1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-25 09:16:01 +03:00

Fix broken 6-point calibration

This commit is contained in:
Konstantin Sharlaimov (DigitalEntity) 2018-02-22 15:05:25 +10:00
parent cac5caca02
commit 2aee58777e
5 changed files with 52 additions and 47 deletions

View file

@ -21,6 +21,7 @@
#include <math.h>
#include "platform.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/filter.h"
@ -325,42 +326,33 @@ static bool isOnFirstAccelerationCalibrationCycle(void)
return calibratingA == CALIBRATING_ACC_CYCLES;
}
static sensorCalibrationState_t calState;
static bool calibratedAxis[6];
static bool calibratedPosition[6];
static int32_t accSamples[6][3];
static int calibratedAxisCount = 0;
bool accGetCalibrationAxisStatus(int axis)
{
if (accIsCalibrationComplete()) {
if (STATE(ACCELEROMETER_CALIBRATED)) {
return true; // if calibration is valid - all axis are calibrated
}
else {
return calibratedAxis[axis];
}
}
else {
return calibratedAxis[axis];
}
}
uint8_t accGetCalibrationAxisFlags(void)
{
if (accIsCalibrationComplete() && STATE(ACCELEROMETER_CALIBRATED)) {
return 0x3F; // All 6 bits are set
}
static const uint8_t bitMap[6] = { 0, 1, 3, 5, 2, 4 }; // A mapping of bits to match position indexes in Configurator
uint8_t flags = 0;
for (int i = 0; i < 6; i++) {
if (accGetCalibrationAxisStatus(i)) {
flags |= (1 << i);
if (calibratedPosition[i]) {
flags |= (1 << bitMap[i]);
}
}
return flags;
}
int getPrimaryAxisIndex(int32_t sample[3])
static int getPrimaryAxisIndex(int32_t accADCData[3])
{
// Apply sensor alignment (for axis detection only)
applySensorAlignment(sample, acc.dev.accAlign);
// Work on a copy so we don't mess with accADC data
int32_t sample[3];
applySensorAlignment(sample, accADCData, acc.dev.accAlign);
// Tolerate up to atan(1 / 1.5) = 33 deg tilt (in worst case 66 deg separation between points)
if ((ABS(sample[Z]) / 1.5f) > ABS(sample[X]) && (ABS(sample[Z]) / 1.5f) > ABS(sample[Y])) {
@ -369,11 +361,11 @@ int getPrimaryAxisIndex(int32_t sample[3])
}
else if ((ABS(sample[X]) / 1.5f) > ABS(sample[Y]) && (ABS(sample[X]) / 1.5f) > ABS(sample[Z])) {
//X-axis
return (sample[X] > 0) ? 3 : 5;
return (sample[X] > 0) ? 2 : 3;
}
else if ((ABS(sample[Y]) / 1.5f) > ABS(sample[X]) && (ABS(sample[Y]) / 1.5f) > ABS(sample[Z])) {
//Y-axis
return (sample[Y] > 0) ? 2 : 4;
return (sample[Y] > 0) ? 4 : 5;
}
else
return -1;
@ -381,35 +373,38 @@ int getPrimaryAxisIndex(int32_t sample[3])
static void performAcclerationCalibration(void)
{
int axisIndex = getPrimaryAxisIndex(accADC);
int positionIndex = getPrimaryAxisIndex(accADC);
// Check if sample is usable
if (axisIndex < 0) {
if (positionIndex < 0) {
return;
}
// Top-up and first calibration cycle, reset everything
if (axisIndex == 0 && isOnFirstAccelerationCalibrationCycle()) {
if (positionIndex == 0 && isOnFirstAccelerationCalibrationCycle()) {
for (int axis = 0; axis < 6; axis++) {
calibratedAxis[axis] = false;
calibratedPosition[axis] = false;
accSamples[axis][X] = 0;
accSamples[axis][Y] = 0;
accSamples[axis][Z] = 0;
}
calibratedAxisCount = 0;
sensorCalibrationResetState(&calState);
DISABLE_STATE(ACCELEROMETER_CALIBRATED);
}
if (!calibratedAxis[axisIndex]) {
sensorCalibrationPushSampleForOffsetCalculation(&calState, accADC);
accSamples[axisIndex][X] += accADC[X];
accSamples[axisIndex][Y] += accADC[Y];
accSamples[axisIndex][Z] += accADC[Z];
if (!calibratedPosition[positionIndex]) {
accSamples[positionIndex][X] += accADC[X];
accSamples[positionIndex][Y] += accADC[Y];
accSamples[positionIndex][Z] += accADC[Z];
if (isOnFinalAccelerationCalibrationCycle()) {
calibratedAxis[axisIndex] = true;
calibratedPosition[positionIndex] = true;
accSamples[positionIndex][X] = accSamples[positionIndex][X] / CALIBRATING_ACC_CYCLES;
accSamples[positionIndex][Y] = accSamples[positionIndex][Y] / CALIBRATING_ACC_CYCLES;
accSamples[positionIndex][Z] = accSamples[positionIndex][Z] / CALIBRATING_ACC_CYCLES;
calibratedAxisCount++;
beeperConfirmationBeeps(2);
@ -417,10 +412,16 @@ static void performAcclerationCalibration(void)
}
if (calibratedAxisCount == 6) {
sensorCalibrationState_t calState;
float accTmp[3];
int32_t accSample[3];
/* Calculate offset */
sensorCalibrationResetState(&calState);
for (int axis = 0; axis < 6; axis++) {
sensorCalibrationPushSampleForOffsetCalculation(&calState, accSamples[axis]);
}
sensorCalibrationSolveForOffset(&calState, accTmp);
for (int axis = 0; axis < 3; axis++) {
@ -431,9 +432,11 @@ static void performAcclerationCalibration(void)
sensorCalibrationResetState(&calState);
for (int axis = 0; axis < 6; axis++) {
accSample[X] = accSamples[axis][X] / CALIBRATING_ACC_CYCLES - accelerometerConfig()->accZero.raw[X];
accSample[Y] = accSamples[axis][Y] / CALIBRATING_ACC_CYCLES - accelerometerConfig()->accZero.raw[Y];
accSample[Z] = accSamples[axis][Z] / CALIBRATING_ACC_CYCLES - accelerometerConfig()->accZero.raw[Z];
int32_t accSample[3];
accSample[X] = accSamples[axis][X] - accelerometerConfig()->accZero.raw[X];
accSample[Y] = accSamples[axis][Y] - accelerometerConfig()->accZero.raw[Y];
accSample[Z] = accSamples[axis][Z] - accelerometerConfig()->accZero.raw[Z];
sensorCalibrationPushSampleForScaleCalculation(&calState, axis / 2, accSample, acc.dev.acc_1G);
}
@ -511,7 +514,8 @@ void accUpdate(void)
}
applyAccelerationZero(&accelerometerConfig()->accZero, &accelerometerConfig()->accGain);
applySensorAlignment(accADC, acc.dev.accAlign);
applySensorAlignment(accADC, accADC, acc.dev.accAlign);
applyBoardAlignment(accADC);
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {