_G_FORCE, false);
osdStatSetState(OSD_STAT_MAX_ESC_TEMP, false);
osdStatSetState(OSD_STAT_MAX_ESC_RPM, false);
}
void simulateFlight(void)
{
// these conditions occur during flight
rssi = 1024;
gpsSol.groundSpeed = 500;
GPS_distanceToHome = 20;
GPS_distanceFlownInCm = 2000;
simulationBatteryVoltage = 1580;
simulationAltitude = 100;
simulationTime += 1e6;
while (osdUpdateCheck(simulationTime, 0)) {
osdUpdate(simulationTime);
simulationTime += 10;
}
rssi = 512;
gpsSol.groundSpeed = 800;
GPS_distanceToHome = 50;
GPS_distanceFlownInCm = 10000;
simulationBatteryVoltage = 1470;
simulationAltitude = 150;
simulationTime += 1e6;
while (osdUpdateCheck(simulationTime, 0)) {
osdUpdate(simulationTime);
simulationTime += 10;
}
rssi = 256;
gpsSol.groundSpeed = 200;
GPS_distanceToHome = 100;
GPS_distanceFlownInCm = 20000;
simulationBatteryVoltage = 1520;
simulationAltitude = 200;
simulationTime += 1e6;
while (osdUpdateCheck(simulationTime, 0)) {
osdUpdate(simulationTime);
simulationTime += 10;
}
rssi = 256;
gpsSol.groundSpeed = 800;
GPS_distanceToHome = 100;
GPS_distanceFlownInCm = 10000;
simulationBatteryVoltage = 1470;
simulationAltitude = 200; // converts to 6.56168 feet which rounds to 6.6 in imperial units stats test
simulationTime += 1e6;
while (osdUpdateCheck(simulationTime, 0)) {
osdUpdate(simulationTime);
simulationTime += 10;
}
simulationBatteryVoltage = 1520;
simulationTime += 1e6;
while (osdUpdateCheck(simulationTime, 0)) {
osdUpdate(simulationTime);
simulationTime += 10;
}
rssi = 256;
gpsSol.groundSpeed = 800;
GPS_distanceToHome = 1150;
GPS_distanceFlownInCm = 1050000;
simulationBatteryVoltage = 1470;
simulationAltitude = 200;
simulationTime += 1e6;
while (osdUpdateCheck(simulationTime, 0)) {
osdUpdate(simulationTime);
simulationTime += 10;
}
simulationBatteryVoltage = 1520;
simulationTime += 1e6;
}
class OsdTest : public ::testing::Test
{
protected:
static void SetUpTestCase() {
displayPortTestInit();
}
virtual void SetUp() {
setDefaultSimulationState();
}
virtual void TearDown() {
// Clean up the armed state without showing stats at the end of a test
osdConfigMutable()->enabled_stats = 0;
doTestDisarm();
}
};
/*
* Tests initialisation of the OSD and the power on splash screen.
*/
TEST_F(OsdTest, TestInit)
{
// given
// display port is initialised
displayPortTestInit();
// and
// default state values are set
setDefaultSimulationState();
// and
// this battery configuration (used for battery voltage elements)
batteryConfigMutable()->vbatmincellvoltage = 330;
batteryConfigMutable()->vbatmaxcellvoltage = 430;
// when
// OSD is initialised
osdInit(&testDisplayPort, OSD_DISPLAYPORT_DEVICE_AUTO);
osdRefresh();
// then
// display buffer should contain splash screen
displayPortTestBufferSubstring(7, 8, "MENU:THR MID");
displayPortTestBufferSubstring(11, 9, "+ YAW LEFT");
displayPortTestBufferSubstring(11, 10, "+ PITCH UP");
// when
// splash screen timeout has elapsed
simulationTime += 4e6;
osdRefresh();
// then
// display buffer should be empty
#ifdef DEBUG_OSD
displayPortTestPrint();
#endif
displayPortTestBufferIsEmpty();
}
/*
* Tests visibility of the ARMED notification after arming.
*/
TEST_F(OsdTest, TestArm)
{
doTestArm();
}
/*
* Tests display and timeout of the post flight statistics screen after disarming.
*/
TEST_F(OsdTest, TestDisarm)
{
doTestArm();
doTestDisarm();
// given
// post flight stats times out (60 seconds)
simulationTime += 60e6;
// when
// sufficient OSD updates have been called
osdRefresh();
// then
// post flight stats screen disappears
#ifdef DEBUG_OSD
displayPortTestPrint();
#endif
displayPortTestBufferIsEmpty();
}
/*
* Tests disarming and immediately rearming clears post flight stats and shows ARMED notification.
*/
TEST_F(OsdTest, TestDisarmWithImmediateRearm)
{
doTestArm();
doTestDisarm();
doTestArm();
}
/*
* Tests dismissing the statistics screen with pitch stick after disarming.
*/
TEST_F(OsdTest, TestDisarmWithDismissStats)
{
doTestArm();
doTestDisarm();
// given
// sticks have been moved
rcData[PITCH] = 1800;
// when
// sufficient OSD updates have been called
osdRefresh();
// then
// post flight stats screen disappears
#ifdef DEBUG_OSD
displayPortTestPrint();
#endif
displayPortTestBufferIsEmpty();
}
/*
* Tests the calculation of timing in statistics
*/
TEST_F(OsdTest, TestStatsTiming)
{
// given
osdStatSetState(OSD_STAT_RTC_DATE_TIME, true);
osdStatSetState(OSD_STAT_TIMER_1, true);
osdStatSetState(OSD_STAT_TIMER_2, true);
// and
// this timer 1 configuration
osdConfigMutable()->timers[OSD_TIMER_1] = OSD_TIMER(OSD_TIMER_SRC_TOTAL_ARMED, OSD_TIMER_PREC_HUNDREDTHS, 0);
// and
// this timer 2 configuration
osdConfigMutable()->timers[OSD_TIMER_2] = OSD_TIMER(OSD_TIMER_SRC_LAST_ARMED, OSD_TIMER_PREC_SECOND, 0);
// and
// this RTC time
dateTime_t dateTime;
dateTime.year = 2017;
dateTime.month = 11;
dateTime.day = 19;
dateTime.hours = 10;
dateTime.minutes = 12;
dateTime.seconds = 0;
dateTime.millis = 0;
rtcSetDateTime(&dateTime);
// when
// the craft is armed
doTestArm();
// and
// these conditions occur during flight
simulationTime += 1e6;
osdRefresh();
// and
// the craft is disarmed
doTestDisarm();
// and
// the craft is armed again
doTestArm();
// and
// these conditions occur during flight
simulationTime += 1e6;
osdRefresh();
// and
// the craft is disarmed
doTestDisarm();
// then
// statistics screen should display the following
int row = 7;
displayPortTestBufferSubstring(2, row++, "2017-11-19 10:12:");
displayPortTestBufferSubstring(2, row++, "TOTAL ARM : 00:13.61");
displayPortTestBufferSubstring(2, row++, "LAST ARM : 00:01");
}
/*
* Tests the calculation of statistics with imperial unit output.
*/
TEST_F(OsdTest, TestStatsImperial)
{
// given
setupStats();
// and
// using imperial unit system
osdConfigMutable()->units = UNIT_IMPERIAL;
// and
// a GPS fix is present
stateFlags |= GPS_FIX | GPS_FIX_HOME;
// when
// the craft is armed
doTestArm();
// and
simulateFlight();
// and
// the craft is disarmed
doTestDisarm();
// then
// statistics screen should display the following
int row = 5;
displayPortTestBufferSubstring(2, row++, "MAX ALTITUDE : 6.6%c", SYM_FT);
displayPortTestBufferSubstring(2, row++, "MAX SPEED : 17");
displayPortTestBufferSubstring(2, row++, "MAX DISTANCE : 3772%c", SYM_FT);
displayPortTestBufferSubstring(2, row++, "FLIGHT DISTANCE : 6.52%c", SYM_MILES);
displayPortTestBufferSubstring(2, row++, "MIN BATTERY : 14.70%c", SYM_VOLT);
displayPortTestBufferSubstring(2, row++, "END BATTERY : 15.20%c", SYM_VOLT);
displayPortTestBufferSubstring(2, row++, "MIN RSSI : 25%%");
}
/*
* Tests the calculation of statistics with metric unit output.
