1
0
Fork 0
mirror of https://github.com/EdgeTX/edgetx.git synced 2025-07-23 16:25:12 +03:00
edgetx/radio/src/bootloader/boot.cpp

1118 lines
24 KiB
C++

/****************************************************************************
* Copyright (c) 2014 by Michael Blandford. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
****************************************************************************
* Other Authors:
* - Andre Bernet
* - Bertrand Songis
* - Bryan J. Rentoul (Gruvin)
* - Cameron Weeks
* - Erez Raviv
* - Jean-Pierre Parisy
* - Karl Szmutny
* - Michal Hlavinka
* - Pat Mackenzie
* - Philip Moss
* - Rob Thomson
* - Romolo Manfredini
* - Thomas Husterer
*
****************************************************************************/
/*----------------------------------------------------------------------------
* Headers
*----------------------------------------------------------------------------*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifdef PCBTARANIS
#include "stm32f2xx.h"
#include "stm32f2xx_flash.h"
#include "../targets/taranis/i2c.h"
#include "hal.h"
extern "C" {
#include "usb_dcd_int.h"
#include "usb_bsp.h"
#include "../targets/taranis/usbd_desc.h"
#include "usbd_msc_core.h"
#include "usbd_usr.h"
}
#endif
#include "board_taranis.h"
#include "../pwr.h"
#include "../lcd.h"
#include "../keys.h"
#include "../FatFs/ff.h"
#include "../FatFs/diskio.h"
#ifdef PCBTARANIS
#define BOOT_KEY_UP KEY_PLUS
#define BOOT_KEY_DOWN KEY_MINUS
#define BOOT_KEY_LEFT KEY_MENU
#define BOOT_KEY_RIGHT KEY_PAGE
#define BOOT_KEY_MENU KEY_ENTER
#define BOOT_KEY_EXIT KEY_EXIT
#define DISPLAY_CHAR_WIDTH 35
#endif
// states
#define ST_START 0
#define ST_DIR_CHECK 1
#define ST_OPEN_DIR 2
#define ST_FILE_LIST 3
#define ST_FLASH_CHECK 4
#define ST_FLASHING 5
#define ST_FLASH_DONE 6
#define ST_USB 10
#define ST_REBOOT 11
/*----------------------------------------------------------------------------
* Local variables
*----------------------------------------------------------------------------*/
uint32_t FirmwareSize ;
uint32_t Master_frequency ;
volatile uint8_t Tenms ;
uint8_t EE_timer ;
TCHAR FlashFilename[60] ;
FATFS g_FATFS ;
FIL FlashFile ;
DIR Dj ;
FILINFO Finfo ;
TCHAR Filenames[20][50] ;
uint32_t FileSize[20] ;
uint32_t FnStartIndex ;
uint32_t Valid ;
uint32_t FlashSize ;
uint32_t FlashBlocked = 1 ;
uint32_t LockBits ;
uint32_t Block_buffer[1024] ;
UINT BlockCount ;
#ifdef PCBSKY
extern int32_t EblockAddress ;
#endif
extern uint32_t EepromBlocked ;
extern void init_spi( void ) ;
extern void writeBlock( void ) ;
/*----------------------------------------------------------------------------
* Global functions
*----------------------------------------------------------------------------*/
#ifdef PCBSKY
// Starts TIMER0 at full speed (MCK/2) for delay timing
// @ 36MHz this is 18MHz
// This was 6 MHz, we may need to slow it to TIMER_CLOCK2 (MCK/8=4.5 MHz)
void start_timer0()
{
