1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-24 00:35:39 +03:00
betaflight/src/main/flight/autopilot.c
2024-11-27 07:43:52 +11:00

369 lines
16 KiB
C

/*
* This file is part of Betaflight.
*
* Betaflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Betaflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Betaflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include "platform.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/filter.h"
#include "common/maths.h"
#include "common/vector.h"
#include "fc/rc.h"
#include "fc/runtime_config.h"
#include "flight/imu.h"
#include "flight/position.h"
#include "rx/rx.h"
#include "sensors/gyro.h"
#include "autopilot.h"
#define ALTITUDE_P_SCALE 0.01f
#define ALTITUDE_I_SCALE 0.003f
#define ALTITUDE_D_SCALE 0.01f
#define ALTITUDE_F_SCALE 0.01f
#define POSITION_P_SCALE 0.0012f
#define POSITION_I_SCALE 0.0001f
#define POSITION_D_SCALE 0.0015f
#define POSITION_A_SCALE 0.0008f
#define UPSAMPLING_CUTOFF_HZ 5.0f
static pidCoefficient_t altitudePidCoeffs;
static pidCoefficient_t positionPidCoeffs;
static float altitudeI = 0.0f;
static float throttleOut = 0.0f;
typedef struct {
bool isStarting;
float distance;
float previousDistance;
float previousVelocity;
float integral;
float pidSum;
pt1Filter_t velocityLpf;
pt1Filter_t accelerationLpf;
} earthFrame_t;
typedef enum {
EW = 0,
NS
} axisEF_t;
typedef struct {
float gpsDataIntervalS;
float gpsDataFreqHz;
float sanityCheckDistance;
float lpfCutoff;
float pt1Gain;
bool sticksActive;
float maxAngle;
float pidSumCraft[EF_AXIS_COUNT];
pt3Filter_t upsample[EF_AXIS_COUNT];
earthFrame_t efAxis[EF_AXIS_COUNT];
} posHoldState;
static posHoldState posHold = {
.gpsDataIntervalS = 0.1f,
.gpsDataFreqHz = 10.0f,
.sanityCheckDistance = 1000.0f,
.lpfCutoff = 1.0f,
.pt1Gain = 1.0f,
.sticksActive = false,
.pidSumCraft = { 0.0f, 0.0f },
.upsample = { {0}, {0} },
.efAxis = { {0} }
};
static gpsLocation_t currentTargetLocation = {0, 0, 0};
float autopilotAngle[RP_AXIS_COUNT];
void resetPositionControlEFParams(earthFrame_t *efAxis)
{
// at start only
pt1FilterInit(&efAxis->velocityLpf, posHold.pt1Gain); // Clear and initialise the filters
pt1FilterInit(&efAxis->accelerationLpf, posHold.pt1Gain);
efAxis->isStarting = true; // Enter starting 'phase'
efAxis->integral = 0.0f;
}
void resetPositionControl(gpsLocation_t initialTargetLocation)
{
// from pos_hold.c when initiating position hold at target location
currentTargetLocation = initialTargetLocation;
posHold.sticksActive = false;
// set sanity check distance according to groundspeed at start
posHold.sanityCheckDistance = gpsSol.groundSpeed > 500 ? gpsSol.groundSpeed * 2.0f : 1000.0f;
resetPositionControlEFParams(&posHold.efAxis[EW]);
resetPositionControlEFParams(&posHold.efAxis[NS]);
}
void initializeEfAxisFilters(earthFrame_t *efAxis, float filterGain) {
pt1FilterInit(&efAxis->velocityLpf, filterGain);
pt1FilterInit(&efAxis->accelerationLpf, filterGain);
}
void autopilotInit(const autopilotConfig_t *config)
{
posHold.sticksActive = false;
posHold.maxAngle = autopilotConfig()->max_angle;
altitudePidCoeffs.Kp = config->altitude_P * ALTITUDE_P_SCALE;
altitudePidCoeffs.Ki = config->altitude_I * ALTITUDE_I_SCALE;
altitudePidCoeffs.Kd = config->altitude_D * ALTITUDE_D_SCALE;
altitudePidCoeffs.Kf = config->altitude_F * ALTITUDE_F_SCALE;
positionPidCoeffs.Kp = config->position_P * POSITION_P_SCALE;
positionPidCoeffs.Ki = config->position_I * POSITION_I_SCALE;
positionPidCoeffs.Kd = config->position_D * POSITION_D_SCALE;
