1
0
Fork 0
mirror of https://github.com/EdgeTX/edgetx.git synced 2025-07-23 08:15:13 +03:00
edgetx/radio/src/switches.cpp
Bertrand Songis aff6c3fd1d
PXX synchro using Hearbeat (#6482)
* [PXX] Latency using heartbeat sync optimized for X7 (stable @ 12ms)
* [PXX] Latency using heartbeat sync optimized for XLite Pro (stable @ 9ms)
2019-06-08 10:44:31 +02:00

883 lines
24 KiB
C++

/*
* Copyright (C) OpenTX
*
* Based on code named
* th9x - http://code.google.com/p/th9x
* er9x - http://code.google.com/p/er9x
* gruvin9x - http://code.google.com/p/gruvin9x
*
* License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "opentx.h"
#define CS_LAST_VALUE_INIT -32768
#if defined(PCBHORUS)
#define SWITCH_WARNING_LIST_X WARNING_LINE_X
#define SWITCH_WARNING_LIST_Y WARNING_LINE_Y+3*FH
#define SWITCH_WARNING_LIST_INTERVAL 35
#elif LCD_W >= 212
#define SWITCH_WARNING_LIST_X 60
#define SWITCH_WARNING_LIST_Y 4*FH+3
#else
#define SWITCH_WARNING_LIST_X 4
#define SWITCH_WARNING_LIST_Y 4*FH+4
#endif
enum LogicalSwitchContextState {
SWITCH_START,
SWITCH_DELAY,
SWITCH_ENABLE
};
PACK(typedef struct {
uint8_t state:1;
uint8_t timerState:2;
uint8_t spare:5;
uint8_t timer;
int16_t lastValue;
}) LogicalSwitchContext;
PACK(typedef struct {
LogicalSwitchContext lsw[MAX_LOGICAL_SWITCHES];
}) LogicalSwitchesFlightModeContext;
LogicalSwitchesFlightModeContext lswFm[MAX_FLIGHT_MODES];
#define LS_LAST_VALUE(fm, idx) lswFm[fm].lsw[idx].lastValue
#if defined(PCBTARANIS) || defined(PCBHORUS)
#if defined(PCBX9E)
tmr10ms_t switchesMidposStart[16];
#else
tmr10ms_t switchesMidposStart[6]; // TODO constant
#endif
uint64_t switchesPos = 0;
tmr10ms_t potsLastposStart[NUM_XPOTS];
uint8_t potsPos[NUM_XPOTS];
#define SWITCH_POSITION(sw) (switchesPos & ((MASK_CFN_TYPE)1<<(sw)))
#define POT_POSITION(sw) ((potsPos[(sw)/XPOTS_MULTIPOS_COUNT] & 0x0f) == ((sw) % XPOTS_MULTIPOS_COUNT))
div_t switchInfo(int switchPosition)
{
return div(switchPosition-SWSRC_FIRST_SWITCH, 3);
}
uint64_t check2PosSwitchPosition(uint8_t sw)
{
uint32_t index = (switchState(sw) ? sw : sw + 2);
uint64_t result = ((uint64_t)1 << index);
if (!(switchesPos & result)) {
PLAY_SWITCH_MOVED(index);
}
return result;
}
uint64_t check3PosSwitchPosition(uint8_t idx, uint8_t sw, bool startup)
{
uint64_t result;
uint32_t index;
if (switchState(sw)) {
index = sw;
result = ((MASK_CFN_TYPE)1 << index);
switchesMidposStart[idx] = 0;
}
else if (switchState(sw+2)) {
index = sw + 2;
result = ((MASK_CFN_TYPE)1 << index);
switchesMidposStart[idx] = 0;
}
else {
index = sw + 1;
if (startup || SWITCH_POSITION(index) || g_eeGeneral.switchesDelay==SWITCHES_DELAY_NONE || (switchesMidposStart[idx] && (tmr10ms_t)(get_tmr10ms() - switchesMidposStart[idx]) > SWITCHES_DELAY())) {
result = ((MASK_CFN_TYPE)1 << index);
switchesMidposStart[idx] = 0;
}
else {
result = (switchesPos & ((MASK_CFN_TYPE)0x7 << sw));
if (!switchesMidposStart[idx]) {
switchesMidposStart[idx] = get_tmr10ms();