register Tc *ptc ;
PMC->PMC_PCER0 |= 0x00800000L ; // Enable peripheral clock to TC0
ptc = TC0 ; // Tc block 0 (TC0-2)
ptc->TC_BCR = 0 ; // No sync
ptc->TC_BMR = 2 ;
ptc->TC_CHANNEL[0].TC_CMR = 0x00008001 ; // Waveform mode MCK/8 for 36MHz osc.(Upset be write below)
ptc->TC_CHANNEL[0].TC_RC = 0xFFF0 ;
ptc->TC_CHANNEL[0].TC_RA = 0 ;
ptc->TC_CHANNEL[0].TC_CMR = 0x00008040 ; // 0000 0000 0000 0000 1000 0000 0100 0000, stop at regC, 18MHz
ptc->TC_CHANNEL[0].TC_CCR = 5 ; // Enable clock and trigger it (may only need trigger)
}
void stop_timer0( void )
{
TC0->TC_CHANNEL[0].TC_CCR = TC_CCR0_CLKDIS ; // Disable clock
}
void delay2ms()
{
TC0->TC_CHANNEL[0].TC_CCR = 5 ; // Enable clock and trigger it (may only need trigger)
while ( TC0->TC_CHANNEL[0].TC_CV < 36000 ) // 2mS, Value depends on MCK/2 (used 18MHz)
{
// Wait
}
}
#endif
#ifdef PCBTARANIS
uint32_t isFirmwareStart( uint32_t *block )
{
if ( ( block[0] & 0xFFFC0000 ) != 0x20000000 )
{
return 0 ;
}
if ( ( block[1] & 0xFFF00000 ) != 0x08000000 )
{
return 0 ;
}
if ( ( block[2] & 0xFFF00000 ) != 0x08000000 )
{
return 0 ;
}
return 1 ;
}
#endif
#ifdef PCBSKY
uint32_t isFirmwareStart( uint32_t *block )
{
if ( ( block[0] & 0xFFFE3000 ) != 0x20000000 )
{
return 0 ;
}
if ( ( block[1] & 0xFFF80000 ) != 0x00400000 )
{
return 0 ;
}
if ( ( block[2] & 0xFFF80000 ) != 0x00400000 )
{
return 0 ;
}
return 1 ;
}
#endif
#ifdef PCBSKY
uint32_t (*IAP_Function)(uint32_t, uint32_t) ;
uint32_t program( uint32_t *address, uint32_t *buffer ) // size is 256 bytes
{
uint32_t FlashSectorNum ;
uint32_t flash_cmd = 0 ;
uint32_t i ;
// uint32_t flash_status = 0;
// uint32_t EFCIndex = 0; // 0:EEFC0, 1: EEFC1
/* Initialize the function pointer (retrieve function address from NMI vector) */
if ( (uint32_t) address == 0x00408000 )
{
if ( isFirmwareStart( buffer) )
{
FlashBlocked = 0 ;
}
else
{
FlashBlocked = 1 ;
}
}
if ( FlashBlocked )
{
return 1 ;
}
// Always initialise this here, setting a default doesn't seem to work
IAP_Function = (uint32_t (*)(uint32_t, uint32_t)) *(( uint32_t *)0x00800008) ;
FlashSectorNum = (uint32_t) address ;
FlashSectorNum >>= 8 ; // page size is 256 bytes
FlashSectorNum &= 2047 ; // max page number
/* Send data to the sector here */
for ( i = 0 ; i < 64 ; i += 1 )
{
*address++ = *buffer++ ;
}
/* build the command to send to EEFC */
flash_cmd = (0x5A << 24) | (FlashSectorNum << 8) | 0x03 ; //AT91C_MC_FCMD_EWP ;
__disable_irq() ;
/* Call the IAP function with appropriate command */
i = IAP_Function( 0, flash_cmd ) ;
__enable_irq() ;
return i ;
}
uint32_t readLockBits()
{
// Always initialise this here, setting a default doesn't seem to work
IAP_Function = (uint32_t (*)(uint32_t, uint32_t)) *(( uint32_t *)0x00800008) ;
uint32_t flash_cmd = (0x5A << 24) | 0x0A ; //AT91C_MC_FCMD_GLB ;
__disable_irq() ;
(void) IAP_Function( 0, flash_cmd ) ;
__enable_irq() ;
return EFC->EEFC_FRR ;
}
void clearLockBits()
{
uint32_t i ;
uint32_t flash_cmd = 0 ;
