1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-20 14:55:18 +03:00

Merge pull request #5592 from iNavFlight/dzikuvx-simple-2d-navigation

Simplified 2D navigation routines
This commit is contained in:
Paweł Spychalski 2020-04-14 21:38:40 +02:00 committed by GitHub
commit 31738f890e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 181 additions and 27 deletions

View file

@ -201,6 +201,7 @@ COMMON_SRC = \
navigation/navigation_pos_estimator.c \
navigation/navigation_pos_estimator_agl.c \
navigation/navigation_pos_estimator_flow.c \
navigation/navigation_rover_boat.c \
sensors/barometer.c \
sensors/pitotmeter.c \
sensors/rangefinder.c \

View file

@ -2982,7 +2982,9 @@ void applyWaypointNavigationAndAltitudeHold(void)
/* Process controllers */
navigationFSMStateFlags_t navStateFlags = navGetStateFlags(posControl.navState);
if (STATE(FIXED_WING_LEGACY)) {
if (STATE(ROVER) || STATE(BOAT)) {
applyRoverBoatNavigationController(navStateFlags, currentTimeUs);
} else if (STATE(FIXED_WING_LEGACY)) {
applyFixedWingNavigationController(navStateFlags, currentTimeUs);
}
else {

View file

@ -203,6 +203,9 @@ bool adjustFixedWingHeadingFromRCInput(void)
static fpVector3_t virtualDesiredPosition;
static pt1Filter_t fwPosControllerCorrectionFilterState;
/*
* TODO Currently this function resets both FixedWing and Rover & Boat position controller
*/
void resetFixedWingPositionController(void)
{
virtualDesiredPosition.x = 0;
@ -286,6 +289,34 @@ bool adjustFixedWingPositionFromRCInput(void)
return (rcRollAdjustment);
}
float processHeadingYawController(timeDelta_t deltaMicros, int32_t navHeadingError, bool errorIsDecreasing) {
static float limit = 0.0f;
if (limit == 0.0f) {
limit = pidProfile()->navFwPosHdgPidsumLimit * 100.0f;
}
const pidControllerFlags_e yawPidFlags = errorIsDecreasing ? PID_SHRINK_INTEGRATOR : 0;
const float yawAdjustment = navPidApply2(
&posControl.pids.fw_heading,
0,
applyDeadband(navHeadingError, navConfig()->fw.yawControlDeadband * 100),
US2S(deltaMicros),
-limit,
limit,
yawPidFlags
) / 100.0f;
DEBUG_SET(DEBUG_NAV_YAW, 0, posControl.pids.fw_heading.proportional);
DEBUG_SET(DEBUG_NAV_YAW, 1, posControl.pids.fw_heading.integral);
DEBUG_SET(DEBUG_NAV_YAW, 2, posControl.pids.fw_heading.derivative);
DEBUG_SET(DEBUG_NAV_YAW, 3, navHeadingError);
DEBUG_SET(DEBUG_NAV_YAW, 4, posControl.pids.fw_heading.output_constrained);
return yawAdjustment;
}
static void updatePositionHeadingController_FW(timeUs_t currentTimeUs, timeDelta_t deltaMicros)
{
static timeUs_t previousTimeMonitoringUpdate;
@ -346,32 +377,7 @@ static void updatePositionHeadingController_FW(timeUs_t currentTimeUs, timeDelta
* It is working in relative mode and we aim to keep error at zero
*/
if (STATE(FW_HEADING_USE_YAW)) {
static float limit = 0.0f;
if (limit == 0.0f) {
limit = pidProfile()->navFwPosHdgPidsumLimit * 100.0f;
}
const pidControllerFlags_e yawPidFlags = errorIsDecreasing ? PID_SHRINK_INTEGRATOR : 0;
float yawAdjustment = navPidApply2(
&posControl.pids.fw_heading,
0,
applyDeadband(navHeadingError, navConfig()->fw.yawControlDeadband * 100),
US2S(deltaMicros),
-limit,
limit,
yawPidFlags
) / 100.0f;
DEBUG_SET(DEBUG_NAV_YAW, 0, posControl.pids.fw_heading.proportional);
DEBUG_SET(DEBUG_NAV_YAW, 1, posControl.pids.fw_heading.integral);
DEBUG_SET(DEBUG_NAV_YAW, 2, posControl.pids.fw_heading.derivative);
DEBUG_SET(DEBUG_NAV_YAW, 3, navHeadingError);
DEBUG_SET(DEBUG_NAV_YAW, 4, posControl.pids.fw_heading.output_constrained);
posControl.rcAdjustment[YAW] = yawAdjustment;
posControl.rcAdjustment[YAW] = processHeadingYawController(deltaMicros, navHeadingError, errorIsDecreasing);
} else {
posControl.rcAdjustment[YAW] = 0;
}