* (essentially an abridged version of the previous test
*/
TEST_F(OsdTest, TestStatsMetric)
{
// given
setupStats();
// and
// using metric unit system
osdConfigMutable()->units = UNIT_METRIC;
// when
// the craft is armed
doTestArm();
// and
simulateFlight();
// and
// the craft is disarmed
doTestDisarm();
// then
// statistics screen should display the following
int row = 5;
displayPortTestBufferSubstring(2, row++, "MAX ALTITUDE : 2.0%c", SYM_M);
displayPortTestBufferSubstring(2, row++, "MAX SPEED : 28");
displayPortTestBufferSubstring(2, row++, "MAX DISTANCE : 1.15%c", SYM_KM);
displayPortTestBufferSubstring(2, row++, "FLIGHT DISTANCE : 10.5%c", SYM_KM);
displayPortTestBufferSubstring(2, row++, "MIN BATTERY : 14.70%c", SYM_VOLT);
displayPortTestBufferSubstring(2, row++, "END BATTERY : 15.20%c", SYM_VOLT);
displayPortTestBufferSubstring(2, row++, "MIN RSSI : 25%%");
}
/*
* Tests the calculation of statistics with metric unit output.
* (essentially an abridged version of the previous test
*/
TEST_F(OsdTest, TestStatsMetricDistanceUnits)
{
// given
setupStats();
// and
// using metric unit system
osdConfigMutable()->units = UNIT_METRIC;
// when
// the craft is armed
doTestArm();
// and
simulateFlight();
// and
// the craft is disarmed
doTestDisarm();
// then
// statistics screen should display the following
int row = 5;
displayPortTestBufferSubstring(2, row++, "MAX ALTITUDE : 2.0%c", SYM_M);
displayPortTestBufferSubstring(2, row++, "MAX SPEED : 28");
displayPortTestBufferSubstring(2, row++, "MAX DISTANCE : 1.15%c", SYM_KM);
displayPortTestBufferSubstring(2, row++, "FLIGHT DISTANCE : 10.5%c", SYM_KM);
displayPortTestBufferSubstring(2, row++, "MIN BATTERY : 14.70%c", SYM_VOLT);
displayPortTestBufferSubstring(2, row++, "END BATTERY : 15.20%c", SYM_VOLT);
displayPortTestBufferSubstring(2, row++, "MIN RSSI : 25%%");
}
/*
* Tests activation of alarms and element flashing.
*/
TEST_F(OsdTest, TestAlarms)
{
// given
sensorsSet(SENSOR_GPS);
// and
// the following OSD elements are visible
osdElementConfigMutable()->item_pos[OSD_RSSI_VALUE] = OSD_POS(8, 1) | OSD_PROFILE_1_FLAG;
osdElementConfigMutable()->item_pos[OSD_MAIN_BATT_VOLTAGE] = OSD_POS(12, 1) | OSD_PROFILE_1_FLAG;
osdElementConfigMutable()->item_pos[OSD_ITEM_TIMER_1] = OSD_POS(20, 1) | OSD_PROFILE_1_FLAG;
osdElementConfigMutable()->item_pos[OSD_ITEM_TIMER_2] = OSD_POS(1, 1) | OSD_PROFILE_1_FLAG;
osdElementConfigMutable()->item_pos[OSD_REMAINING_TIME_ESTIMATE] = OSD_POS(1, 2) | OSD_PROFILE_1_FLAG;
osdElementConfigMutable()->item_pos[OSD_ALTITUDE] = OSD_POS(23, 7) | OSD_PROFILE_1_FLAG;
// and
// this set of alarm values
osdConfigMutable()->rssi_alarm = 20;
osdConfigMutable()->cap_alarm = 2200;
osdConfigMutable()->alt_alarm = 100; // meters