// Always initialise this here, setting a default doesn't seem to work
IAP_Function = (uint32_t (*)(uint32_t, uint32_t)) *(( uint32_t *)0x00800008) ;
for ( i = 0 ; i < 16 ; i += 1 )
{
flash_cmd = (0x5A << 24) | ((128*i) << 8) | 0x09 ; //AT91C_MC_FCMD_CLB ;
__disable_irq() ;
/* Call the IAP function with appropriate command */
(void) IAP_Function( 0, flash_cmd ) ;
__enable_irq() ;
}
}
#endif
void interrupt10ms(void)
{
Tenms |= 1 ; // 10 mS has passed
uint8_t enuk = KEY_MENU;
uint8_t in = ~readKeys();
for (int i=1; i<7; i++) {
uint8_t value = in & (1<<i) ;
keys[enuk].input(value, (EnumKeys)enuk);
++enuk;
}
}
#ifdef PCBSKY
void init10msTimer()
{
register Tc *ptc ;
register uint32_t timer ;
PMC->PMC_PCER0 |= 0x02000000L ; // Enable peripheral clock to TC2
timer = Master_frequency / 12800 ; // MCK/128 and 100 Hz
ptc = TC0 ; // Tc block 0 (TC0-2)
ptc->TC_BCR = 0 ; // No sync
ptc->TC_BMR = 0 ;
ptc->TC_CHANNEL[2].TC_CMR = 0x00008000 ; // Waveform mode
ptc->TC_CHANNEL[2].TC_RC = timer ; // 10 Hz
ptc->TC_CHANNEL[2].TC_RA = timer >> 1 ;
ptc->TC_CHANNEL[2].TC_CMR = 0x0009C003 ; // 0000 0000 0000 1001 1100 0000 0000 0011
// MCK/128, set @ RA, Clear @ RC waveform
ptc->TC_CHANNEL[2].TC_CCR = 5 ; // Enable clock and trigger it (may only need trigger)
NVIC_EnableIRQ(TC2_IRQn) ;
TC0->TC_CHANNEL[2].TC_IER = TC_IER0_CPCS ;
}
extern "C" void TC2_IRQHandler()
{
register uint32_t dummy;
/* Clear status bit to acknowledge interrupt */
dummy = TC0->TC_CHANNEL[2].TC_SR;
(void) dummy ; // Discard value - prevents compiler warning
interrupt10ms() ;
}
#endif
#ifdef PCBTARANIS
void init10msTimer()
{
// Timer14
RCC->APB1ENR |= RCC_APB1ENR_TIM14EN ; // Enable clock
TIM14->ARR = 9999 ; // 10mS
TIM14->PSC = (PERI1_FREQUENCY * TIMER_MULT_APB1) / 1000000 - 1 ; // 1uS from 12MHz
TIM14->CCER = 0 ;
TIM14->CCMR1 = 0 ;
TIM14->EGR = 0 ;
TIM14->CR1 = 5 ;
TIM14->DIER |= 1 ;
NVIC_EnableIRQ(TIM8_TRG_COM_TIM14_IRQn) ;
}
extern "C" void TIM8_TRG_COM_TIM14_IRQHandler()
{
TIM14->SR &= ~TIM_SR_UIF ;
interrupt10ms() ;
}
void init_hw_timer()
{
// Timer13
RCC->APB1ENR |= RCC_APB1ENR_TIM13EN ; // Enable clock
TIM13->ARR = 65535 ;
TIM13->PSC = (PERI1_FREQUENCY * TIMER_MULT_APB1) / 10000000 - 1 ; // 0.1uS from 12MHz
TIM13->CCER = 0 ;
TIM13->CCMR1 = 0 ;
TIM13->EGR = 0 ;
TIM13->CR1 = 1 ;
}
// delay in units of 0.1 uS up to 6.5535 mS
void hw_delay( uint16_t time )
{
TIM13->CNT = 0 ;
TIM13->EGR = 1 ; // Re-start counter
while ( TIM13->CNT < time )
{
// wait
}
}
//After reset, write is not allowed in the Flash control register (FLASH_CR) to protect the
//Flash memory against possible unwanted operations due, for example, to electric
//disturbances. The following sequence is used to unlock this register:
//1. Write KEY1 = 0x45670123 in the Flash key register (FLASH_KEYR)
//2. Write KEY2 = 0xCDEF89AB in the Flash key register (FLASH_KEYR)
//Any wrong sequence will return a bus error and lock up the FLASH_CR register until the
//next reset.
