1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-15 20:35:33 +03:00
betaflight/src/main/flight/interpolated_setpoint.c
2020-01-24 00:33:54 +11:00

214 lines
8.4 KiB
C

/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "platform.h"
#ifdef USE_INTERPOLATED_SP
#include "build/debug.h"
#include "common/maths.h"
#include "fc/rc.h"
#include "flight/interpolated_setpoint.h"
static float setpointDeltaImpl[XYZ_AXIS_COUNT];
static float setpointDelta[XYZ_AXIS_COUNT];
static uint8_t holdCount[XYZ_AXIS_COUNT];
typedef struct laggedMovingAverageCombined_s {
laggedMovingAverage_t filter;
float buf[4];
} laggedMovingAverageCombined_t;
laggedMovingAverageCombined_t setpointDeltaAvg[XYZ_AXIS_COUNT];
static float prevSetpointSpeed[XYZ_AXIS_COUNT];
static float prevAcceleration[XYZ_AXIS_COUNT];
static float prevRawSetpoint[XYZ_AXIS_COUNT];
static float prevDeltaImpl[XYZ_AXIS_COUNT];
static bool bigStep[XYZ_AXIS_COUNT];
// Configuration
static float ffMaxRateLimit[XYZ_AXIS_COUNT];
static float ffMaxRate[XYZ_AXIS_COUNT];
void interpolatedSpInit(const pidProfile_t *pidProfile) {
const float ffMaxRateScale = pidProfile->ff_max_rate_limit * 0.01f;
uint8_t j = pidProfile->ff_interpolate_sp;
for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
ffMaxRate[i] = applyCurve(i, 1.0f);
ffMaxRateLimit[i] = ffMaxRate[i] * ffMaxRateScale;
laggedMovingAverageInit(&setpointDeltaAvg[i].filter, j, (float *)&setpointDeltaAvg[i].buf[0]);
}
}
FAST_CODE_NOINLINE float interpolatedSpApply(int axis, bool newRcFrame, ffInterpolationType_t type) {
if (newRcFrame) {
float rawSetpoint = getRawSetpoint(axis);
const float rxInterval = currentRxRefreshRate * 1e-6f;
const float rxRate = 1.0f / rxInterval;
float setpointSpeed = (rawSetpoint - prevRawSetpoint[axis]) * rxRate;
float setpointAcceleration = setpointSpeed - prevSetpointSpeed[axis];
float setpointSpeedModified = setpointSpeed;
float setpointAccelerationModified = setpointAcceleration;
// Glitch reduction code for identical packets
if (fabsf(setpointAcceleration) > 3.0f * fabsf(prevAcceleration[axis])) {
bigStep[axis] = true;
} else {
bigStep[axis] = false;
}
if (setpointSpeed == 0 && fabsf(rawSetpoint) < 0.98f * ffMaxRate[axis]) {
// identical packet detected, not at full deflection.
// first packet on leaving full deflection always gets full FF
if (holdCount[axis] == 0) {
// previous packet had movement
if (bigStep[axis]) {
// type 1 = interpolate forward where acceleration change is large
setpointSpeedModified = prevSetpointSpeed[axis];
setpointAccelerationModified = prevAcceleration[axis];
holdCount[axis] = 1;
} else {
// type 2 = small change, no interpolation needed
setpointSpeedModified = prevSetpointSpeed[axis];
holdCount[axis] = 2;
}
} else {
// it is an unchanged packet after previous unchanged packet
// speed and acceleration will be zero, no need to change anything
holdCount[axis] = 3;
}
} else {
// we're moving, or sticks are at max
if (holdCount[axis] != 0) {
// previous step was a duplicate, handle each type differently
if (holdCount[axis] == 1) {
// interpolation was applied
// raw setpoint speed of next 'good' packet is twice what it should be
setpointSpeedModified = setpointSpeed / 2.0f;
// empirically this works best
setpointAccelerationModified = (prevAcceleration[axis] + setpointAcceleration) / 2.0f;
} else if (holdCount[axis] == 2) {
// interpolation was not applied
setpointSpeedModified = setpointSpeed / 2.0f;
setpointAccelerationModified = prevAcceleration[axis] / 2.0f;
} else if (holdCount[axis] == 3) {
// after persistent flat period or recent big step up, no boost
// reduces jitter from boost when flying smoothly
// WARNING: this means no boost if ADC is active on FrSky radios
setpointAccelerationModified = 0.0f;
}
holdCount[axis] = 0;
}
}
// smooth deadband type suppression of FF when sticks are centred.