osdAnalyzeActiveElements();
// and
// this timer 1 configuration
osdConfigMutable()->timers[OSD_TIMER_1] = OSD_TIMER(OSD_TIMER_SRC_ON, OSD_TIMER_PREC_HUNDREDTHS, 5);
EXPECT_EQ(OSD_TIMER_SRC_ON, OSD_TIMER_SRC(osdConfig()->timers[OSD_TIMER_1]));
EXPECT_EQ(OSD_TIMER_PREC_HUNDREDTHS, OSD_TIMER_PRECISION(osdConfig()->timers[OSD_TIMER_1]));
EXPECT_EQ(5, OSD_TIMER_ALARM(osdConfig()->timers[OSD_TIMER_1]));
// and
// this timer 2 configuration
osdConfigMutable()->timers[OSD_TIMER_2] = OSD_TIMER(OSD_TIMER_SRC_TOTAL_ARMED, OSD_TIMER_PREC_SECOND, 2);
EXPECT_EQ(OSD_TIMER_SRC_TOTAL_ARMED, OSD_TIMER_SRC(osdConfig()->timers[OSD_TIMER_2]));
EXPECT_EQ(OSD_TIMER_PREC_SECOND, OSD_TIMER_PRECISION(osdConfig()->timers[OSD_TIMER_2]));
EXPECT_EQ(2, OSD_TIMER_ALARM(osdConfig()->timers[OSD_TIMER_2]));
// and
// using the metric unit system
osdConfigMutable()->units = UNIT_METRIC;
// when
// time is passing by
simulationTime += 60e6;
osdRefresh();
// and
// the craft is armed
doTestArm(false);
simulationTime += 70e6;
osdRefresh();
// then
// no elements should flash as all values are out of alarm range
for (int i = 0; i < 30; i++) {
// Check for visibility every 100ms, elements should always be visible
simulationTime += 0.1e6;
osdRefresh();
#ifdef DEBUG_OSD
printf("%d\n", i);
#endif
displayPortTestBufferSubstring(1, 1, "%c01:", SYM_FLY_M); // only test the minute part of the timer
displayPortTestBufferSubstring(8, 1, "%c99", SYM_RSSI);
displayPortTestBufferSubstring(12, 1, "%c16.8%c", SYM_BATT_FULL, SYM_VOLT);
displayPortTestBufferSubstring(20, 1, "%c04:", SYM_ON_M); // only test the minute part of the timer
displayPortTestBufferSubstring(23, 7, "%c0.0%c", SYM_ALTITUDE, SYM_M);
}
// when
// all values are out of range
rssi = 128;
simulationBatteryState = BATTERY_CRITICAL;
simulationBatteryVoltage = 1350;
simulationAltitude = 12000;
simulationMahDrawn = 999999;
simulationTime += 60e6;
osdRefresh();
// then
// elements showing values in alarm range should flash
simulationTime += 1000000;
simulationTime -= simulationTime % 1000000;
timeUs_t startTime = simulationTime;
for (int i = 0; i < 15; i++) {
// Blinking should happen at 2Hz
simulationTime = startTime + i*0.25e6;
osdRefresh();
#ifdef DEBUG_OSD
printf("%d\n", i);
displayPortTestPrint();
#endif
if (i % 2 == 1) {
displayPortTestBufferSubstring(8, 1, "%c12", SYM_RSSI);
displayPortTestBufferSubstring(12, 1, "%c13.5%c", SYM_MAIN_BATT, SYM_VOLT);
displayPortTestBufferSubstring(1, 1, "%c02:", SYM_FLY_M); // only test the minute part of the timer
displayPortTestBufferSubstring(20, 1, "%c05:", SYM_ON_M); // only test the minute part of the timer
displayPortTestBufferSubstring(23, 7, "%c120.0%c", SYM_ALTITUDE, SYM_M);
} else {
displayPortTestBufferIsEmpty();
}
}
}
/*
* Tests the RSSI OSD element.