View file

@ -444,6 +444,8 @@ bool adjustFixedWingAltitudeFromRCInput(void);
bool adjustFixedWingHeadingFromRCInput(void);
bool adjustFixedWingPositionFromRCInput(void);
void applyFixedWingPositionController(timeUs_t currentTimeUs);
float processHeadingYawController(timeDelta_t deltaMicros, int32_t navHeadingError, bool errorIsDecreasing);
void applyFixedWingNavigationController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs);
void calculateFixedWingInitialHoldPosition(fpVector3_t * pos);
@ -456,4 +458,9 @@ bool isFixedWingLaunchFinishedOrAborted(void);
void abortFixedWingLaunch(void);
void applyFixedWingLaunchController(timeUs_t currentTimeUs);
/*
* Rover specific functions
*/
void applyRoverBoatNavigationController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs);
#endif

View file

@ -0,0 +1,138 @@
/*
* This file is part of INAV Project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Alternatively, the contents of this file may be used under the terms
* of the GNU General Public License Version 3, as described below:
*
* This file is free software: you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
#include "platform.h"
FILE_COMPILE_FOR_SIZE
#ifdef USE_NAV
#include "build/debug.h"
#include "common/utils.h"
#include "fc/rc_controls.h"
#include "flight/mixer.h"
#include "navigation/navigation.h"
#include "navigation/navigation_private.h"
static bool isYawAdjustmentValid = false;
static int32_t navHeadingError;
static void update2DPositionHeadingController(timeUs_t currentTimeUs, timeDelta_t deltaMicros)
{
static timeUs_t previousTimeMonitoringUpdate;
static int32_t previousHeadingError;
static bool errorIsDecreasing;
int32_t targetBearing = calculateBearingToDestination(&posControl.desiredState.pos);
/*
* Calculate NAV heading error
* Units are centidegrees
*/
navHeadingError = wrap_18000(targetBearing - posControl.actualState.yaw);
// Slow error monitoring (2Hz rate)
if ((currentTimeUs - previousTimeMonitoringUpdate) >= HZ2US(NAV_FW_CONTROL_MONITORING_RATE)) {
// Check if error is decreasing over time
errorIsDecreasing = (ABS(previousHeadingError) > ABS(navHeadingError));
// Save values for next iteration
previousHeadingError = navHeadingError;
previousTimeMonitoringUpdate = currentTimeUs;
}
posControl.rcAdjustment[YAW] = processHeadingYawController(deltaMicros, navHeadingError, errorIsDecreasing);
}
void applyRoverBoatPositionController(timeUs_t currentTimeUs)
{
static timeUs_t previousTimePositionUpdate; // Occurs @ GPS update rate
static timeUs_t previousTimeUpdate; // Occurs @ looptime rate
const timeDelta_t deltaMicros = currentTimeUs - previousTimeUpdate;
previousTimeUpdate = currentTimeUs;
// If last position update was too long in the past - ignore it (likely restarting altitude controller)
if (deltaMicros > HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
previousTimeUpdate = currentTimeUs;
previousTimePositionUpdate = currentTimeUs;
resetFixedWingPositionController();
return;
}
// Apply controller only if position source is valid. In absence of valid pos sensor (GPS loss), we'd stick in forced ANGLE mode
if ((posControl.flags.estPosStatus >= EST_USABLE)) {
// If we have new position - update velocity and acceleration controllers
if (posControl.flags.horizontalPositionDataNew) {
const timeDelta_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
previousTimePositionUpdate = currentTimeUs;
if (deltaMicrosPositionUpdate < HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
update2DPositionHeadingController(currentTimeUs, deltaMicrosPositionUpdate);
} else {
resetFixedWingPositionController();
}
// Indicate that information is no longer usable
posControl.flags.horizontalPositionDataConsumed = 1;
}
isYawAdjustmentValid = true;
}
else {
isYawAdjustmentValid = false;
}
}
void applyRoverBoatPitchRollThrottleController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
rcCommand[ROLL] = 0;
rcCommand[PITCH] = 0;
if (navStateFlags & NAV_CTL_POS) {
if (isYawAdjustmentValid) {
rcCommand[YAW] = posControl.rcAdjustment[YAW];
}
rcCommand[THROTTLE] = constrain(navConfig()->fw.cruise_throttle, motorConfig()->mincommand, motorConfig()->maxthrottle);
}
}
void applyRoverBoatNavigationController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
{
if (navStateFlags & NAV_CTL_EMERG) {
rcCommand[ROLL] = 0;
rcCommand[PITCH] = 0;
rcCommand[YAW] = 0;
rcCommand[THROTTLE] = failsafeConfig()->failsafe_throttle;
} else if (navStateFlags & NAV_CTL_POS) {
applyRoverBoatPositionController(currentTimeUs);
applyRoverBoatPitchRollThrottleController(navStateFlags, currentTimeUs);
}
}
#endif