//The FLASH_CR register can be locked again by software by setting the LOCK bit in the
//FLASH_CR register.
void unlockFlash()
{
FLASH->KEYR = 0x45670123 ;
FLASH->KEYR = 0xCDEF89AB ;
}
void waitFlashIdle()
{
while (FLASH->SR & FLASH_FLAG_BSY)
{
wdt_reset() ;
}
}
#define SECTOR_MASK ((uint32_t)0xFFFFFF07)
void eraseSector( uint32_t sector )
{
waitFlashIdle() ;
FLASH->CR &= CR_PSIZE_MASK;
FLASH->CR |= FLASH_PSIZE_WORD ;
FLASH->CR &= SECTOR_MASK;
FLASH->CR |= FLASH_CR_SER | (sector<<3) ;
FLASH->CR |= FLASH_CR_STRT;
/* Wait for operation to be completed */
waitFlashIdle() ;
/* if the erase operation is completed, disable the SER Bit */
FLASH->CR &= (~FLASH_CR_SER);
FLASH->CR &= SECTOR_MASK;
}
uint32_t program( uint32_t *address, uint32_t *buffer ) // size is 256 bytes
{
uint32_t i ;
if ( (uint32_t) address == 0x08008000 )
{
if ( isFirmwareStart( buffer) )
{
FlashBlocked = 0 ;
}
else
{
FlashBlocked = 1 ;
}
}
if ( FlashBlocked )
{
return 1 ;
}
if ( (uint32_t) address == 0x08008000 )
{
eraseSector( 2 ) ;
}
if ( (uint32_t) address == 0x0800C000 )
{
eraseSector( 3 ) ;
}
if ( (uint32_t) address == 0x08010000 )
{
eraseSector( 4 ) ;
}
if ( (uint32_t) address == 0x08020000 )
{
eraseSector( 5 ) ;
}
if ( (uint32_t) address == 0x08040000 )
{
eraseSector( 6 ) ;
}
if ( (uint32_t) address == 0x08060000 )
{
eraseSector( 7 ) ;
}
// Now program the 256 bytes
for (i = 0 ; i < 64 ; i += 1 )
{
/* Device voltage range supposed to be [2.7V to 3.6V], the operation will
be done by word */
// Wait for last operation to be completed
waitFlashIdle() ;
FLASH->CR &= CR_PSIZE_MASK;
FLASH->CR |= FLASH_PSIZE_WORD;
FLASH->CR |= FLASH_CR_PG;
*address = *buffer ;
/* Wait for operation to be completed */
waitFlashIdle() ;
FLASH->CR &= (~FLASH_CR_PG);
/* Check the written value */
if ( *address != *buffer )
{
/* Flash content doesn't match SRAM content */
return 2 ;
}
/* Increment FLASH destination address */
address += 1 ;
buffer += 1 ;
}
return 0 ;
}
#endif
uint8_t *cpystr( uint8_t *dest, uint8_t *source )
{
while ( (*dest++ = *source++) )
;
return dest - 1 ;
}
FRESULT readBinDir( DIR *dj, FILINFO *fno )
{
FRESULT fr ;
uint32_t loop ;
do
{
loop = 0 ;
fr = f_readdir ( dj, fno ) ; // First entry
if ( fr != FR_OK || fno->fname[0] == 0 )
{
break ;
}
if ( *fno->lfname == 0 )
{