*/
TEST_F(OsdTest, TestElementRssi)
{
// given
osdElementConfigMutable()->item_pos[OSD_RSSI_VALUE] = OSD_POS(8, 1) | OSD_PROFILE_1_FLAG;
osdConfigMutable()->rssi_alarm = 0;
osdAnalyzeActiveElements();
// when
rssi = 1024;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(8, 1, "%c99", SYM_RSSI);
// when
rssi = 0;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(8, 1, "%c 0", SYM_RSSI);
// when
rssi = 512;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(8, 1, "%c50", SYM_RSSI);
}
/*
* Tests the instantaneous battery current OSD element.
*/
TEST_F(OsdTest, TestElementAmperage)
{
// given
osdElementConfigMutable()->item_pos[OSD_CURRENT_DRAW] = OSD_POS(1, 12) | OSD_PROFILE_1_FLAG;
osdAnalyzeActiveElements();
// when
simulationBatteryAmperage = 0;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 12, " 0.00%c", SYM_AMP);
// when
simulationBatteryAmperage = 2156;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 12, " 21.56%c", SYM_AMP);
// when
simulationBatteryAmperage = 12345;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 12, "123.45%c", SYM_AMP);
}
/*
* Tests the battery capacity drawn OSD element.
*/
TEST_F(OsdTest, TestElementMahDrawn)
{
// given
osdElementConfigMutable()->item_pos[OSD_MAH_DRAWN] = OSD_POS(1, 11) | OSD_PROFILE_1_FLAG;
osdAnalyzeActiveElements();
// when
simulationMahDrawn = 0;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 11, " 0%c", SYM_MAH);
// when
simulationMahDrawn = 4;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 11, " 4%c", SYM_MAH);
// when
simulationMahDrawn = 15;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 11, " 15%c", SYM_MAH);
// when
simulationMahDrawn = 246;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 11, " 246%c", SYM_MAH);
// when
simulationMahDrawn = 1042;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 11, "1042%c", SYM_MAH);
}
/*
* Tests the instantaneous electrical power OSD element.
*/
TEST_F(OsdTest, TestElementPower)
{
// given
osdElementConfigMutable()->item_pos[OSD_POWER] = OSD_POS(1, 10) | OSD_PROFILE_1_FLAG;
osdAnalyzeActiveElements();
// and
simulationBatteryVoltage = 1000; // 10V
// and
simulationBatteryAmperage = 0; // 0A
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 10, " 0W");
// given
simulationBatteryAmperage = 10; // 0.1A
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 10, " 1W");
// given
simulationBatteryAmperage = 120; // 1.2A
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 10, " 12W");
// given
simulationBatteryAmperage = 1230; // 12.3A
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 10, " 123W");
// given
simulationBatteryAmperage = 12340; // 123.4A
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 10, "1234W");
}
/*
* Tests the altitude OSD element.
*/
TEST_F(OsdTest, TestElementAltitude)
{
// given
osdElementConfigMutable()->item_pos[OSD_ALTITUDE] = OSD_POS(23, 7) | OSD_PROFILE_1_FLAG;
osdAnalyzeActiveElements();
// and
osdConfigMutable()->units = UNIT_METRIC;
sensorsClear(SENSOR_GPS);
// when
simulationAltitude = 0;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(23, 7, "%c-", SYM_ALTITUDE);
// when
sensorsSet(SENSOR_GPS);
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(23, 7, "%c0.0%c", SYM_ALTITUDE, SYM_M);
// when
simulationAltitude = 247; // rounds to 2.5m
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(23, 7, "%c2.5%c", SYM_ALTITUDE, SYM_M);
// when
simulationAltitude = 4247; // rounds to 42.5m
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(23, 7, "%c42.5%c", SYM_ALTITUDE, SYM_M);
// when
simulationAltitude = -247; // rounds to -2.5m
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(23, 7, "%c-2.5%c", SYM_ALTITUDE, SYM_M);
// when
simulationAltitude = -70;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(23, 7, "%c-0.7%c", SYM_ALTITUDE, SYM_M);
}
/*
* Tests the core temperature OSD element.