const float rawSetpointCentred = fabsf(rawSetpoint) / 2.0f;
if (rawSetpointCentred < 1.0f) {
// force zero FF when sticks are centred for smoothness
setpointSpeedModified *= rawSetpointCentred;
setpointAccelerationModified *= rawSetpointCentred;
holdCount[axis] = 4;
}
setpointDeltaImpl[axis] = setpointSpeedModified * pidGetDT();
prevAcceleration[axis] = setpointAcceleration;
setpointAcceleration *= pidGetDT();
setpointAccelerationModified *= pidGetDT();
const float ffBoostFactor = pidGetFfBoostFactor();
float clip = 1.0f;
float boostAmount = 0.0f;
if (ffBoostFactor != 0.0f) {
//calculate clip factor to reduce boost on big spikes
if (pidGetSpikeLimitInverse()) {
clip = 1 / (1 + (setpointAcceleration * setpointAcceleration * pidGetSpikeLimitInverse()));
clip *= clip;
}
// don't clip first step inwards from max deflection
if (fabsf(prevRawSetpoint[axis]) > 0.95f * ffMaxRate[axis] && fabsf(setpointSpeed) > 3.0f * fabsf(prevSetpointSpeed[axis])) {
clip = 1.0f;
}
// calculate boost and prevent kick-back spike at max deflection
if (fabsf(rawSetpoint) < 0.95f * ffMaxRate[axis] || fabsf(setpointSpeed) > 3.0f * fabsf(prevSetpointSpeed[axis])) {
boostAmount = ffBoostFactor * setpointAccelerationModified;
}
}
prevSetpointSpeed[axis] = setpointSpeed;
prevRawSetpoint[axis] = rawSetpoint;
if (axis == FD_ROLL) {
DEBUG_SET(DEBUG_FF_INTERPOLATED, 0, lrintf(setpointDeltaImpl[axis] * 100));
DEBUG_SET(DEBUG_FF_INTERPOLATED, 1, lrintf(setpointAccelerationModified * 100));
DEBUG_SET(DEBUG_FF_INTERPOLATED, 2, lrintf(setpointAcceleration * 100));
DEBUG_SET(DEBUG_FF_INTERPOLATED, 3, holdCount[axis]);
}
setpointDeltaImpl[axis] += boostAmount * clip;
// first order (kind of) smoothing of FF
const float ffSmoothFactor = pidGetFfSmoothFactor();
setpointDeltaImpl[axis] = prevDeltaImpl[axis] + ffSmoothFactor * (setpointDeltaImpl[axis] - prevDeltaImpl[axis]);
prevDeltaImpl[axis] = setpointDeltaImpl[axis];
if (type == FF_INTERPOLATE_ON) {
setpointDelta[axis] = setpointDeltaImpl[axis];
} else {
setpointDelta[axis] = laggedMovingAverageUpdate(&setpointDeltaAvg[axis].filter, setpointDeltaImpl[axis]);
}
}
return setpointDelta[axis];
}
FAST_CODE_NOINLINE float applyFfLimit(int axis, float value, float Kp, float currentPidSetpoint) {
switch (axis) {
case FD_ROLL:
DEBUG_SET(DEBUG_FF_LIMIT, 0, value);
break;
case FD_PITCH:
DEBUG_SET(DEBUG_FF_LIMIT, 1, value);
break;
}
if (fabsf(currentPidSetpoint) <= ffMaxRateLimit[axis]) {
value = constrainf(value, (-ffMaxRateLimit[axis] - currentPidSetpoint) * Kp, (ffMaxRateLimit[axis] - currentPidSetpoint) * Kp);
} else {
value = 0;
}
if (axis == FD_ROLL) {
DEBUG_SET(DEBUG_FF_LIMIT, 2, value);
}
return value;
}
bool shouldApplyFfLimits(int axis)
{
return ffMaxRateLimit[axis] != 0.0f && axis < FD_YAW;
}
#endif