}
}
}
if (!(switchesPos & result)) {
PLAY_SWITCH_MOVED(index);
}
return result;
}
#define CHECK_2POS(sw) newPos |= check2PosSwitchPosition(sw ## 0)
#define CHECK_3POS(idx, sw) newPos |= check3PosSwitchPosition(idx, sw ## 0, startup)
void getSwitchesPosition(bool startup)
{
uint64_t newPos = 0;
CHECK_3POS(0, SW_SA);
CHECK_3POS(1, SW_SB);
CHECK_3POS(2, SW_SC);
#if !defined(PCBX9LITE)
CHECK_3POS(3, SW_SD);
#endif
#if defined(PCBXLITES) || defined(PCBX9LITE)
CHECK_2POS(SW_SE);
#elif defined(PCBX7) || defined(PCBXLITE) || defined(PCBX9LITE)
// No SE
#else
CHECK_3POS(4, SW_SE);
#endif
#if defined(PCBXLITE) && !defined(PCBXLITES)
// No SF
#else
CHECK_2POS(SW_SF);
#endif
#if defined(PCBX7) || defined(PCBXLITE) || defined(PCBX9LITE)
// No SG
#else
CHECK_3POS(5, SW_SG);
#endif
#if defined(PCBXLITE) || defined(PCBX9LITE)
// No SH
#else
CHECK_2POS(SW_SH);
#endif
#if defined(PCBX9E)
CHECK_3POS(6, SW_SI);
CHECK_3POS(7, SW_SJ);
CHECK_3POS(8, SW_SK);
CHECK_3POS(9, SW_SL);
CHECK_3POS(10, SW_SM);
CHECK_3POS(11, SW_SN);
CHECK_3POS(12, SW_SO);
CHECK_3POS(13, SW_SP);
CHECK_3POS(14, SW_SQ);
CHECK_3POS(15, SW_SR);
#endif
switchesPos = newPos;
for (int i=0; i<NUM_XPOTS; i++) {
if (IS_POT_MULTIPOS(POT1+i)) {
StepsCalibData * calib = (StepsCalibData *) &g_eeGeneral.calib[POT1+i];
if (IS_MULTIPOS_CALIBRATED(calib)) {
uint8_t pos = anaIn(POT1+i) / (2*RESX/calib->count);
uint8_t previousPos = potsPos[i] >> 4;
uint8_t previousStoredPos = potsPos[i] & 0x0F;
if (startup) {
potsPos[i] = (pos << 4) | pos;
}
else if (pos != previousPos) {
potsLastposStart[i] = get_tmr10ms();
potsPos[i] = (pos << 4) | previousStoredPos;
}
else if (g_eeGeneral.switchesDelay==SWITCHES_DELAY_NONE || (tmr10ms_t)(get_tmr10ms() - potsLastposStart[i]) > SWITCHES_DELAY()) {
potsLastposStart[i] = 0;
potsPos[i] = (pos << 4) | pos;
if (previousStoredPos != pos) {
PLAY_SWITCH_MOVED(SWSRC_LAST_SWITCH+i*XPOTS_MULTIPOS_COUNT+pos);
}
}
}
}
}
}
getvalue_t getValueForLogicalSwitch(mixsrc_t i)
{
getvalue_t result = getValue(i);
if (i>=MIXSRC_FIRST_INPUT && i<=MIXSRC_LAST_INPUT) {
int8_t trimIdx = virtualInputsTrims[i-MIXSRC_FIRST_INPUT];
if (trimIdx >= 0) {
int16_t trim = trims[trimIdx];
if (trimIdx == THR_STICK && g_model.throttleReversed)
result -= trim;
else
result += trim;
}
}
return result;
}
#else
#define getValueForLogicalSwitch(i) getValue(i)
#endif
PACK(typedef struct {
uint8_t state;
uint8_t last;
}) ls_sticky_struct;
PACK(typedef struct {
uint16_t state:1;
uint16_t duration:15;
}) ls_stay_struct;
bool getLogicalSwitch(uint8_t idx)
{
LogicalSwitchData * ls = lswAddress(idx);
bool result;
swsrc_t s = ls->andsw;
if (ls->func == LS_FUNC_NONE || (s && !getSwitch(s))) {
if (ls->func != LS_FUNC_STICKY && ls->func != LS_FUNC_EDGE ) {
// AND switch must not affect STICKY and EDGE processing
LS_LAST_VALUE(mixerCurrentFlightMode, idx) = CS_LAST_VALUE_INIT;
}
result = false;
}
else if ((s=lswFamily(ls->func)) == LS_FAMILY_BOOL) {