positionPidCoeffs.Kf = config->position_A * POSITION_A_SCALE; // Kf used for acceleration
// initialise filters with approximate filter gain
float upsampleCutoff = pt3FilterGain(UPSAMPLING_CUTOFF_HZ, 0.01f); // 5Hz, assuming 100Hz task rate
pt3FilterInit(&posHold.upsample[AI_ROLL], upsampleCutoff);
pt3FilterInit(&posHold.upsample[AI_PITCH], upsampleCutoff);
// Initialise PT1 filters for earth frame axes NS and EW
posHold.lpfCutoff = config->position_cutoff * 0.01f;
posHold.pt1Gain = pt1FilterGain(posHold.lpfCutoff, 0.1f); // assume 10Hz GPS connection at start
initializeEfAxisFilters(&posHold.efAxis[EW], posHold.pt1Gain);
initializeEfAxisFilters(&posHold.efAxis[NS], posHold.pt1Gain);
}
void resetAltitudeControl (void) {
altitudeI = 0.0f;
}
void altitudeControl(float targetAltitudeCm, float taskIntervalS, float verticalVelocity, float targetAltitudeStep)
{
const float altitudeErrorCm = targetAltitudeCm - getAltitudeCm();
const float altitudeP = altitudeErrorCm * altitudePidCoeffs.Kp;
// reduce the iTerm gain for errors greater than 200cm (2m), otherwise it winds up too much
const float itermRelax = (fabsf(altitudeErrorCm) < 200.0f) ? 1.0f : 0.1f;
altitudeI += altitudeErrorCm * altitudePidCoeffs.Ki * itermRelax * taskIntervalS;
// limit iTerm to not more than 200 throttle units
altitudeI = constrainf(altitudeI, -200.0f, 200.0f);
const float altitudeD = verticalVelocity * altitudePidCoeffs.Kd;
const float altitudeF = targetAltitudeStep * altitudePidCoeffs.Kf;
const float hoverOffset = autopilotConfig()->hover_throttle - PWM_RANGE_MIN;
float throttleOffset = altitudeP + altitudeI - altitudeD + altitudeF + hoverOffset;
const float tiltMultiplier = 1.0f / fmaxf(getCosTiltAngle(), 0.5f);
// 1 = flat, 1.3 at 40 degrees, 1.56 at 50 deg, max 2.0 at 60 degrees or higher
// note: the default limit of Angle Mode is 60 degrees
throttleOffset *= tiltMultiplier;
float newThrottle = PWM_RANGE_MIN + throttleOffset;
newThrottle = constrainf(newThrottle, autopilotConfig()->throttle_min, autopilotConfig()->throttle_max);
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 0, lrintf(newThrottle)); // normal range 1000-2000 but is before constraint
newThrottle = scaleRangef(newThrottle, MAX(rxConfig()->mincheck, PWM_RANGE_MIN), PWM_RANGE_MAX, 0.0f, 1.0f);
throttleOut = constrainf(newThrottle, 0.0f, 1.0f);
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 1, lrintf(tiltMultiplier * 100));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 3, lrintf(targetAltitudeCm));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 4, lrintf(altitudeP));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 5, lrintf(altitudeI));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 6, lrintf(-altitudeD));
DEBUG_SET(DEBUG_AUTOPILOT_ALTITUDE, 7, lrintf(altitudeF));
}
void setSticksActiveStatus(bool areSticksActive)
{
posHold.sticksActive = areSticksActive;
}
void setTargetLocation(gpsLocation_t newTargetLocation)
{
currentTargetLocation = newTargetLocation;
posHold.efAxis[EW].previousDistance = 0.0f; // reset to avoid D and A spikess
posHold.efAxis[NS].previousDistance = 0.0f;
// function is intended for only small changes in position
// for example, where the step distance change reflects an intended velocity, determined by a client function
// if we had a 'target_ground_speed' value, like in gps_rescue, we can make a function that starts and stops smoothly and targets that velocity
}
void resetLocation(earthFrame_t *efAxis, axisEF_t loopAxis)
{
if (loopAxis == EW) {
currentTargetLocation.lon = gpsSol.llh.lon; // update East-West / / longitude position
