1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-17 05:15:25 +03:00
betaflight/src/main/drivers/pwm_output_dshot_shared.c

291 lines
8.3 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "platform.h"
#ifdef USE_DSHOT
#include "build/debug.h"
#include "drivers/dma.h"
#include "drivers/dma_reqmap.h"
#include "drivers/io.h"
#include "drivers/nvic.h"
#include "drivers/rcc.h"
#include "drivers/time.h"
#include "drivers/timer.h"
#if defined(STM32F4)
#include "stm32f4xx.h"
#elif defined(STM32F3)
#include "stm32f30x.h"
#endif
#include "pwm_output.h"
#include "drivers/dshot.h"
#include "drivers/dshot_dpwm.h"
#include "drivers/dshot_command.h"
#include "drivers/motor.h"
#include "pwm_output_dshot_shared.h"
FAST_DATA_ZERO_INIT uint8_t dmaMotorTimerCount = 0;
#ifdef STM32F7
FAST_DATA_ZERO_INIT motorDmaTimer_t dmaMotorTimers[MAX_DMA_TIMERS];
FAST_DATA_ZERO_INIT motorDmaOutput_t dmaMotors[MAX_SUPPORTED_MOTORS];
#else
motorDmaTimer_t dmaMotorTimers[MAX_DMA_TIMERS];
motorDmaOutput_t dmaMotors[MAX_SUPPORTED_MOTORS];
#endif
#ifdef USE_DSHOT_TELEMETRY
// TODO remove once debugging no longer needed
FAST_DATA_ZERO_INIT uint32_t inputStampUs;
FAST_DATA_ZERO_INIT dshotDMAHandlerCycleCounters_t dshotDMAHandlerCycleCounters;
#endif
motorDmaOutput_t *getMotorDmaOutput(uint8_t index)
{
return &dmaMotors[index];
}
uint8_t getTimerIndex(TIM_TypeDef *timer)
{
for (int i = 0; i < dmaMotorTimerCount; i++) {
if (dmaMotorTimers[i].timer == timer) {
return i;
}
}
dmaMotorTimers[dmaMotorTimerCount++].timer = timer;
return dmaMotorTimerCount - 1;
}
FAST_CODE void pwmWriteDshotInt(uint8_t index, uint16_t value)
{
motorDmaOutput_t *const motor = &dmaMotors[index];
if (!motor->configured) {
return;
}
/*If there is a command ready to go overwrite the value and send that instead*/
if (dshotCommandIsProcessing()) {
value = dshotCommandGetCurrent(index);
if (value) {
motor->protocolControl.requestTelemetry = true;
}
}
motor->protocolControl.value = value;
uint16_t packet = prepareDshotPacket(&motor->protocolControl);
uint8_t bufferSize;
#ifdef USE_DSHOT_DMAR
if (useBurstDshot) {
bufferSize = loadDmaBuffer(&motor->timer->dmaBurstBuffer[timerLookupChannelIndex(motor->timerHardware->channel)], 4, packet);
motor->timer->dmaBurstLength = bufferSize * 4;
} else
#endif
{
bufferSize = loadDmaBuffer(motor->dmaBuffer, 1, packet);
motor->timer->timerDmaSources |= motor->timerDmaSource;
#ifdef USE_FULL_LL_DRIVER
xLL_EX_DMA_SetDataLength(motor->dmaRef, bufferSize);
xLL_EX_DMA_EnableResource(motor->dmaRef);
#else
xDMA_SetCurrDataCounter(motor->dmaRef, bufferSize);
xDMA_Cmd(motor->dmaRef, ENABLE);
#endif
}
}
#ifdef USE_DSHOT_TELEMETRY
void dshotEnableChannels(uint8_t motorCount);
static uint32_t decodeTelemetryPacket(uint32_t buffer[], uint32_t count)
{
uint32_t value = 0;
uint32_t oldValue = buffer[0];
int bits = 0;
int len;
for (uint32_t i = 1; i <= count; i++) {
if (i < count) {
int diff = buffer[i] - oldValue;
if (bits >= 21) {
break;
}
len = (diff + 8) / 16;
} else {
len = 21 - bits;
}
value <<= len;
value |= 1 << (len - 1);
oldValue = buffer[i];
bits += len;
}
if (bits != 21) {
return 0xffff;
}
static const uint32_t decode[32] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 11, 0, 13, 14, 15,
0, 0, 2, 3, 0, 5, 6, 7, 0, 0, 8, 1, 0, 4, 12, 0 };
uint32_t decodedValue = decode[value & 0x1f];
decodedValue |= decode[(value >> 5) & 0x1f] << 4;