bool res1 = getSwitch(ls->v1);
bool res2 = getSwitch(ls->v2);
switch (ls->func) {
case LS_FUNC_AND:
result = (res1 && res2);
break;
case LS_FUNC_OR:
result = (res1 || res2);
break;
// case LS_FUNC_XOR:
default:
result = (res1 ^ res2);
break;
}
}
else if (s == LS_FAMILY_TIMER) {
result = (LS_LAST_VALUE(mixerCurrentFlightMode, idx) <= 0);
}
else if (s == LS_FAMILY_STICKY) {
result = (LS_LAST_VALUE(mixerCurrentFlightMode, idx) & (1<<0));
}
else if (s == LS_FAMILY_EDGE) {
result = (LS_LAST_VALUE(mixerCurrentFlightMode, idx) & (1<<0));
}
else {
getvalue_t x = getValueForLogicalSwitch(ls->v1);
getvalue_t y;
if (s == LS_FAMILY_COMP) {
y = getValueForLogicalSwitch(ls->v2);
switch (ls->func) {
case LS_FUNC_EQUAL:
result = (x==y);
break;
case LS_FUNC_GREATER:
result = (x>y);
break;
default:
result = (x<y);
break;
}
}
else {
mixsrc_t v1 = ls->v1;
#if defined(TELEMETRY_FRSKY)
// Telemetry
if (v1 >= MIXSRC_FIRST_TELEM) {
if (!TELEMETRY_STREAMING() || IS_FAI_FORBIDDEN(v1-1)) {
result = false;
goto DurationAndDelayProcessing;
}
y = convertLswTelemValue(ls);
}
else if (v1 >= MIXSRC_GVAR1) {
y = ls->v2;
}
else {
y = calc100toRESX(ls->v2);
}
#else
if (v1 >= MIXSRC_FIRST_TELEM) {
y = (int16_t)3 * (128+ls->v2); // it's a Timer
}
else if (v1 >= MIXSRC_GVAR1) {
y = ls->v2; // it's a GVAR
}
else {
y = calc100toRESX(ls->v2);
}
#endif
switch (ls->func) {
case LS_FUNC_VEQUAL:
result = (x==y);
break;
case LS_FUNC_VALMOSTEQUAL:
#if defined(GVARS)
if (v1 >= MIXSRC_GVAR1 && v1 <= MIXSRC_LAST_GVAR)
result = (x==y);
else
#endif
result = (abs(x-y) < (1024 / STICK_TOLERANCE));
break;
case LS_FUNC_VPOS:
result = (x>y);
break;
case LS_FUNC_VNEG:
result = (x<y);
break;
case LS_FUNC_APOS:
result = (abs(x)>y);
break;
case LS_FUNC_ANEG:
result = (abs(x)<y);
break;
default:
{
if (LS_LAST_VALUE(mixerCurrentFlightMode, idx) == CS_LAST_VALUE_INIT) {
LS_LAST_VALUE(mixerCurrentFlightMode, idx) = x;
}
int16_t diff = x - LS_LAST_VALUE(mixerCurrentFlightMode, idx);
bool update = false;
if (ls->func == LS_FUNC_DIFFEGREATER) {
if (y >= 0) {
result = (diff >= y);
if (diff < 0)
update = true;
}
else {
result = (diff <= y);
if (diff > 0)
update = true;
}
}
else {
result = (abs(diff) >= y);
}
if (result || update) {
LS_LAST_VALUE(mixerCurrentFlightMode, idx) = x;
}
break;
}
}
}
}
#if defined(TELEMETRY_FRSKY)
DurationAndDelayProcessing:
#endif
if (ls->delay || ls->duration) {
LogicalSwitchContext &context = lswFm[mixerCurrentFlightMode].lsw[idx];
if (result) {
if (context.timerState == SWITCH_START) {
// set delay timer
context.timerState = SWITCH_DELAY;
context.timer = (ls->func == LS_FUNC_EDGE ? 0 : ls->delay);
}
if (context.timerState == SWITCH_DELAY) {
if (context.timer) {
result = false; // return false while delay timer running
}
else {
// set duration timer
context.timerState = SWITCH_ENABLE;
context.timer = ls->duration;
}
}
if (context.timerState == SWITCH_ENABLE) {
result = (ls->duration==0 || context.timer>0); // return false after duration timer runs out