} else {
currentTargetLocation.lat = gpsSol.llh.lat; // update North-South / latitude position
}
efAxis->previousDistance = 0.0f; // and reset the previous distance
}
bool positionControl(void)
{
static uint16_t previousGpsStamp = ~0;
if (getGpsStamp() != previousGpsStamp) {
previousGpsStamp = getGpsStamp();
posHold.gpsDataIntervalS = getGpsDataIntervalSeconds(); // interval for current GPS data value 0.01s to 1.0s
posHold.gpsDataFreqHz = 1.0f / posHold.gpsDataIntervalS;
// first get NS and EW distances from current location (gpsSol.llh) to target location
vector2_t gpsDistance;
GPS_distances(&gpsSol.llh, &currentTargetLocation, &gpsDistance.x, &gpsDistance.y); // X is EW, Y is NS
posHold.efAxis[EW].distance = gpsDistance.x;
posHold.efAxis[NS].distance = gpsDistance.y;
const float distanceCm = vector2Norm(&gpsDistance);
const float leak = 1.0f - 0.4f * posHold.gpsDataIntervalS;
// leak iTerm while sticks are centered, 2s time constant approximately
const float lpfGain = pt1FilterGain(posHold.lpfCutoff, posHold.gpsDataIntervalS);
// ** Sanity check **
// primarily to detect flyaway from no Mag or badly oriented Mag
// must accept some overshoot at the start, especially if entering at high speed
if (distanceCm > posHold.sanityCheckDistance) {
return false;
}
static float prevPidDASquared = 0.0f; // if we limit DA on true vector length
const float maxDAAngle = 35.0f; // limit in degrees; arbitrary angle
for (axisEF_t loopAxis = EW; loopAxis <= NS; loopAxis++) {
earthFrame_t *efAxis = &posHold.efAxis[loopAxis];
// separate PID controllers for latitude (NorthSouth or NS) and longitude (EastWest or EW)
// ** P **
const float pidP = efAxis->distance * positionPidCoeffs.Kp;
// ** I **
efAxis->integral += efAxis->isStarting ? 0.0f : efAxis->distance * posHold.gpsDataIntervalS;
// only add to iTerm while in hold phase
const float pidI = efAxis->integral * positionPidCoeffs.Ki;
// ** D ** //
// Velocity derived from GPS position works better than module supplied GPS Speed and Heading information
float velocity = (efAxis->distance - efAxis->previousDistance) * posHold.gpsDataFreqHz; // cm/s, minimum step 11.1 cm/s
efAxis->previousDistance = efAxis->distance;
pt1FilterUpdateCutoff(&efAxis->velocityLpf, lpfGain);
const float velocityFiltered = pt1FilterApply(&efAxis->velocityLpf, velocity);
float pidD = velocityFiltered * positionPidCoeffs.Kd;
float acceleration = (velocity - efAxis->previousVelocity) * posHold.gpsDataFreqHz;
efAxis->previousVelocity = velocity;
pt1FilterUpdateCutoff(&efAxis->accelerationLpf, lpfGain);
const float accelerationFiltered = pt1FilterApply(&efAxis->accelerationLpf, acceleration);
const float pidA = accelerationFiltered * positionPidCoeffs.Kf;
if (posHold.sticksActive) {
// sticks active 'phase'
efAxis->isStarting = true;
resetLocation(efAxis, loopAxis);
// while sticks are moving, reset the location on each axis, to maintain a usable D value
// slowly leak iTerm away, approx 2s time constant
efAxis->integral *= leak;
// increase sanity check distance depending on speed, typically maximal when sticks stop
} else if (efAxis->isStarting) {
// 'phase' after sticks stop, but before craft has stopped
pidD *= 1.6f; // aribitrary D boost to stop more quickly when sticks are centered
if (velocity * velocityFiltered < 0.0f) {
// when an axis has nearly stopped moving, reset it and end it's start phase
resetLocation(efAxis, loopAxis);
efAxis->isStarting = false;
}
}
// limit sum of D and A per axis based on total DA vector length, otherwise can be too aggressive when starting at speed