*/
TEST_F(OsdTest, TestElementCoreTemperature)
{
// given
osdElementConfigMutable()->item_pos[OSD_CORE_TEMPERATURE] = OSD_POS(1, 8) | OSD_PROFILE_1_FLAG;
osdAnalyzeActiveElements();
// and
osdConfigMutable()->units = UNIT_METRIC;
// and
simulationCoreTemperature = 0;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 8, "C%c 0%c", SYM_TEMPERATURE, SYM_C);
// given
simulationCoreTemperature = 33;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 8, "C%c 33%c", SYM_TEMPERATURE, SYM_C);
// given
osdConfigMutable()->units = UNIT_IMPERIAL;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(1, 8, "C%c 91%c", SYM_TEMPERATURE, SYM_F);
}
/*
* Tests the battery notifications shown on the warnings OSD element.
*/
TEST_F(OsdTest, TestElementWarningsBattery)
{
// given
osdElementConfigMutable()->item_pos[OSD_WARNINGS] = OSD_POS(9, 10) | OSD_PROFILE_1_FLAG;
osdConfigMutable()->enabledWarnings = 0; // disable all warnings
osdWarnSetState(OSD_WARNING_BATTERY_WARNING, true);
osdWarnSetState(OSD_WARNING_BATTERY_CRITICAL, true);
osdWarnSetState(OSD_WARNING_BATTERY_NOT_FULL, true);
osdAnalyzeActiveElements();
// and
batteryConfigMutable()->vbatfullcellvoltage = 410;
// and
// 4S battery
simulationBatteryCellCount = 4;
// and
// used battery
simulationBatteryVoltage = ((batteryConfig()->vbatmaxcellvoltage - 20) * simulationBatteryCellCount) - 1;
simulationBatteryState = BATTERY_OK;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
// Delay as the warnings are flashing
simulationTime += 1000000;
simulationTime -= simulationTime % 1000000;
osdRefresh();
// then
displayPortTestBufferSubstring(9, 10, "BATT < FULL");
// given
// full battery
simulationBatteryVoltage = 1680;
simulationBatteryState = BATTERY_OK;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(9, 10, " ");
// given
// low battery
simulationBatteryVoltage = 1400;
simulationBatteryState = BATTERY_WARNING;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
// Delay as the warnings are flashing
simulationTime += 1000000;
simulationTime -= simulationTime % 1000000;
simulationTime += 0.25e6;
osdRefresh();
// then
displayPortTestBufferSubstring(9, 10, "LOW BATTERY ");
// given
// critical battery
simulationBatteryVoltage = 1320;
simulationBatteryState = BATTERY_CRITICAL;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
// Delay as the warnings are flashing
simulationTime += 1000000;
simulationTime -= simulationTime % 1000000;
simulationTime += 0.25e6;
osdRefresh();
// then
displayPortTestBufferSubstring(9, 10, " LAND NOW ");
// given
// full battery
simulationBatteryVoltage = ((batteryConfig()->vbatmaxcellvoltage - 20) * simulationBatteryCellCount);
simulationBatteryState = BATTERY_OK;
// when
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(9, 10, " ");
// TODO
}
/*
* Tests the time string formatting function with a series of precision settings and time values.