if (!result && ls->func == LS_FUNC_STICKY) {
ls_sticky_struct & lastValue = (ls_sticky_struct &)context.lastValue;
lastValue.state = 0;
}
}
}
else if (context.timerState == SWITCH_ENABLE && ls->duration > 0 && context.timer > 0) {
result = true;
}
else {
context.timerState = SWITCH_START;
context.timer = 0;
}
}
return result;
}
bool getSwitch(swsrc_t swtch, uint8_t flags)
{
bool result;
if (swtch == SWSRC_NONE)
return true;
uint8_t cs_idx = abs(swtch);
if (cs_idx == SWSRC_ONE) {
result = !s_mixer_first_run_done;
}
else if (cs_idx == SWSRC_ON) {
result = true;
}
#if defined(DEBUG_LATENCY)
else if (cs_idx == SWSRC_LATENCY_TOGGLE) {
result = latencyToggleSwitch;
}
#endif
else if (cs_idx <= SWSRC_LAST_SWITCH) {
#if defined(PCBTARANIS) || defined(PCBHORUS)
if (flags & GETSWITCH_MIDPOS_DELAY)
result = SWITCH_POSITION(cs_idx-SWSRC_FIRST_SWITCH);
else
result = switchState(cs_idx-SWSRC_FIRST_SWITCH);
#else
result = switchState(cs_idx-SWSRC_FIRST_SWITCH);
#endif
}
#if NUM_XPOTS > 0
else if (cs_idx <= SWSRC_LAST_MULTIPOS_SWITCH) {
result = POT_POSITION(cs_idx-SWSRC_FIRST_MULTIPOS_SWITCH);
}
#endif
else if (cs_idx <= SWSRC_LAST_TRIM) {
uint8_t idx = cs_idx - SWSRC_FIRST_TRIM;
idx = (CONVERT_MODE_TRIMS(idx/2) << 1) + (idx & 1);
result = trimDown(idx);
}
else if (cs_idx >= SWSRC_FIRST_SENSOR) {
result = !telemetryItems[cs_idx-SWSRC_FIRST_SENSOR].isOld();
}
else if (cs_idx == SWSRC_TELEMETRY_STREAMING) {
result = TELEMETRY_STREAMING();
}
else if (cs_idx >= SWSRC_FIRST_FLIGHT_MODE) {
#if defined(FLIGHT_MODES)
uint8_t idx = cs_idx - SWSRC_FIRST_FLIGHT_MODE;
if (flags & GETSWITCH_MIDPOS_DELAY)
result = (idx == flightModeTransitionLast);
else
result = (idx == mixerCurrentFlightMode);
#else
result = false;
#endif
}
else {
cs_idx -= SWSRC_FIRST_LOGICAL_SWITCH;
result = lswFm[mixerCurrentFlightMode].lsw[cs_idx].state;
}
return swtch > 0 ? result : !result;
}
/**
@brief Calculates new state of logical switches for mixerCurrentFlightMode
*/
void evalLogicalSwitches(bool isCurrentFlightmode)
{
for (unsigned int idx=0; idx<MAX_LOGICAL_SWITCHES; idx++) {
LogicalSwitchContext & context = lswFm[mixerCurrentFlightMode].lsw[idx];
bool result = getLogicalSwitch(idx);
if (isCurrentFlightmode) {
if (result) {
if (!context.state) PLAY_LOGICAL_SWITCH_ON(idx);
}
else {
if (context.state) PLAY_LOGICAL_SWITCH_OFF(idx);
}
}
context.state = result;
}
}
swarnstate_t switches_states = 0;
swsrc_t getMovedSwitch()
{
static tmr10ms_t s_move_last_time = 0;
swsrc_t result = 0;
#if defined(PCBTARANIS) || defined(PCBHORUS)
for (int i=0; i<NUM_SWITCHES; i++) {
if (SWITCH_EXISTS(i)) {
swarnstate_t mask = ((swarnstate_t)0x03 << (i*2));
uint8_t prev = (switches_states & mask) >> (i*2);
uint8_t next = (1024+getValue(MIXSRC_SA+i)) / 1024;
if (prev != next) {
switches_states = (switches_states & (~mask)) | ((swarnstate_t)next << (i*2));
result = 1+(3*i)+next;
}
}
}
#else