cpystr( (uint8_t *)fno->lfname, (uint8_t *)fno->fname ) ; // Copy 8.3 name
}
int32_t len = strlen(fno->lfname) - 4 ;
if ( len < 0 )
{
loop = 1 ;
}
if ( fno->lfname[len] != '.' )
{
loop = 1 ;
}
if ( ( fno->lfname[len+1] != 'b' ) && ( fno->lfname[len+1] != 'B' ) )
{
loop = 1 ;
}
if ( ( fno->lfname[len+2] != 'i' ) && ( fno->lfname[len+2] != 'I' ) )
{
loop = 1 ;
}
if ( ( fno->lfname[len+3] != 'n' ) && ( fno->lfname[len+3] != 'N' ) )
{
loop = 1 ;
}
} while ( loop ) ;
return fr ;
}
uint32_t fillNames( uint32_t index )
{
uint32_t i ;
FRESULT fr ;
Finfo.lfname = Filenames[0] ;
Finfo.lfsize = 48 ;
fr = f_readdir ( &Dj, 0 ) ; // rewind
fr = f_readdir ( &Dj, &Finfo ) ; // Skip .
fr = f_readdir ( &Dj, &Finfo ) ; // Skip ..
i = 0 ;
while ( i <= index )
{
fr = readBinDir( &Dj, &Finfo ) ; // First entry
FileSize[0] = Finfo.fsize ;
i += 1 ;
if ( fr == FR_NO_FILE)
{
return 0 ;
}
}
for ( i = 1 ; i < 7 ; i += 1 )
{
Finfo.lfname = Filenames[i] ;
fr = readBinDir( &Dj, &Finfo ) ; // First entry
FileSize[i] = Finfo.fsize ;
if ( fr != FR_OK || Finfo.fname[0] == 0 )
{
break ;
}
}
return i ;
}
FRESULT openFirmwareFile( uint32_t index )
{
cpystr( cpystr( (uint8_t *)FlashFilename, (uint8_t *)"\\firmware\\" ), (uint8_t *)Filenames[index] ) ;
f_open( &FlashFile, FlashFilename, FA_READ ) ;
f_lseek ( &FlashFile, 32768 ) ;
return f_read( &FlashFile, (BYTE *)Block_buffer, 4096, &BlockCount ) ;
}
uint8_t flashFile( uint32_t index )
{
FRESULT fr ;
lcd_clear() ;
lcd_putsLeft( 0, "\005Flash File" ) ;
if ( Valid == 0 )
{
// Validate file here
// return 3 if invalid
fr = openFirmwareFile( index ) ;
fr = f_close( &FlashFile ) ;
Valid = 1 ;
if ( isFirmwareStart( Block_buffer ) == 0 )
{
Valid = 2 ;
}
}
if ( Valid == 2 )
{
lcd_putsLeft( 3*FH,"NOT A VALID FIRMWARE") ;
#ifdef PCBTARANIS
lcd_putsLeft( 6*FH,"\015[EXIT]") ;
#else
lcd_putsLeft( 6*FH,"\007[EXIT]") ;
#endif
uint8_t event = getEvent() ;
if ( event == EVT_KEY_FIRST(BOOT_KEY_EXIT) )
{
return 3 ;
}
return 4 ; //
}
lcd_putsnAtt( 0, 2*FH, Filenames[index], DISPLAY_CHAR_WIDTH, 0 ) ;
#ifdef PCBTARANIS
lcd_putsLeft( 6*FH,"\010[ENTER]\021[EXIT]") ;
lcd_putsLeft( 5*FH,"\010YES\021NO") ;
#else
lcd_putsLeft( 6*FH,"\003[MENU]\013[EXIT]") ;
lcd_putsLeft( 5*FH,"\003YES\013NO") ;
#endif
uint8_t event = getEvent() ;
if ( event == EVT_KEY_FIRST(BOOT_KEY_MENU) )