*/
TEST_F(OsdTest, TestFormatTimeString)
{
char buff[OSD_ELEMENT_BUFFER_LENGTH];
/* Seconds precision, 0 us */
osdFormatTime(buff, OSD_TIMER_PREC_SECOND, 0);
EXPECT_EQ(0, strcmp("00:00", buff));
/* Seconds precision, 0.9 seconds */
osdFormatTime(buff, OSD_TIMER_PREC_SECOND, 0.9e6);
EXPECT_EQ(0, strcmp("00:00", buff));
/* Seconds precision, 10 seconds */
osdFormatTime(buff, OSD_TIMER_PREC_SECOND, 10e6);
EXPECT_EQ(0, strcmp("00:10", buff));
/* Seconds precision, 1 minute */
osdFormatTime(buff, OSD_TIMER_PREC_SECOND, 60e6);
EXPECT_EQ(0, strcmp("01:00", buff));
/* Seconds precision, 1 minute 59 seconds */
osdFormatTime(buff, OSD_TIMER_PREC_SECOND, 119e6);
EXPECT_EQ(0, strcmp("01:59", buff));
/* Hundredths precision, 0 us */
osdFormatTime(buff, OSD_TIMER_PREC_HUNDREDTHS, 0);
EXPECT_EQ(0, strcmp("00:00.00", buff));
/* Hundredths precision, 10 milliseconds (one 100th of a second) */
osdFormatTime(buff, OSD_TIMER_PREC_HUNDREDTHS, 10e3);
EXPECT_EQ(0, strcmp("00:00.01", buff));
/* Hundredths precision, 0.9 seconds */
osdFormatTime(buff, OSD_TIMER_PREC_HUNDREDTHS, 0.9e6);
EXPECT_EQ(0, strcmp("00:00.90", buff));
/* Hundredths precision, 10 seconds */
osdFormatTime(buff, OSD_TIMER_PREC_HUNDREDTHS, 10e6);
EXPECT_EQ(0, strcmp("00:10.00", buff));
/* Hundredths precision, 1 minute */
osdFormatTime(buff, OSD_TIMER_PREC_HUNDREDTHS, 60e6);
EXPECT_EQ(0, strcmp("01:00.00", buff));
/* Hundredths precision, 1 minute 59 seconds */
osdFormatTime(buff, OSD_TIMER_PREC_HUNDREDTHS, 119e6);
EXPECT_EQ(0, strcmp("01:59.00", buff));
}
TEST_F(OsdTest, TestConvertTemperatureUnits)
{
/* In Celsius */
osdConfigMutable()->units = UNIT_METRIC;
EXPECT_EQ(osdConvertTemperatureToSelectedUnit(40), 40);
/* In Fahrenheit */
osdConfigMutable()->units = UNIT_IMPERIAL;
EXPECT_EQ(osdConvertTemperatureToSelectedUnit(40), 104);
/* In Fahrenheit with rounding */
osdConfigMutable()->units = UNIT_IMPERIAL;
EXPECT_EQ(osdConvertTemperatureToSelectedUnit(41), 106);
}
TEST_F(OsdTest, TestGpsElements)
{
// given
osdElementConfigMutable()->item_pos[OSD_GPS_SATS] = OSD_POS(2, 4) | OSD_PROFILE_1_FLAG;
sensorsSet(SENSOR_GPS);
osdAnalyzeActiveElements();
// when
simulationGpsHealthy = false;
gpsSol.numSat = 0;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
// Sat indicator should blink and show "NC"
simulationTime += 1000000;
simulationTime -= simulationTime % 1000000;
timeUs_t startTime = simulationTime;
for (int i = 0; i < 15; i++) {
// Blinking should happen at 2Hz
simulationTime = startTime + i*0.25e6;
osdRefresh();
if (i % 2 == 1) {
displayPortTestBufferSubstring(2, 4, "%c%cNC", SYM_SAT_L, SYM_SAT_R);
} else {
displayPortTestBufferIsEmpty();
}
}
// when
simulationGpsHealthy = true;
gpsSol.numSat = 0;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
// Sat indicator should blink and show "0"
simulationTime += 1000000;
simulationTime -= simulationTime % 1000000;
startTime = simulationTime;
for (int i = 0; i < 15; i++) {
// Blinking should happen at 2Hz
simulationTime = startTime + i*0.25e6;
osdRefresh();
if (i % 2 == 1) {
displayPortTestBufferSubstring(2, 4, "%c%c 0", SYM_SAT_L, SYM_SAT_R);
} else {
displayPortTestBufferIsEmpty();
}
}
// when
simulationGpsHealthy = true;
gpsSol.numSat = 10;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
// Sat indicator should show "10" without flashing
for (int i = 0; i < 15; i++) {
// Blinking should happen at 2Hz
simulationTime += 0.2e6;
osdRefresh();
displayPortTestBufferSubstring(2, 4, "%c%c10", SYM_SAT_L, SYM_SAT_R);
}
}
TEST_F(OsdTest, TestHdPositioning)
{
// given
// Try to round-trip the OSD_POS macro with an "HD location"
osdElementConfigMutable()->item_pos[OSD_RSSI_VALUE] = OSD_POS(53, 0) | OSD_PROFILE_1_FLAG;
osdConfigMutable()->rssi_alarm = 0;
// Also try to round-trip a raw value matching one generated by the Configurator.