// return delivers 1 to 3 for ID1 to ID3
// 4..8 for all other switches if changed to true
// -4..-8 for all other switches if changed to false
// 9 for Trainer switch if changed to true; Change to false is ignored
swarnstate_t mask = 0x80;
for (uint8_t i=NUM_PSWITCH; i>1; i--) {
bool prev;
prev = (switches_states & mask);
// don't use getSwitch here to always get the proper value, even getSwitch manipulates
bool next = switchState(i-1);
if (prev != next) {
if (((i<NUM_PSWITCH) && (i>3)) || next==true)
result = next ? i : -i;
if (i<=3 && result==0) result = 1;
switches_states ^= mask;
}
mask >>= 1;
}
#endif
if ((tmr10ms_t)(get_tmr10ms() - s_move_last_time) > 10)
result = 0;
s_move_last_time = get_tmr10ms();
return result;
}
#if defined(GUI)
void checkSwitches()
{
swarnstate_t last_bad_switches = 0xff;
swarnstate_t states = g_model.switchWarningState;
#if defined(PCBTARANIS) || defined(PCBHORUS)
uint8_t bad_pots = 0, last_bad_pots = 0xff;
#endif
while (1) {
#if defined(PCBTARANIS) || defined(PCBHORUS)
#define GETADC_COUNT 1
#endif
#ifdef GETADC_COUNT
for (uint8_t i=0; i<GETADC_COUNT; i++) {
GET_ADC_IF_MIXER_NOT_RUNNING();
}
#undef GETADC_COUNT
#endif
getMovedSwitch();
bool warn = false;
#if defined(COLORLCD)
for (int i=0; i<NUM_SWITCHES; i++) {
if (SWITCH_WARNING_ALLOWED(i)) {
unsigned int state = ((states >> (3*i)) & 0x07);
if (state && state-1 != ((switches_states >> (i*2)) & 0x03)) {
warn = true;
}
}
}
if (g_model.potsWarnMode) {
evalFlightModeMixes(e_perout_mode_normal, 0);
bad_pots = 0;
for (int i=0; i<NUM_POTS+NUM_SLIDERS; i++) {
if (!IS_POT_SLIDER_AVAILABLE(POT1+i)) {
continue;
}
if (!(g_model.potsWarnEnabled & (1 << i)) && (abs(g_model.potsWarnPosition[i] - GET_LOWRES_POT_POSITION(i)) > 1)) {
warn = true;
bad_pots |= (1<<i);
}
}
}
#elif defined(PCBTARANIS)
for (int i=0; i<NUM_SWITCHES; i++) {
if (SWITCH_WARNING_ALLOWED(i) && !(g_model.switchWarningEnable & (1<<i))) {
swarnstate_t mask = ((swarnstate_t)0x03 << (i*2));
if (!((states & mask) == (switches_states & mask))) {
warn = true;
}
}
}
if (g_model.potsWarnMode) {
evalFlightModeMixes(e_perout_mode_normal, 0);
bad_pots = 0;
for (int i=0; i<NUM_POTS+NUM_SLIDERS; i++) {
if (!IS_POT_SLIDER_AVAILABLE(POT1+i)) {
continue;
}
if (!(g_model.potsWarnEnabled & (1 << i)) && (abs(g_model.potsWarnPosition[i] - GET_LOWRES_POT_POSITION(i)) > 1)) {
warn = true;
bad_pots |= (1<<i);
}
}
}
#else
for (int i=0; i<NUM_SWITCHES-1; i++) {
if (!(g_model.switchWarningEnable & (1<<i))) {
if (i == 0) {
if ((states & 0x03) != (switches_states & 0x03)) {
warn = true;
}
}
else if ((states & (1<<(i+1))) != (switches_states & (1<<(i+1)))) {
warn = true;
}
}
}
#endif
if (!warn) {
break;
}
LED_ERROR_BEGIN();
backlightOn();
// first - display warning
#if defined(PCBTARANIS) || defined(PCBHORUS)
if ((last_bad_switches != switches_states) || (last_bad_pots != bad_pots)) {
drawAlertBox(STR_SWITCHWARN, NULL, STR_PRESSANYKEYTOSKIP);
if (last_bad_switches == 0xff || last_bad_pots == 0xff) {