{
fr = openFirmwareFile( index ) ;
FirmwareSize = FileSize[index] ;
if ( fr != FR_OK )
{
return 4 ; // File open error
}
return 2 ;
}
if ( event == EVT_KEY_FIRST(BOOT_KEY_EXIT) )
{
return 1 ;
}
return 0 ;
}
extern Key keys[] ;
static uint32_t PowerUpDelay ;
int main()
{
uint32_t i ;
uint8_t index = 0 ;
#ifdef PCBTARANIS
uint8_t TenCount = 2 ;
#endif
uint8_t maxhsize = DISPLAY_CHAR_WIDTH ;
FRESULT fr ;
uint32_t state = ST_START ;
uint32_t nameCount = 0 ;
uint32_t vpos = 0 ;
uint32_t hpos = 0 ;
#ifdef PCBTARANIS
uint32_t firmwareAddress = 0x08000000 ;
#endif
#ifdef PCBSKY
uint32_t firmwareAddress = 0x00400000 ;
#endif
uint32_t firmwareWritten = 0 ;
#ifdef PCBTARANIS
wdt_reset() ;
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN ; // Enable portA clock
#endif
pwrInit() ;
#ifdef PCBSKY
MATRIX->CCFG_SYSIO |= 0x000000F0L ; // Disable syspins, enable B4,5,6,7
#endif
#ifdef PCBSKY
init_SDcard() ;
PIOC->PIO_PER = PIO_PC25 ; // Enable bit C25 (USB-detect)
start_timer0() ;
#endif
lcdInit() ;
#ifdef PCBSKY
extern uint8_t OptrexDisplay ;
OptrexDisplay = 1 ;
#endif
lcd_clear() ;
#ifdef PCBTARANIS
lcd_putsLeft( 0, "\006Boot Loader" ) ;
#endif
lcdRefresh() ;
#ifdef PCBSKY
OptrexDisplay = 0 ;
lcdRefresh() ;
#endif
#ifdef PCBTARANIS
keysInit() ;
I2C_EE_Init() ;
init_hw_timer() ;
#endif
__enable_irq() ;
init10msTimer() ;
#ifdef PCBSKY
EblockAddress = -1 ;
init_spi() ;
#endif
#ifdef PCBSKY
uint32_t chip_id = CHIPID->CHIPID_CIDR ;
FlashSize = ( (chip_id >> 8 ) & 0x000F ) == 9 ? 256 : 512 ;
#endif
#ifdef PCBTARANIS
FlashSize = 512 ;
#endif
#ifdef PCBSKY
LockBits = readLockBits() ;
if ( LockBits )
{
clearLockBits() ;
}
#endif
#ifdef PCBTARANIS
// SD card detect pin
// configure_pins( SD_PRESENT_GPIO_Pin, PIN_PORTD | PIN_INPUT | PIN_PULLUP ) ;
disk_initialize( 0 ) ;
sdInit() ;
unlockFlash() ;
usbInit() ;
usbStart() ;
#endif
for(;;)
{
#ifdef PCBSKY
usbMassStorage() ;
#endif
wdt_reset() ;
if ( Tenms )
{
wdt_reset() ; // Retrigger hardware watchdog
if ( EE_timer )
{
if ( --EE_timer == 0)
{
#ifdef PCBSKY
writeBlock() ;
#endif
}
}
Tenms = 0 ;
lcd_clear() ;
#ifdef PCBSKY
lcd_putsLeft( 0, "Boot Loader" ) ;
#endif
#ifdef PCBTARANIS
lcd_putsLeft( 0, "\006Boot Loader" ) ;
#endif
if ( sdMounted() )
{
#ifdef PCBSKY
lcd_putsLeft( 0, "\014Ready" ) ;
#endif
#ifdef PCBTARANIS