osdElementConfigMutable()->item_pos[OSD_CURRENT_DRAW] = 3125 | OSD_PROFILE_1_FLAG;
osdAnalyzeActiveElements();
// when
simulationBatteryAmperage = 0;
rssi = 1024;
displayClearScreen(&testDisplayPort, DISPLAY_CLEAR_WAIT);
osdRefresh();
// then
displayPortTestBufferSubstring(53, 0, "%c99", SYM_RSSI);
displayPortTestBufferSubstring(53, 1, " 0.00%c", SYM_AMP);
}
// STUBS
extern "C" {
bool featureIsEnabled(uint32_t f) { return simulationFeatureFlags & f; }
void beeperConfirmationBeeps(uint8_t) {}
bool isModeActivationConditionPresent(boxId_e) {
return false;
}
bool IS_RC_MODE_ACTIVE(boxId_e) {
return false;
}
uint32_t micros() {
return simulationTime;
}
uint32_t millis() {
return micros() / 1000;
}
bool isBeeperOn() {
return false;
}
bool airmodeIsEnabled() {
return false;
}
uint8_t getCurrentPidProfileIndex() {
return 0;
}
uint8_t getCurrentControlRateProfileIndex() {
return 0;
}
batteryState_e getBatteryState() {
return simulationBatteryState;
}
uint8_t getBatteryCellCount() {
return simulationBatteryCellCount;
}
uint16_t getBatteryVoltage() {
return simulationBatteryVoltage;
}
uint16_t getBatteryAverageCellVoltage() {
return simulationBatteryVoltage / simulationBatteryCellCount;
}
int32_t getAmperage() {
return simulationBatteryAmperage;
}
int32_t getMAhDrawn() {
return simulationMahDrawn;
}
float getWhDrawn() {
return simulationWhDrawn;
}
int32_t getEstimatedAltitudeCm() {
return simulationAltitude;
}
int32_t getEstimatedVario() {
return simulationVerticalSpeed;
}
int32_t blackboxGetLogNumber() {
return 0;
}
bool isBlackboxDeviceWorking() {
return true;
}
bool isBlackboxDeviceFull() {
return false;
}
bool isSerialTransmitBufferEmpty(const serialPort_t *) {
return false;
}
void serialWrite(serialPort_t *, uint8_t) {}
bool cmsDisplayPortRegister(displayPort_t *) {
return false;
}
uint16_t getRssi(void) { return rssi; }
uint8_t getRssiPercent(void) { return scaleRange(rssi, 0, RSSI_MAX_VALUE, 0, 100); }
uint16_t rxGetLinkQuality(void) { return LINK_QUALITY_MAX_VALUE; }
uint16_t getCoreTemperatureCelsius(void) { return simulationCoreTemperature; }
bool isFlipOverAfterCrashActive(void) { return false; }
float pidItermAccelerator(void) { return 1.0; }
uint8_t getMotorCount(void){ return 4; }
bool areMotorsRunning(void){ return true; }
bool pidOsdAntiGravityActive(void) { return false; }
bool failsafeIsActive(void) { return false; }
bool gpsRescueIsConfigured(void) { return false; }
bool gpsIsHealthy(void) { return simulationGpsHealthy; }
int8_t calculateThrottlePercent(void) { return 0; }
uint32_t persistentObjectRead(persistentObjectId_e) { return 0; }
void persistentObjectWrite(persistentObjectId_e, uint32_t) {}
bool isUpright(void) { return true; }
float getMotorOutputLow(void) { return 1000.0; }
float getMotorOutputHigh(void) { return 2047.0; }
void schedulerIgnoreTaskStateTime(void) { }
void schedulerIgnoreTaskExecRate(void) { }
void schedulerIgnoreTaskExecTime(void) { }
bool schedulerGetIgnoreTaskExecTime() { return false; }
void schedulerSetNextStateTime(timeDelta_t) {}
}