// limit is 35 degrees from D and A alone, arbitrary value. 20 is a bit too low, allows a lot of overshoot
// note: an angle of more than 35 degrees can still be achieved as P and I grow
float pidDA = pidD + pidA;
const float pidDASquared = pidDA * pidDA;
float mag = sqrtf(pidDASquared + prevPidDASquared);
if (mag > maxDAAngle) {
pidDA *= (maxDAAngle / mag);
}
prevPidDASquared = pidDASquared;
// ** PID Sum **
efAxis->pidSum = pidP + pidI + pidDA;
if (gyroConfig()->gyro_filter_debug_axis == loopAxis) {
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 0, lrintf(distanceCm));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 4, lrintf(pidP * 10));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 5, lrintf(pidI * 10));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 6, lrintf(pidD * 10));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 7, lrintf(pidA * 10));
}
} // end for loop
if (posHold.sticksActive) {
// keep update sanity check distance while sticks are out
posHold.sanityCheckDistance = gpsSol.groundSpeed > 500 ? gpsSol.groundSpeed * 2.0f : 1000.0f;
// if a Position Hold deadband is set, and sticks are outside deadband, allow pilot control in angle mode
posHold.pidSumCraft[AI_ROLL] = 0.0f;
posHold.pidSumCraft[AI_PITCH] = 0.0f;
} else {
// ** Rotate pid Sum to quad frame of reference, into pitch and roll **
const float headingRads = DECIDEGREES_TO_RADIANS(attitude.values.yaw);
const float sinHeading = sin_approx(headingRads);
const float cosHeading = cos_approx(headingRads);
posHold.pidSumCraft[AI_ROLL] = -sinHeading * posHold.efAxis[NS].pidSum + cosHeading * posHold.efAxis[EW].pidSum;
posHold.pidSumCraft[AI_PITCH] = cosHeading * posHold.efAxis[NS].pidSum + sinHeading * posHold.efAxis[EW].pidSum;
// limit angle vector to maxAngle
const float angleMagnitude = sqrtf(posHold.pidSumCraft[AI_ROLL] * posHold.pidSumCraft[AI_ROLL] + posHold.pidSumCraft[AI_PITCH] * posHold.pidSumCraft[AI_PITCH]);
if (angleMagnitude > posHold.maxAngle && angleMagnitude > 0.0f) {
const float limiter = posHold.maxAngle / angleMagnitude;
posHold.pidSumCraft[AI_ROLL] *= limiter; // Scale the roll value
posHold.pidSumCraft[AI_PITCH] *= limiter; // Scale the pitch value
}
}
}
// ** Final output to pid.c Angle Mode at 100Hz with primitive upsampling**
autopilotAngle[AI_ROLL] = pt3FilterApply(&posHold.upsample[AI_ROLL], posHold.pidSumCraft[AI_ROLL]);
autopilotAngle[AI_PITCH] = pt3FilterApply(&posHold.upsample[AI_PITCH], posHold.pidSumCraft[AI_PITCH]);
// note: upsampling should really be done in earth frame, to avoid 10Hz wobbles if pilot yaws and the controller is applying significant pitch or roll
if (gyroConfig()->gyro_filter_debug_axis == FD_ROLL) {
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 1, lrintf(posHold.efAxis[EW].distance)); // cm
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 2, lrintf(posHold.efAxis[EW].pidSum * 10)); // deg * 10
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 3, lrintf(autopilotAngle[AI_ROLL] * 10)); // deg * 10
} else {
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 1, lrintf(posHold.efAxis[NS].distance));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 2, lrintf(posHold.efAxis[NS].pidSum * 10));
DEBUG_SET(DEBUG_AUTOPILOT_POSITION, 3, lrintf(autopilotAngle[AI_PITCH] * 10));
}
return true;
}
bool isBelowLandingAltitude(void)
{
return getAltitudeCm() < 100.0f * autopilotConfig()->landing_altitude_m;
}
float getAutopilotThrottle(void)
{
return throttleOut;
}
bool isAutopilotActive(void)
{
return !posHold.sticksActive;
}