lcd_putsLeft( 0, "\022Ready" ) ;
#endif
if ( usbPlugged() )
{
state = ST_USB ;
}
if ( state == ST_USB )
{
#ifdef PCBSKY
lcd_putsLeft( 3*FH, "\010BUSY" ) ;
#endif
#ifdef PCBTARANIS
lcd_putsLeft( 3*FH, "\016BUSY" ) ;
#endif
if ( usbPlugged() == 0 )
{
state = ST_START ;
}
#ifdef PCBSKY
lcd_putc( 0, 6*FH, 'F' ) ;
lcd_putc( 6, 6*FH, '0' + FlashBlocked ) ;
lcd_putc( 0, 7*FH, 'E' ) ;
lcd_putc( 6, 7*FH, '0' + EepromBlocked ) ;
#endif
}
if ( state == ST_START )
{
fr = f_mount(0, &g_FATFS) ;
}
else
{
fr = FR_OK ;
}
if ( fr == FR_OK)
{
if ( state == ST_START )
{
state = ST_DIR_CHECK ;
}
}
if ( state == ST_DIR_CHECK )
{
fr = f_chdir( (TCHAR *)"\\firmware" ) ;
if ( fr == FR_OK )
{
state = ST_OPEN_DIR ;
index = 0 ;
}
}
if ( state == ST_DIR_CHECK )
{
#ifdef PCBSKY
lcd_putsLeft( 16, "\005No Firmware" ) ;
#endif
#ifdef PCBTARANIS
lcd_putsLeft( 16, "\013No Firmware" ) ;
#endif
}
if ( state == ST_OPEN_DIR )
{
fr = f_opendir( &Dj, (TCHAR *) "." ) ;
if ( fr == FR_OK )
{
state = ST_FILE_LIST ;
index = 0 ;
nameCount = fillNames( 0 ) ;
hpos = 0 ;
vpos = 0 ;
}
}
if ( state == ST_FILE_LIST )
{
uint32_t limit = 6 ;
if ( nameCount < limit )
{
limit = nameCount ;
}
maxhsize = 0 ;
for ( i = 0 ; i < limit ; i += 1 )
{
uint32_t x ;
x = strlen( Filenames[i] ) ;
if ( x > maxhsize )
{
maxhsize = x ;
}
if ( x > DISPLAY_CHAR_WIDTH )
{
if ( ( hpos + DISPLAY_CHAR_WIDTH ) > x )
{
x = x - DISPLAY_CHAR_WIDTH ;
}
else
{
x = hpos ;
}
}
else
{
x = 0 ;
}
lcd_putsnAtt( 0, 16+FH*i, &Filenames[i][x], DISPLAY_CHAR_WIDTH, 0 ) ;
}
{
uint8_t event = getEvent() ;
if ( ( event == EVT_KEY_REPT(BOOT_KEY_DOWN) ) || event == EVT_KEY_FIRST(BOOT_KEY_DOWN) )
{
if ( vpos < limit-1 )
{
vpos += 1 ;
}
else
{
if ( nameCount > limit )
{
index += 1 ;
nameCount = fillNames( index ) ;
}
}
}
if ( ( event == EVT_KEY_REPT(BOOT_KEY_UP)) || ( event == EVT_KEY_FIRST(BOOT_KEY_UP) ) )
{
if ( vpos > 0 )
{
vpos -= 1 ;
}
else
{
if ( index )
{
index -= 1 ;
nameCount = fillNames( index ) ;
}
}
}
if ( ( event == EVT_KEY_REPT(BOOT_KEY_RIGHT)) || ( event == EVT_KEY_FIRST(BOOT_KEY_RIGHT) ) )
{
if ( hpos + DISPLAY_CHAR_WIDTH < maxhsize )
{
hpos += 1 ;
}
}
if ( ( event == EVT_KEY_REPT(BOOT_KEY_LEFT)) || ( event == EVT_KEY_FIRST(BOOT_KEY_LEFT) ) )
{
if ( hpos )
{
hpos -= 1 ;
}
}
if ( event == EVT_KEY_LONG(BOOT_KEY_MENU) )
{