AUDIO_ERROR_MESSAGE(AU_SWITCH_ALERT);
}
int x = SWITCH_WARNING_LIST_X, y = SWITCH_WARNING_LIST_Y;
int numWarnings = 0;
for (int i=0; i<NUM_SWITCHES; ++i) {
#if defined(COLORLCD)
if (SWITCH_WARNING_ALLOWED(i)) {
unsigned int state = ((g_model.switchWarningState >> (3*i)) & 0x07);
if (state && state-1 != ((switches_states >> (i*2)) & 0x03)) {
if (++numWarnings < 6) {
// LcdFlags attr = ((states & mask) == (switches_states & mask)) ? TEXT_COLOR : ALARM_COLOR;
LcdFlags attr = ALARM_COLOR;
drawSwitch(x, y, SWSRC_FIRST_SWITCH+i*3+state-1, attr);
x += SWITCH_WARNING_LIST_INTERVAL;
}
else if (numWarnings == 6) {
lcdDrawText(x, y, "...", ALARM_COLOR);
}
}
}
#else
if (SWITCH_WARNING_ALLOWED(i) && !(g_model.switchWarningEnable & (1<<i))) {
swarnstate_t mask = ((swarnstate_t)0x03 << (i*2));
LcdFlags attr = ((states & mask) == (switches_states & mask)) ? 0 : INVERS;
if (attr) {
if (++numWarnings < 7) {
char c = "\300-\301"[(states & mask) >> (i*2)];
drawSource(x, y, MIXSRC_FIRST_SWITCH+i, attr);
lcdDrawChar(lcdNextPos, y, c, attr);
x = lcdNextPos + 3;
}
else if (numWarnings == 7) {
lcdDrawText(x, y, "...", 0);
}
}
}
#endif
}
if (g_model.potsWarnMode) {
if (y == 4*FH+3) {
y = 6*FH-2;
x = 60;
}
for (int i=0; i<NUM_POTS+NUM_SLIDERS; i++) {
if (!IS_POT_SLIDER_AVAILABLE(POT1+i)) {
continue;
}
if (!(g_model.potsWarnEnabled & (1 << i))) {
if (abs(g_model.potsWarnPosition[i] - GET_LOWRES_POT_POSITION(i)) > 1) {
#if defined(COLORLCD)
char s[8];
// TODO add an helper
strncpy(s, &STR_VSRCRAW[1+(NUM_STICKS+1+i)*STR_VSRCRAW[0]], STR_VSRCRAW[0]);
s[int(STR_VSRCRAW[0])] = '\0';
#else
lcdDrawTextAtIndex(x, y, STR_VSRCRAW, NUM_STICKS+1+i, INVERS);
if (IS_POT(POT1+i))
lcdDrawChar(lcdNextPos, y, g_model.potsWarnPosition[i] > GET_LOWRES_POT_POSITION(i) ? 126 : 127, INVERS);
else
lcdDrawChar(lcdNextPos, y, g_model.potsWarnPosition[i] > GET_LOWRES_POT_POSITION(i) ? '\300' : '\301', INVERS);
#endif
#if defined(COLORLCD)
if (++numWarnings < 6) {
lcdDrawText(x, y, s, ALARM_COLOR);
}
else if (numWarnings == 6) {
lcdDrawText(x, y, "...", ALARM_COLOR);
}
x += 40;
#else
x = lcdNextPos + 3;
#endif
}
}
}
}
last_bad_pots = bad_pots;
#else
if (last_bad_switches != switches_states) {
RAISE_ALERT(STR_SWITCHWARN, NULL, STR_PRESSANYKEYTOSKIP, last_bad_switches == 0xff ? AU_SWITCH_ALERT : AU_NONE);
uint8_t x = 2;
for (uint8_t i=0; i<NUM_SWITCHES-1; i++) {
uint8_t attr;
if (i == 0)
attr = ((states & 0x03) != (switches_states & 0x03)) ? INVERS : 0;
else
attr = (states & (1 << (i+1))) == (switches_states & (1 << (i+1))) ? 0 : INVERS;
if (!(g_model.switchWarningEnable & (1<<i)))
drawSwitch(x, 5*FH, (i>0?(i+3):(states&0x3)+1), attr);
x += 3*FW+FW/2;
}
#endif
lcdRefresh();
lcdSetContrast();
waitKeysReleased();
last_bad_switches = switches_states;
}
if (pwrCheck() == e_power_off || keyDown()) break;
doLoopCommonActions();
wdt_reset();
RTOS_WAIT_MS(10);
}
LED_ERROR_END();
}
#endif // GUI