decodedValue |= decode[(value >> 10) & 0x1f] << 8;
decodedValue |= decode[(value >> 15) & 0x1f] << 12;
uint32_t csum = decodedValue;
csum = csum ^ (csum >> 8); // xor bytes
csum = csum ^ (csum >> 4); // xor nibbles
if ((csum & 0xf) != 0xf) {
return 0xffff;
}
decodedValue >>= 4;
if (decodedValue == 0x0fff) {
return 0;
}
decodedValue = (decodedValue & 0x000001ff) << ((decodedValue & 0xfffffe00) >> 9);
if (!decodedValue) {
return 0xffff;
}
uint32_t ret = (1000000 * 60 / 100 + decodedValue / 2) / decodedValue;
return ret;
}
#endif
#ifdef USE_DSHOT_TELEMETRY
FAST_CODE_NOINLINE bool pwmStartDshotMotorUpdate(void)
{
if (!useDshotTelemetry) {
return true;
}
#ifdef USE_DSHOT_TELEMETRY_STATS
const timeMs_t currentTimeMs = millis();
#endif
const timeUs_t currentUs = micros();
for (int i = 0; i < dshotPwmDevice.count; i++) {
timeDelta_t usSinceInput = cmpTimeUs(currentUs, inputStampUs);
if (usSinceInput >= 0 && usSinceInput < dmaMotors[i].dshotTelemetryDeadtimeUs) {
return false;
}
if (dmaMotors[i].isInput) {
#ifdef USE_FULL_LL_DRIVER
uint32_t edges = GCR_TELEMETRY_INPUT_LEN - xLL_EX_DMA_GetDataLength(dmaMotors[i].dmaRef);
#else
uint32_t edges = GCR_TELEMETRY_INPUT_LEN - xDMA_GetCurrDataCounter(dmaMotors[i].dmaRef);
#endif
#ifdef USE_FULL_LL_DRIVER
LL_EX_TIM_DisableIT(dmaMotors[i].timerHardware->tim, dmaMotors[i].timerDmaSource);
#else
TIM_DMACmd(dmaMotors[i].timerHardware->tim, dmaMotors[i].timerDmaSource, DISABLE);
#endif
uint16_t value = 0xffff;
if (edges > MIN_GCR_EDGES) {
dshotTelemetryState.readCount++;
value = decodeTelemetryPacket(dmaMotors[i].dmaBuffer, edges);
#ifdef USE_DSHOT_TELEMETRY_STATS
bool validTelemetryPacket = false;
#endif
if (value != 0xffff) {
dshotTelemetryState.motorState[i].telemetryValue = value;
dshotTelemetryState.motorState[i].telemetryActive = true;
if (i < 4) {
DEBUG_SET(DEBUG_DSHOT_RPM_TELEMETRY, i, value);
}
#ifdef USE_DSHOT_TELEMETRY_STATS
validTelemetryPacket = true;
#endif
} else {
dshotTelemetryState.invalidPacketCount++;
if (i == 0) {
memcpy(dshotTelemetryState.inputBuffer,dmaMotors[i].dmaBuffer,sizeof(dshotTelemetryState.inputBuffer));
}
}
#ifdef USE_DSHOT_TELEMETRY_STATS
updateDshotTelemetryQuality(&dshotTelemetryQuality[i], validTelemetryPacket, currentTimeMs);
#endif
}
}
pwmDshotSetDirectionOutput(&dmaMotors[i]);
}
inputStampUs = 0;
dshotEnableChannels(dshotPwmDevice.count);
return true;
}
bool isDshotMotorTelemetryActive(uint8_t motorIndex)
{
return dshotTelemetryState.motorState[motorIndex].telemetryActive;
}
bool isDshotTelemetryActive(void)
{
const unsigned motorCount = motorDeviceCount();
if (motorCount) {
for (unsigned i = 0; i < motorCount; i++) {
if (!isDshotMotorTelemetryActive(i)) {
return false;
}
}
return true;
}
return false;
}
#ifdef USE_DSHOT_TELEMETRY_STATS
int16_t getDshotTelemetryMotorInvalidPercent(uint8_t motorIndex)
{
int16_t invalidPercent = 0;
if (dshotTelemetryState.motorState[motorIndex].telemetryActive) {
const uint32_t totalCount = dshotTelemetryQuality[motorIndex].packetCountSum;
const uint32_t invalidCount = dshotTelemetryQuality[motorIndex].invalidCountSum;
if (totalCount > 0) {
invalidPercent = lrintf(invalidCount * 10000.0f / totalCount);
}
} else {
invalidPercent = 10000; // 100.00%
}
return invalidPercent;
}
#endif // USE_DSHOT_TELEMETRY_STATS
#endif // USE_DSHOT_TELEMETRY
#endif // USE_DSHOT