// Select file to flash
state = ST_FLASH_CHECK ;
Valid = 0 ;
}
if ( event == EVT_KEY_LONG(BOOT_KEY_EXIT) )
{
state = ST_REBOOT ;
}
}
lcd_invert_line(2*FH+FH*vpos);
// lcd_char_inverse( 0, 2*FH+FH*vpos, DISPLAY_CHAR_WIDTH*FW, 0 ) ;
}
if ( state == ST_FLASH_CHECK )
{
i = flashFile( vpos ) ;
FirmwareSize = FileSize[vpos] - 32768 ;
if ( i == 1 )
{
state = ST_FILE_LIST ; // Canceled
}
if ( i == 2 )
{
#ifdef PCBSKY
firmwareAddress = 0x00408000 ;
#endif
#ifdef PCBTARANIS
firmwareAddress = 0x08008000 ;
#endif
firmwareWritten = 0 ;
state = ST_FLASHING ; // confirmed
}
if ( i == 3 )
{
// Invalid file
state = ST_FILE_LIST ; // Canceled
}
}
if ( state == ST_FLASHING )
{
// Commit to flashing
uint32_t blockOffset = 0 ;
lcd_putsLeft( 3*FH, "Flashing" ) ;
while ( BlockCount )
{
program( (uint32_t *)firmwareAddress, &Block_buffer[blockOffset] ) ; // size is 256 bytes
blockOffset += 64 ; // 32-bit words (256 bytes)
firmwareAddress += 256 ;
if ( BlockCount > 256 )
{
BlockCount -= 256 ;
}
else
{
BlockCount = 0 ;
}
}
firmwareWritten += 1 ;
uint32_t width = FirmwareSize / 4096 ;
lcd_hline( 0, 5*FH-1, width+1 ) ;
lcd_hline( 0, 6*FH, width+1 ) ;
lcd_vline( width, 5*FH, 8 ) ;
for ( i = 0 ; i < firmwareWritten ; i += 1 )
{
lcd_vline( i, 5*FH, 8 ) ;
}
fr = f_read( &FlashFile, (BYTE *)Block_buffer, 4096, &BlockCount ) ;
if ( BlockCount == 0 )
{
state = ST_FLASH_DONE ;
}
if ( firmwareWritten > FlashSize/4 - 9 ) // (127-8, or 63-8) 4K blocks
{
state = ST_FLASH_DONE ; // Backstop
}
}
if ( state == ST_FLASH_DONE )
{
uint8_t event = getEvent() ;
lcd_putsLeft( 3*FH, "Flashing Complete" ) ;
if ( event == EVT_KEY_FIRST(BOOT_KEY_EXIT) )
{
state = ST_FILE_LIST ;
}
}
}
#ifdef PCBTARANIS
if ( --TenCount == 0 )
{
TenCount = 2 ;
#endif
lcdRefresh() ;
#ifdef PCBTARANIS
}
#endif
if ( PowerUpDelay < 20 ) // 200 mS
{
PowerUpDelay += 1 ;
}
else
{
#ifdef PCBSKY
sd_poll_10mS() ;
#endif
#ifdef PCBTARANIS
sdPoll10ms() ;
#endif
}
}
if ((state < ST_FLASH_CHECK) || (state == ST_FLASH_DONE))
{
if (pwrCheck() == e_power_off ) {
pwrOff() ;
for(;;)
{
// Wait for power to go off
}
}
}
if ( state < ST_FILE_LIST )
{
if ( getEvent() == EVT_KEY_LONG(BOOT_KEY_EXIT) )
{
state = ST_REBOOT ;
}
}
if ( state == ST_REBOOT )
{
if ( (~readKeys() & 0x7E) == 0 )
{
NVIC_SystemReset() ;
}
}
}
// stop_timer0() ;
return 0;
}