void logicalSwitchesTimerTick()
{
for (uint8_t fm=0; fm<MAX_FLIGHT_MODES; fm++) {
for (uint8_t i=0; i<MAX_LOGICAL_SWITCHES; i++) {
LogicalSwitchData * ls = lswAddress(i);
if (ls->func == LS_FUNC_TIMER) {
int16_t *lastValue = &LS_LAST_VALUE(fm, i);
if (*lastValue == 0 || *lastValue == CS_LAST_VALUE_INIT) {
*lastValue = -lswTimerValue(ls->v1);
}
else if (*lastValue < 0) {
if (++(*lastValue) == 0)
*lastValue = lswTimerValue(ls->v2);
}
else { // if (*lastValue > 0)
*lastValue -= 1;
}
}
else if (ls->func == LS_FUNC_STICKY) {
ls_sticky_struct & lastValue = (ls_sticky_struct &)LS_LAST_VALUE(fm, i);
bool before = lastValue.last & 0x01;
if (lastValue.state) {
bool now = getSwitch(ls->v2);
if (now != before) {
lastValue.last ^= 1;
if (!before) {
lastValue.state = 0;
}
}
}
else {
bool now = getSwitch(ls->v1);
if (before != now) {
lastValue.last ^= 1;
if (!before) {
lastValue.state = 1;
}
}
}
}
else if (ls->func == LS_FUNC_EDGE) {
ls_stay_struct & lastValue = (ls_stay_struct &)LS_LAST_VALUE(fm, i);
// if this ls was reset by the logicalSwitchesReset() the lastValue will be set to CS_LAST_VALUE_INIT(0x8000)
// when it is unpacked into ls_stay_struct the lastValue.duration will have a value of 0x4000
// this will produce an instant true for edge logical switch if the second parameter is big enough.
// So we reset it here.
if (LS_LAST_VALUE(fm, i) == CS_LAST_VALUE_INIT) {
lastValue.duration = 0;
}
lastValue.state = false;
bool state = getSwitch(ls->v1);
if (state) {
if (ls->v3 == -1 && lastValue.duration == lswTimerValue(ls->v2))
lastValue.state = true;
if (lastValue.duration < 1000)
lastValue.duration++;
}
else {
if (lastValue.duration > lswTimerValue(ls->v2) && (ls->v3 == 0 || lastValue.duration <= lswTimerValue(ls->v2+ls->v3)))
lastValue.state = true;
lastValue.duration = 0;
}
}
// decrement delay/duration timer
LogicalSwitchContext &context = lswFm[fm].lsw[i];
if (context.timer) {
context.timer--;
}
}
}
}
LogicalSwitchData * lswAddress(uint8_t idx)
{
return &g_model.logicalSw[idx];
}
uint8_t lswFamily(uint8_t func)
{
if (func <= LS_FUNC_ANEG)
return LS_FAMILY_OFS;
else if (func <= LS_FUNC_XOR)
return LS_FAMILY_BOOL;
else if (func == LS_FUNC_EDGE)
return LS_FAMILY_EDGE;
else if (func <= LS_FUNC_LESS)
return LS_FAMILY_COMP;
else if (func <= LS_FUNC_ADIFFEGREATER)
return LS_FAMILY_DIFF;
else
return LS_FAMILY_TIMER+func-LS_FUNC_TIMER;
}
int16_t lswTimerValue(delayval_t val)
{
return (val < -109 ? 129+val : (val < 7 ? (113+val)*5 : (53+val)*10));
}
void logicalSwitchesReset()
{
memset(lswFm, 0, sizeof(lswFm));
for (uint8_t fm=0; fm<MAX_FLIGHT_MODES; fm++) {
for (uint8_t i=0; i<MAX_LOGICAL_SWITCHES; i++) {
LS_LAST_VALUE(fm, i) = CS_LAST_VALUE_INIT;
}
}
}
getvalue_t convertLswTelemValue(LogicalSwitchData * ls)
{
getvalue_t val;
val = convert16bitsTelemValue(ls->v1 - MIXSRC_FIRST_TELEM + 1, ls->v2);
return val;
}
void logicalSwitchesCopyState(uint8_t src, uint8_t dst)
{
lswFm[dst] = lswFm[src];
}